JPS6227872Y2 - - Google Patents

Info

Publication number
JPS6227872Y2
JPS6227872Y2 JP1979125171U JP12517179U JPS6227872Y2 JP S6227872 Y2 JPS6227872 Y2 JP S6227872Y2 JP 1979125171 U JP1979125171 U JP 1979125171U JP 12517179 U JP12517179 U JP 12517179U JP S6227872 Y2 JPS6227872 Y2 JP S6227872Y2
Authority
JP
Japan
Prior art keywords
flow path
electrode
flow
cell
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979125171U
Other languages
Japanese (ja)
Other versions
JPS5643046U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979125171U priority Critical patent/JPS6227872Y2/ja
Publication of JPS5643046U publication Critical patent/JPS5643046U/ja
Application granted granted Critical
Publication of JPS6227872Y2 publication Critical patent/JPS6227872Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Description

【考案の詳細な説明】 本考案は電気化学的セルに係り、特にイオン電
極、ガス電極を用いる分析計等に使用するに好適
な流通形セルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochemical cell, and particularly to a flow-through type cell suitable for use in an analyzer using an ion electrode or a gas electrode.

近年、流体中の電解質、ガス成分の分析にイオ
ン選択電極、ガス電極などの電気化学的検出器が
多く用いられてきている。そして、連続モニター
あるいは多数の試料を連続測定する分析計に、上
記電極の応答面が試料に接触するように流通路に
配置される流通形測定セルが使われている。この
種の装置は、臨床化学および生物化学分野に特に
有効に適用される。従来の流通形測定セルとし
て、電極を1本の試料導入管とその周囲に4本の
排出管を具備した流通形測定容器に挿入した例
(公知例1)がある。この例では応答面の表面中
央より流入し、応答面の周辺部に拡散した試料は
4本の排出管に至るが、試料は4本の排出管の間
では不規則な渦流を形成し、排出が円滑に行なわ
れない。そして、セル容量は比較的大きく、多項
目測定用に複数のセルを組合せることは難しい。
In recent years, electrochemical detectors such as ion selective electrodes and gas electrodes have been increasingly used to analyze electrolytes and gas components in fluids. A flow-through type measurement cell is used in a continuous monitor or an analyzer that continuously measures a large number of samples, which is arranged in a flow path so that the response surface of the electrode is in contact with the sample. Devices of this type find particular application in the fields of clinical chemistry and biochemistry. As a conventional flow-type measurement cell, there is an example (known example 1) in which an electrode is inserted into a flow-type measurement container having one sample introduction tube and four discharge tubes around it. In this example, the sample flows from the center of the surface of the response surface and diffuses to the periphery of the response surface, reaching the four discharge pipes, but the sample forms an irregular vortex flow between the four discharge pipes and is discharged. is not carried out smoothly. Furthermore, the cell capacity is relatively large, and it is difficult to combine a plurality of cells for multi-item measurement.

一方、複数電極の組合せを可能にした測定セル
として、1電極−1ブロツクの測定セルを押し付
けて一体化したものがある(公知例2)。各セル
には直通する試料流通路と該流通路に応答面が接
するように電極を配設したものがあるが、試料が
応答面に平行に流れるため応答速度の点で有効で
ない。これを改善した例(公知例3)もみられ
る。この例は、シリンダー状の測定セルの中央付
近に試料出入溝と半径方向の孔を有し、電極が挿
入される該孔の底部に測定室が形成され、応答面
に対する試料の流れが垂直方向になるように改善
したものである。公知例2,3では、測定セルの
接合の際、試料出入口を合致させるのが難しく、
各測定セル面に試料のしみこみがみられたり、流
れの滞溜部分が生じ、キヤリオーバーの原因にな
つて測定誤差を招く。また、公知例1,3では、
流路が複雑であるため固形物等のゴミがつまり易
く、それを除去するには個々の測定セルあるいは
電極部をはずさなければならないので、装置のメ
ンテナンスに手間と時間がかかる。
On the other hand, as a measurement cell that allows the combination of a plurality of electrodes, there is one in which one electrode and one block of measurement cells are pressed together and integrated (Known Example 2). Each cell has a sample flow path that directly communicates with the flow path and electrodes are arranged so that the response surface is in contact with the flow path, but this is not effective in terms of response speed because the sample flows parallel to the response surface. There is also an example (known example 3) that improves this. In this example, a cylindrical measurement cell has a sample inlet/outlet groove and a radial hole near the center, and a measurement chamber is formed at the bottom of the hole into which the electrode is inserted, so that the flow of the sample relative to the response surface is perpendicular. It has been improved to become. In known examples 2 and 3, it is difficult to match the sample inlet and outlet when joining the measurement cells;
Sample seepage may occur on the surface of each measurement cell, or flow stagnation may occur, leading to carryover and measurement errors. In addition, in known examples 1 and 3,
Because the flow path is complex, it is easy to get clogged with solid matter and other debris, and to remove it, each measurement cell or electrode section must be removed, which requires time and effort to maintain the device.

本考案の目的は、電気化学的測定電極による試
料成分測定の応答速度を向上できるにもかかわら
ず、試流流通路内での滞溜物を容易に除去し得る
電気化学分析用流通形セルを提供することにあ
る。
The purpose of the present invention is to provide a flow-through cell for electrochemical analysis that can improve the response speed of sample component measurement using electrochemical measurement electrodes, while also being able to easily remove accumulated substances in the galvanic flow path. It is about providing.

本考案では、通常は電極膜付近の試料流通路を
狭めることにより電極膜表面での試料液の流速を
速くして応答速度を向上させ、試料流通路内に滞
溜物があつたときには試料流通路を広げて滞溜物
をフローセル外に排出し得るように構成した。す
なわち、本考案では、上記流通路には露出された
上記膜面と対向するように電気絶縁性突出部材を
設け、この突出部材の頂部を上記膜面に向かつて
上記流通路内へ突出および後退させ得る位置調節
機構を設けたことを特徴とする。
In the present invention, the flow rate of the sample liquid on the surface of the electrode membrane is increased by narrowing the sample flow path near the electrode membrane, thereby improving the response speed. The structure was such that the channel could be widened to discharge the accumulated matter outside the flow cell. That is, in the present invention, an electrically insulating protruding member is provided in the flow path so as to face the exposed membrane surface, and the top of the protrusion member is directed toward the membrane surface to protrude and retreat into the flow path. It is characterized by being provided with a position adjustment mechanism that can be adjusted.

以下、図面を参照しながら本考案を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

本考案に基づく一実施例の流通形測定セルの構
成図を第1図に示す。この測定セルには3本のイ
オン選択電極と1本の参照電極を取付けてある。
セルのボデイー1は絶縁性の透明な合成樹脂製で
あり、この中央に内径1mmの真つ直ぐな試料流通
路2が通り、この流通路2に交差して貫通する対
になつた貫通孔11−11′,12−12′,13
−13′および14−14′がある。貫通孔11,
12,13,14には交換可能なイオン選択電極
3,4,5と参照電極6を、イオン感応膜3′,
4′,5′および多孔性の隔膜6′が流通路内に面
するように配置し、もう一方の貫通孔11′,1
2′,13′,14′には絶縁性の突出部材15,
16,17,18を取付けてある。各突出部材1
5,16,17,18は測定セルにネジ込みにな
つている支持部材19の調節で移動させることが
可能で、円錐状の又はクサビ状の頂部を流通路2
内に出し入れできる。そして、突出部材15,1
6,17,18は貫通孔11′,12′,13′,
14′に密接に挿入され、さらに、O−リング2
8とバネ29で機密性を保持している。また、イ
オン選択電極3,4,5は底部にイオン感応膜
3′,4′,5′を接着保持し、内部電解液を保有
する合成樹脂製の電極ボデイー20,21,22
とAg/AgCl電極24、リード線コネクター25
から成り、各電極は固定部材26のねじ込みによ
り測定セルに固定される。一方、流通形参照電極
6は電極ボデイー23の底部に多孔性の隔膜6′
を保持し、Ag/AgCl電極の代りに参照電極が挿
入されている。
FIG. 1 shows a configuration diagram of a flow-through measuring cell according to an embodiment of the present invention. This measurement cell is equipped with three ion selection electrodes and one reference electrode.
The body 1 of the cell is made of an insulating transparent synthetic resin, and a straight sample flow path 2 with an inner diameter of 1 mm passes through the center thereof, and a pair of through holes 11 intersect with and pass through the flow path 2. -11', 12-12', 13
-13' and 14-14'. Through hole 11,
12, 13, 14 are replaceable ion selective electrodes 3, 4, 5 and a reference electrode 6, and ion sensitive membranes 3',
4', 5' and the porous diaphragm 6' are arranged so as to face the inside of the flow path, and the other through holes 11', 1
2', 13', and 14' have insulating protruding members 15,
16, 17, and 18 are attached. Each protruding member 1
5, 16, 17, and 18 can be moved by adjusting the support member 19 screwed into the measuring cell, and the conical or wedge-shaped tops are connected to the flow path 2.
It can be taken in and out. And the protruding member 15,1
6, 17, 18 are through holes 11', 12', 13',
14', and further O-ring 2
8 and spring 29 to maintain confidentiality. The ion-selective electrodes 3, 4, 5 have synthetic resin electrode bodies 20, 21, 22 which have ion-sensitive membranes 3', 4', 5' adhered to their bottom parts and which hold an internal electrolyte.
and Ag/AgCl electrode 24, lead wire connector 25
Each electrode is fixed to the measurement cell by screwing a fixing member 26. On the other hand, the flow-through reference electrode 6 has a porous diaphragm 6' at the bottom of the electrode body 23.
A reference electrode is inserted in place of the Ag/AgCl electrode.

本実施例において、突出部材15,16,1
7,18を第1図に示す如く流通路2内に突出す
ると、液体の流れは感応膜面の方に向き、且つ、
膜表面での流速が速くなるので応答速度を速くす
る効果がある。また、固形物が突出部材付近に滞
溜した時には、これを引き下げることにより流通
路は直通管になり、固形物は外部に排出され易く
なる。また、測定セルが透明であるので、流通路
2の突出部材の位置および汚れの様子がわかり有
効である。
In this embodiment, the protruding members 15, 16, 1
7 and 18 are protruded into the flow path 2 as shown in FIG. 1, the liquid flow is directed toward the sensitive membrane surface, and
Since the flow velocity on the membrane surface increases, it has the effect of increasing the response speed. Further, when solid matter accumulates near the protruding member, by pulling it down, the flow path becomes a direct pipe, and the solid matter can be easily discharged to the outside. Further, since the measurement cell is transparent, it is effective to see the position of the protruding member in the flow path 2 and the state of dirt.

突出部材としては種々の形状のものが使用でき
るが、第2図にいくつかの例を示した。第2図の
a〜dには突出部材15(頂部の形状のみ図示)
と流通路2内の様子を示したが、それぞれ左側は
流れ方向の断面図、右側は流れの垂直方向の断面
図である。第2図aとbのものは突出部材の液が
ぶつかる面が流れに対し90゜以上の傾きがあり、
液体はスムーズに方向を変え、固形物も滞溜しに
くい。cとdのものは、突出部材15が流れに垂
直に面しており、液体はより有効に電極の感応膜
面に作用して、応答速度の点で有利である。さら
に、dは突出部材15は頂点をわん曲させたもの
で、突出部材を下降させて流通路2内からはずし
た時に、わん曲は流通路2に合致し、固形物を除
去する時に有効である。
Although various shapes can be used as the protruding member, some examples are shown in FIG. In Fig. 2 a to d, the protruding member 15 (only the shape of the top part is shown)
The inside of the flow path 2 is shown, and the left side is a cross-sectional view in the flow direction, and the right side is a cross-sectional view in the vertical direction of the flow. In the cases of Figure 2 a and b, the surface of the protruding member that the liquid collides with is inclined at an angle of 90° or more with respect to the flow.
Liquids change direction smoothly, and solids do not easily accumulate. In cases c and d, the protruding member 15 faces perpendicular to the flow, and the liquid acts more effectively on the sensitive membrane surface of the electrode, which is advantageous in terms of response speed. Furthermore, d indicates that the protruding member 15 has a curved apex, and when the protruding member is lowered and removed from the flow path 2, the curvature matches the flow path 2 and is effective when removing solid matter. be.

第3図は本考案の他の測定セルの実施例を示す
もので、aは液体の流れ方向のBB′断面図、bは
流れの垂直方向のAA′断面図である。これは第1
図の実施例での隣接する電極同志が流通路の円周
方向80゜の角度を持たせて設置したものであり、
電極のコネクター25側にある程間隔が広がるの
で、電極先端の応答部を十分に接近させることが
できる。よつて、流通路はより短かくなり、セル
容量を小なくでき、効果がより一層増す。
FIG. 3 shows another embodiment of the measuring cell of the present invention, in which a is a sectional view BB' in the flow direction of the liquid, and b is a sectional view AA' in the vertical direction of the flow. This is the first
Adjacent electrodes in the example shown in the figure are installed at an angle of 80° in the circumferential direction of the flow path,
Since the distance between the electrodes increases as the electrodes move toward the connector 25, the response portions at the tips of the electrodes can be brought sufficiently close to each other. Therefore, the flow path becomes shorter, the cell capacity can be reduced, and the effect is further increased.

次に、測定例として、上記第2図aの突出部材
を取付けた上記第3図の測定セルで血清中の
Na,K,Clを測定し、応答速度を調べた。Na+
極の感応膜は、ニユートラルキヤリアー型のNa
感応基をポリ塩化ビニル中に分散させたものであ
る。K+電極の感応膜は、カリウム感応基として
バリノマイシンをポリ塩化ビニル中に分散させた
ものである。Cl-電極の感応膜は、第4級アンモ
ニウム塩をポリ塩化ビニルに分散させたものであ
る。
Next, as a measurement example, the measurement cell in Fig. 3 above to which the protruding member shown in Fig. 2 a above is attached is used to measure the amount of blood in serum.
Na, K, and Cl were measured and the response speed was investigated. The sensitive membrane of the Na + electrode is a neutral carrier type Na
A sensitive group is dispersed in polyvinyl chloride. The sensitive membrane of the K + electrode consists of valinomycin dispersed in polyvinyl chloride as a potassium sensitive group. The sensitive membrane of the Cl - electrode is a quaternary ammonium salt dispersed in polyvinyl chloride.

それぞれの感応膜をポリ塩化ビニルの電極ボデ
イーにテトラヒドロフランを用いて溶着させて電
極を作り、測定セル1の試料の入口からNa+
極、Cl-電極、K+電極、参照電極の順に取り付け
た。この測定セル1の下流側に図示しない送液ポ
ンプを接続し、2種類の管理血清(パソノルムH
とL)を交互に導入した。第4図は、K電極と参
照電極間の電位差(試料の濃度差に対応)の変化
を時間軸に対してプロツトしたシグナルである。
直線部分30はパソノルムH、31はパソノルム
Lに対応するシグナルである。
Electrodes were made by welding each sensitive membrane to a polyvinyl chloride electrode body using tetrahydrofuran, and the Na + electrode, Cl - electrode, K + electrode, and reference electrode were attached in this order from the sample inlet of measurement cell 1. A liquid pump (not shown) is connected to the downstream side of this measurement cell 1, and two types of control serum (Pasonorm H
and L) were introduced alternately. FIG. 4 shows a signal in which changes in the potential difference (corresponding to the sample concentration difference) between the K electrode and the reference electrode are plotted against the time axis.
The straight line portion 30 is a signal corresponding to the pasonorm H, and the line portion 31 is a signal corresponding to the pasonorm L.

第4図のaは突出部材を引き下げて流通路内に
突起物のない従来の方法で測定したシグナルであ
り、bは突出部材の頂部を流通路の中心位置まで
出した時のシグナルであり、cはさらに突出部材
を上部に上げ、電極の感応膜に近づけたものであ
る。この実施例によると突出部材を感応膜に近づ
けるほど濃度変化に対するレスポンスは速くなる
傾向を示した。Na電極、Cl電極も同様の結果で
あつた。しかし、あまり近づけすぎると流通路が
極端に狭くなり、ゴミがつまつたり、流速が変動
したり、トラブルの原因になり易くなつた。この
ような場合を考えると、セルが透明で内部を観察
でき、突起物の位置を可変にできることは非常に
有効である。
In Fig. 4, a is a signal measured by a conventional method in which the protruding member is pulled down and there are no protrusions in the flow path, and b is a signal when the top of the protruding member is brought out to the center of the flow path. In c, the protruding member is further raised to the top and brought closer to the sensitive membrane of the electrode. According to this example, there was a tendency that the closer the protruding member was to the sensitive membrane, the faster the response to concentration changes. Similar results were obtained for the Na electrode and the Cl electrode. However, if they are brought too close together, the flow path becomes extremely narrow, which can easily cause problems such as clogging with debris and fluctuations in flow velocity. Considering such a case, it is very effective that the cell is transparent so that the inside can be observed and the position of the protrusion can be varied.

また、本考案の流通形測定セルにはイオン選択
電極に限らず、PH電極、酸素電極、炭酸ガス電極
など各種の電気化学的検出器を適用できる。ま
た、気体試料にも十分適用可能である。
In addition, various electrochemical detectors such as PH electrodes, oxygen electrodes, carbon dioxide electrodes, etc. can be applied to the flow-type measurement cell of the present invention, in addition to ion-selective electrodes. It is also fully applicable to gas samples.

本考案によれば、試料測定時には試料流通路を
狭めることができるので、電極膜表面付近での試
料液の流速が高まり応答速度が向上される。ま
た、試料流通路内に滞溜物があつたときには、突
出部材を後退させて試料流通路を広げることがで
きるので、滞溜物を容易にセル外へ排出し得る。
According to the present invention, since the sample flow path can be narrowed during sample measurement, the flow rate of the sample liquid near the electrode membrane surface increases and the response speed is improved. Further, when there is accumulated matter in the sample flow path, the protruding member can be moved back to widen the sample flow path, so that the accumulated matter can be easily discharged to the outside of the cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を説明する測定セル
の構成図、第2図は実施例に適用した突出部材の
形状を示す図、第3図は本考案の他の実施例を示
す図、第4図は、本考案に基づく効果を示すため
の測定例である。 1……測定セルのボデイー、2……流通路、3
〜5……イオン選択電極、6……参照電極、11
〜14……貫通孔、11′〜14′……貫通孔、1
5〜18……突出部材、20〜23……電極ボデ
イー。
Fig. 1 is a configuration diagram of a measuring cell explaining one embodiment of the present invention, Fig. 2 is a diagram showing the shape of a protruding member applied to the embodiment, and Fig. 3 is a diagram showing another embodiment of the present invention. , FIG. 4 is a measurement example to show the effect based on the present invention. 1...Body of measurement cell, 2...Flow path, 3
~5...Ion selection electrode, 6...Reference electrode, 11
~14...Through hole, 11'-14'...Through hole, 1
5-18... Projection member, 20-23... Electrode body.

Claims (1)

【実用新案登録請求の範囲】 1 試料液が通る流通路を有しており、膜を備え
た電気化学的測定電極の膜面が上記流通路に露
出するように配置されている電気化学分析用流
通形セルにおいて、上記流通路には露出された
上記膜面と対向するように電気絶縁性突出部材
を設け、この突出部材の頂部を上記膜面に向か
つて上記流通路内へ突出および後退させ得る位
置調節機構を設けたことを特徴とする電気化学
分析用流通形セル。 2 実用新案登録請求の範囲第1項記載のセルに
おいて、上記セルのセルボデイを透明材料で構
成したことを特徴とする電気化学分析用流通形
セル。
[Claims for Utility Model Registration] 1. An electrode for electrochemical analysis that has a flow path through which a sample liquid passes, and is arranged such that the membrane surface of an electrochemical measurement electrode equipped with a membrane is exposed to the flow path. In the flow-through cell, an electrically insulating protruding member is provided in the flow path so as to face the exposed membrane surface, and the top of the protrusion member is directed toward the membrane surface to protrude and retreat into the flow path. 1. A flow-through cell for electrochemical analysis, characterized in that it is provided with a position adjustment mechanism. 2. A flow-through cell for electrochemical analysis, characterized in that the cell according to Claim 1 of the Utility Model Registration Claim has a cell body made of a transparent material.
JP1979125171U 1979-09-12 1979-09-12 Expired JPS6227872Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979125171U JPS6227872Y2 (en) 1979-09-12 1979-09-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979125171U JPS6227872Y2 (en) 1979-09-12 1979-09-12

Publications (2)

Publication Number Publication Date
JPS5643046U JPS5643046U (en) 1981-04-20
JPS6227872Y2 true JPS6227872Y2 (en) 1987-07-17

Family

ID=29357055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979125171U Expired JPS6227872Y2 (en) 1979-09-12 1979-09-12

Country Status (1)

Country Link
JP (1) JPS6227872Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176952U (en) * 1983-05-13 1984-11-27 東亜電波工業株式会社 Flow cell for solution concentration measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133691A (en) * 1974-09-17 1976-03-22 Hitachi Ltd FUROOSERU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133691A (en) * 1974-09-17 1976-03-22 Hitachi Ltd FUROOSERU

Also Published As

Publication number Publication date
JPS5643046U (en) 1981-04-20

Similar Documents

Publication Publication Date Title
US6110354A (en) Microband electrode arrays
US4627893A (en) Means and methods for quantitative determination of analyte in liquids
JPH02232554A (en) Sensor construction
Fraticelli et al. Automated determination of ammonia with a potentiometric gas sensor and flowing internal electrolyte
US4361540A (en) Analysis system
Arquint et al. Micromachined analyzers on a silicon chip
US3853732A (en) Electrode structure for potentiometric sample analysis
US6417658B1 (en) Flow cell for particle analyzer using electrical sensing zone method
EP0772041B1 (en) Reference electrode assembly
JPS62266438A (en) Method and device for detecting relative dynamic liquid surface activity
DE2265200C3 (en) Flow cell for electrochemical analysis purposes
JPS6227872Y2 (en)
US20080053842A1 (en) Conductivity cells and manufacturing methods
JP2001500250A (en) PH and conductivity sensors for circulating fluids
Anker et al. Potentiometry of Na+ in undiluted serum and urine with use of an improved neutral carrier-based solvent polymeric membrane electrode.
JPS57122357A (en) Flow cell type liquid sample analyzing apparatus
US4149950A (en) Flow-through ionic test cell
US3998717A (en) Glass electrode for membrane diffusion analysis of gases
Fehér et al. A detailed study of sample injection into flowing streams with potentiometric detection
JPS6224141A (en) Chemical substance detector
US5019238A (en) Means for quantitative determination of analyte in liquids
Hyoung et al. Differential ion-selective membrane electrode-based potentiometric gas-sensing cells with enhanced gas sensitivity
US20130084214A1 (en) Ion-Selective Ion Concentration Meter
JPH089638Y2 (en) Flow cell of electrolyte measuring device
JPH0215011B2 (en)