JPS6227503A - Production of thin sheet-like sintered metallic member - Google Patents

Production of thin sheet-like sintered metallic member

Info

Publication number
JPS6227503A
JPS6227503A JP16816185A JP16816185A JPS6227503A JP S6227503 A JPS6227503 A JP S6227503A JP 16816185 A JP16816185 A JP 16816185A JP 16816185 A JP16816185 A JP 16816185A JP S6227503 A JPS6227503 A JP S6227503A
Authority
JP
Japan
Prior art keywords
binder
thin plate
thin sheet
final product
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16816185A
Other languages
Japanese (ja)
Inventor
Hideki Nakamura
秀樹 中村
Taketate Fukaya
深谷 剛干
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16816185A priority Critical patent/JPS6227503A/en
Publication of JPS6227503A publication Critical patent/JPS6227503A/en
Priority to US07/057,636 priority patent/US4769212A/en
Priority to US07/211,269 priority patent/US4913737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily produce a thin sheet-like sintered metallic member having an increased density by kneading metallic raw material powder consisting of a desired compsn. and having fine grain sizes with an org. binder, extruding a thin sheet material and removing the org. binder by heating, then sintering the molding. CONSTITUTION:The raw material powder consisting of the alloy powder substantially coinciding with the compsn. of the desired final product or the plural powder mixtures composed of the constituting elements of the above-mentioned final product and having <=50mu grain size is mixed and kneaded with the org. binder to prepare the plastic kneaded matter. The kneaded matter is extruded into the thin sheet shape material having the shape resembling to the shape of the final product. The above-mentioned extruded molding is then heated in a vacuum or non-oxidizing atmosphere of a reducing or inert gas, by which the org. binder is removed. The extruded molding after the removal of the binder is subjected to compaction molding in succession thereof, by which the thin sheet-like sintered metallic member having approximately the true density is obtd. The thin sheet-like sintered metallic member is obtd. from the extruded molding having <=200mm width and <=10mm thickness without the generation of foaming, shape collapsion, etc. by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄板状金属焼結部材の製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a thin plate metal sintered member.

〔従来の技術〕[Conventional technology]

金属材料全般、プラスチック、ゴム、セラミックス等の
素材分野で薄板製品は、普遍的に存在する。本発明の対
象とする金属材料分野では、鍛造、熱間、冷間圧延等の
手法で薄板材は製造されている。一方プラスチック、ゴ
ム、セラミックスについては押出成形法を用い、上記物
質をバインダーと混合、混線後の可塑状態でダイスから
押出して7板材を得ることが試みられている。
Thin plate products are ubiquitous in the field of materials such as metal materials in general, plastics, rubber, and ceramics. In the field of metal materials, which is the subject of the present invention, thin plate materials are manufactured using methods such as forging, hot rolling, and cold rolling. On the other hand, with regard to plastics, rubber, and ceramics, attempts have been made to use an extrusion molding method to obtain seven plates by mixing the above materials with a binder and extruding them in a plastic state after mixing through a die.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

粉末を原料として押出成形法で薄板材を製造する概念は
前項で述べたようにセラミックスやプラスチックでは汎
用的に実施されているが、金属材料では、はとんどその
例を見ないのが実情である。
As mentioned in the previous section, the concept of manufacturing thin sheets using extrusion molding using powder as a raw material is commonly used in ceramics and plastics, but the reality is that it is rarely seen in metal materials. It is.

これは押出成形法に合致する原料粉末の製造技術と、使
用する有機バインダーの選定、成形後の高密度化手法が
開発されていないことによる。
This is because the manufacturing technology for raw material powder compatible with extrusion molding methods, the selection of organic binders to be used, and the method for increasing density after molding have not been developed.

使用する有機バインダーは、小量で粘性が高く、成形体
の強度が高く分散度が均一なものが要求される。且つ成
形後、容易に除去が可能で有害な分解生成物を残留させ
ないことが必要である。熱可塑性や熱硬化性のプラスチ
ックで射出成形用として有用なバインダーは、いくつか
開示されている。
The organic binder used is required to have a small amount, high viscosity, high strength of the molded product, and uniform dispersion. Furthermore, after molding, it is necessary that it be easily removable and that no harmful decomposition products remain. Several binders have been disclosed that are useful for injection molding of thermoplastic and thermosetting plastics.

例えば、特開昭55−113511ではポリエチレン、
ポリスチレン、アクリロニトル・ブタジェン・スチレン
共重合体とシラン系カップリング剤又はチタン系カップ
リング剤を併用する方法、特開昭55−113500に
はシラン架橋型のポリアルケン樹脂を用いることを特徴
とするセラミックス粉末、又は金属粉末材料の射出或い
は押出成形法、特開昭56−159248にはポリテト
ラメチレンフタレートのバインダー等がある。これらは
いずれもプラスチックを主体とするものであるが、バイ
ンダーの除去が非常に困難で通常10nm肉厚品では、
5〜b温速度以下でないと、発砲、形状くずれが頻発す
る。
For example, in JP-A-55-113511, polyethylene,
A method of using polystyrene, acrylonitrile-butadiene-styrene copolymer and a silane coupling agent or a titanium coupling agent in combination, JP-A-55-113500 discloses a ceramic powder characterized by using a silane cross-linked polyalkene resin. , or an injection or extrusion molding method for metal powder materials, and JP-A-56-159248 discloses a polytetramethylene phthalate binder. All of these are mainly made of plastic, but it is extremely difficult to remove the binder, and it is usually difficult to remove the binder from products with a thickness of 10 nm.
If the temperature rate is not below 5-b, foaming and deformation will occur frequently.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、金属又は合金粉末を有機バインダーと混合混
練し、薄板素材を押出成形法で成形後、有機バインダー
を除去し、焼結法で圧密化することにより前記問題点を
解決し、薄板状金属焼結部材を得るものである。即ち本
発明は、水溶性の有機バインダーを主構成要素とし、メ
チルセルロース(以下CMCと称す)を重量比で1.0
〜7.0%これに水を5.0〜15.0%含有し、可塑
剤としてグリセリンを1.0〜10.0%、分散剤又は
滑剤としてワックスエマルジョン、ステアリン酸エマル
ジョン、マイクロクリスタラインの単独又は複数を夫々
5z以下で総量を1.0〜10.0%含有することを特
徴とする。押出成形後の乾燥時に水分はほとんど除去さ
れ後続の真空、還元性、不活性ガス中等の非酸化性雰囲
気のいずれか中で300−700℃の範囲で脱バインダ
ーが実施される。この際、真空、Ar、 N2. He
等の雰囲気ではバインダーの分解生成物としてCが0.
3〜09部残留する。H2中で脱バインダーを実施する
とバインダーからのCの残留はほぼ解消できる。従って
、製品中にCの存在を忌避する材料にはH2中の脱バイ
ンダーが必要である。残留するC値を予測してあらかじ
め原料粉末中のCを低減させることも可能であるが、精
度良くC値を制御する為には、H2中の脱バインダーが
好ましい。
The present invention solves the above problems by mixing and kneading metal or alloy powder with an organic binder, forming a thin plate material by extrusion, removing the organic binder, and compacting by sintering. A metal sintered member is obtained. That is, the present invention has a water-soluble organic binder as a main component, and methyl cellulose (hereinafter referred to as CMC) at a weight ratio of 1.0.
-7.0% Contains 5.0-15.0% water, 1.0-10.0% glycerin as a plasticizer, wax emulsion, stearic acid emulsion, microcrystalline as a dispersant or lubricant. It is characterized by containing one or more of them in a total amount of 1.0 to 10.0% at 5z or less. Most of the moisture is removed during drying after extrusion molding, and the binder is subsequently removed in a non-oxidizing atmosphere such as vacuum, reducing, or inert gas at a temperature in the range of 300-700°C. At this time, vacuum, Ar, N2. He
In such an atmosphere, C is a decomposition product of the binder.
3-09 parts remain. When the binder is removed in H2, residual C from the binder can be almost eliminated. Therefore, debinding in H2 is necessary for materials that avoid the presence of C in products. Although it is possible to predict the residual C value and reduce the C in the raw material powder in advance, in order to accurately control the C value, debinding in H2 is preferable.

使用する原料粉末は、粒径を50μ以下にすることが混
線時の粉末の均一分散度の確保、成形体の強度の確保、
焼結密度の向上にとって必要である。
The particle size of the raw material powder used should be 50μ or less to ensure uniform dispersion of the powder at the time of crosstalk, to ensure the strength of the compact,
Necessary for improving sintered density.

平均粒径は5〜20μの範囲が好ましく、あまり微細で
あると、脱バインダーが困碓となる。またできるだけ充
填密度が高い粉末形状が望ましい。少なく共30%以上
の見掛密度であることが必要である。
The average particle size is preferably in the range of 5 to 20 μm; if the particle size is too fine, it becomes difficult to remove the binder. Further, it is desirable to use a powder form with as high a packing density as possible. It is necessary that the apparent density be at least 30% or more.

〔実施例〕〔Example〕

本発明を実施例により以下説明する。 The invention will be explained below by way of examples.

実施例l Al5I  T15相当のC1,51%、 Si 0.
41%。
Example 1 Al5I C1 equivalent to T15, 51%, Si 0.
41%.

Mn0.2%、Cr4.03%、W 11.05%、M
o0.8%、■5.1%、Co 5.2%、残部鉄及び
不可避的不純物からなる水アトマイズ予備合金粉末を作
成した。平均粒径は45μで02含有量は、1800p
pm+であった。
Mn0.2%, Cr4.03%, W 11.05%, M
A water atomized pre-alloy powder was prepared consisting of 0.8% O, 5.1% Co, 5.2% Co, the balance iron and inevitable impurities. The average particle size is 45μ and the 02 content is 1800p.
It was pm+.

該粉末の一部に黒鉛粉末を0.3%添加後、アトライタ
ー中で乾式混合粉砕し、平均5粒径15μとした。
0.3% of graphite powder was added to a portion of the powder, which was then dry mixed and ground in an attritor to give an average particle size of 5 μm and 15 μm.

この粉末にCMC(市販品名で5M400)を3%。Add 3% CMC (commercial product name: 5M400) to this powder.

水8%、マイクロクリスタラインワックス2.0%、ス
テアリン酸エマルジョン1%、グリセリン0.7zを添
加後、ニーダ混練機で15分間混練した。この混線体を
押出成形機により巾200 m、厚さ5+mの薄板材を
成形した。成形時のグリーン密度は、51%で弱真空下
で50℃2Hr乾燥した。この乾燥体をH2,0゜1T
orr真空中、Ar雰囲気で100℃/)Irで500
℃迄昇温後、2Hr保持し脱バインダーを行った。
After adding 8% water, 2.0% microcrystalline wax, 1% stearic acid emulsion, and 0.7z glycerin, the mixture was kneaded for 15 minutes using a kneader kneader. This mixed wire body was molded into a thin plate material with a width of 200 m and a thickness of 5+ m using an extrusion molding machine. The green density at the time of molding was 51%, and it was dried at 50° C. for 2 hours under weak vacuum. This dry body was heated to H2,0°1T
orr vacuum, Ar atmosphere at 100°C/) Ir at 500°C
After raising the temperature to ℃, the binder was removed by holding for 2 hours.

これらの3種類の脱バインダ一体を10””Torrの
真空下で1180〜1240℃の範囲で真空焼結を行っ
た。
These three binder-removed products were vacuum sintered under a vacuum of 10'' Torr at a temperature in the range of 1180 to 1240°C.

真空およびAr脱バインダー材は、焼結温度が1180
℃で真密度に達し、この時のCは2.2%02は40P
pmであった。一方、H2説バインダー材は、1240
℃焼結で真密度に達し、この時のCは1.51%0□は
60ppn+であった。脱バインダー材のC含有量は真
空脱バインダー材が2.60%、Ar脱バインダー材が
2゜54%、H2脱バインダー材に1.81%であった
。H2脱バインダー材の焼結体は、バインダーからのC
残留は実質的になく、真空Ar脱バインダー材のものは
約0.8%程度のC残留があることが判明した。
Vacuum and Ar debinding materials have a sintering temperature of 1180°C.
The true density is reached at ℃, and at this time C is 2.2%02 is 40P
It was pm. On the other hand, the H2 theory binder material is 1240
The true density was reached by sintering at °C, and the C content at this time was 1.51% 0□ was 60 ppn+. The C content of the debinding material was 2.60% for the vacuum debinding material, 2.54% for the Ar debinding material, and 1.81% for the H2 debinding material. The sintered body of the H2 binder-removed material removes C from the binder.
It was found that there was virtually no residual carbon, and the vacuum Ar debinding material had about 0.8% carbon residual.

なお焼結後の収縮率は、巾方向は211部、厚さ方向は
22.1%で、平面度の良好な薄板素材が得られた。収
縮率については、すべて真密度に到達している為、脱バ
インダー雰囲気との有意差は認められなかった。
The shrinkage rate after sintering was 211 parts in the width direction and 22.1% in the thickness direction, and a thin plate material with good flatness was obtained. As for the shrinkage rate, all reached the true density, so no significant difference was observed from the binder-removed atmosphere.

なお前述の実施例1と同組成で通常焼結に使用されてい
る一100mashの水アトマイズ粉末を同じバインダ
ーと混練した。混線体は、はとんど粘性を示さず、水の
添加量を15%迄増加したが、改善の傾向は認められな
かった。次にCMCを6%、マイクロクリスタラインワ
ックスを4.0%迄増量して混線体を作成した。押出が
可能な粘性は示したが、脱バインダー後成形体が一部崩
壊し、ハンドリングが事実上不可能であった。
Note that 1100 mash of water atomized powder, which has the same composition as in Example 1 and is normally used for sintering, was kneaded with the same binder. The crosstalk body showed almost no viscosity, and although the amount of water added was increased to 15%, no tendency for improvement was observed. Next, a mixed wire body was prepared by increasing the amount of CMC to 6% and the amount of microcrystalline wax to 4.0%. Although it exhibited a viscosity that enabled extrusion, the molded product partially collapsed after the binder was removed, making handling virtually impossible.

実施例2 実施例1と同じアトライターの粉砕後の粉末に同じくC
を0.3%添加し、CMC(市販品名60SH−400
0)5%、グリセリン6.5%、承部と加圧型ニーダ−
で15分間混練した。
Example 2 The powder of the same attritor as in Example 1 was also mixed with C.
0.3% of CMC (commercial product name 60SH-400
0) 5%, glycerin 6.5%, bearing part and pressure kneader
The mixture was kneaded for 15 minutes.

以後の工程は実施例1と同一で、H2で脱バインダー後
、1240℃でLHr焼結した。焼結体の密度は、 8
.21でほぼ真密度であり、C含有量は、1.52%、
0□は72pp+*であった。
The subsequent steps were the same as in Example 1, and after removing the binder with H2, LHr sintering was performed at 1240°C. The density of the sintered body is 8
.. 21, which is almost the true density, and the C content is 1.52%.
0□ was 72 pp+*.

実施例3 G  O,89%、 Si  0.32%、Mn  0
.28%、 Cr  3.97%。
Example 3 GO, 89%, Si 0.32%, Mn 0
.. 28%, Cr 3.97%.

W 5.98%、Mo5.12%、V 1.92%で残
部鉄及び不可避的不純物からなる水アトマイズ予備合金
粉末を得た。この粉末中の02量は1700ppmであ
った。
A water atomized pre-alloyed powder was obtained containing 5.98% W, 5.12% Mo, and 1.92% V, the balance being iron and unavoidable impurities. The amount of 02 in this powder was 1700 ppm.

この粉末にCを0.3%添加後、アトライターで粉砕し
、平均粒径12μの微細粉末を得た。この粉末にCMC
(市販品名60SH−4000)を2%、グリセリン1
%、水8%を添加後、ヘンシェルミキサーで30分混練
した。この混線体から巾1100a、厚さ10ffI1
1の押出成形を行った。成形後1弱真空中で50’CX
2Hr乾燥後、H2ガス中で150℃/Hrの昇温速度
で700℃迄昇温し、IHr保持後炉冷した。これを1
235℃X 15Hrの真空焼結を実施した焼結体密度
はほぼ100%の真密度であり、巾80.3mm、厚さ
8.08mmの薄板材が得られた。木材を厚さ5III
II迄冷間圧延を行った。加工中に欠損は生ずることな
く、良好な薄板材を得ることができた。
After adding 0.3% C to this powder, it was crushed with an attritor to obtain a fine powder with an average particle size of 12 μm. CMC to this powder
(commercial product name 60SH-4000) 2%, glycerin 1
After adding 8% of water, the mixture was kneaded for 30 minutes using a Henschel mixer. From this crosstalk body, the width is 1100a, the thickness is 10ffI1
1 extrusion molding was performed. 50'CX in a little less than 1 vacuum after molding
After drying for 2 hours, the temperature was raised to 700°C at a heating rate of 150°C/Hr in H2 gas, maintained at IHr, and then cooled in a furnace. This is 1
The density of the sintered body obtained by performing vacuum sintering at 235° C. for 15 hours was approximately 100% true density, and a thin plate material having a width of 80.3 mm and a thickness of 8.08 mm was obtained. Wood thickness 5III
Cold rolling was performed up to II. A good thin plate material could be obtained without any defects occurring during processing.

同様に1200℃焼入560℃(1+1)Hrの標準的
熱処理を実施した。硬さはHRC65,4で曲げ強さは
370kg/1II112が得られた。この値は溶製法
で作られた材料とほぼ等しい結果であった。
Similarly, standard heat treatment of 1200° C. quenching and 560° C. (1+1) hours was performed. The hardness was HRC65.4 and the bending strength was 370 kg/1II112. This value was almost the same as that of the material made by the melting method.

実施例4 平均粒径6μのカーボニル鉄粉に3%の純SL粉末(0
,7μ)を添加し、CMCを2.1%、グリセリン2.
5対、水7.5%を加えて、ニーダ型混線機を用いて3
0分混練した。この混線体を実施例1の金型に押出成形
し、弱真空下で乾燥後、H2雰囲気中で500℃迄昇温
速度200℃/Hrで昇温し、IHr保持後炉冷した。
Example 4 3% pure SL powder (0
, 7μ), 2.1% CMC and 2.1% glycerin.
5 pairs, add 7.5% water, and use a kneader mixer to mix 3
Kneaded for 0 minutes. This mixed wire body was extrusion molded into the mold of Example 1, dried under a weak vacuum, heated to 500° C. at a heating rate of 200° C./Hr in an H2 atmosphere, maintained at IHr, and then cooled in a furnace.

この材料を真空中で1450℃X IHrの焼結を行な
った。密度は96.1%、CO,3%、023400p
pmであった。ついでH2中で1000℃X IHrの
磁気焼鈍を行った。Cは0.02%迄低下した。磁気特
性はHeが0.40e、 Br 11100Gauss
、μmax 13430の特性が得られた。
This material was sintered in vacuum at 1450°C x IHr. Density is 96.1%, CO, 3%, 023400p
It was pm. Then, magnetic annealing was performed in H2 at 1000°C x IHr. C decreased to 0.02%. Magnetic properties: He 0.40e, Br 11100 Gauss
, μmax 13430 characteristics were obtained.

本実施例中では高速度工具鋼、F e−3S i軟質磁
性材について述べたが、本発明はこれに限定されるもの
でなく、ステンレス鋼、一般構造用鋼他にも適用可能で
あることは言うまでもない。
In this example, high-speed tool steel and Fe-3S i soft magnetic material were described, but the present invention is not limited thereto, and can be applied to stainless steel, general structural steel, and others. Needless to say.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば高合金鋼の薄板を粉末冶金
法で容易に製造できる。勿論、薄板に限定されず押出成
形機の金型形状を断面で異形状にすることにより、異形
断面の薄板も製造でき、工業的にきわめて有意である。
As described above, according to the present invention, a thin plate of high alloy steel can be easily manufactured by powder metallurgy. Of course, the present invention is not limited to thin plates, but by making the die shape of the extrusion molding machine have a different cross-sectional shape, thin plates with irregular cross-sections can also be manufactured, which is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1 原料粉末として粒径が50μ以下であり、所望する
最終製品の組成と実質的に一致する合金粉末か、所望す
る最終製品の構成元素の複数の混合粉末を有機バインダ
ーと混合、混練した後、可塑性混練体とし、その後最終
製品と相似形の薄板材を押出成形し、次に該押出成形体
を真空、還元性、不活性ガス等の非酸化性雰囲気のいず
れか中で加熱により有機バインダーを除去し、引続いて
該脱バインダー後の押出成形体を焼結法により、圧密化
することを特徴とする薄板状金属焼結部材の製造法。 2 押出成形体が巾200mm以下、厚さ10mm以下
である薄板状金属焼結部材の製造法。 3 有機バインダーが水溶性であり、その総量が重量比
で1.0〜10.0%で、溶媒の水が5.0〜15.0
%である特許請求の範囲第1項又は第2項記載の薄板状
金属焼結部材の製造法。 4 有機バインダーが重量比で1.0〜7.0%のメチ
ルセルロースの1種であり、可塑剤としてグリセリンを
1.0〜10.0%、分散剤又は滑剤としてワックスエ
マルジョンを5%以下、ステアリン酸エマルジョン5%
以下、マイクロクリスタライン5%以下でこれらの総量
が重量比で1.0〜10.0%で、溶媒の水が5.0〜
15.0%である特許請求の範囲第1項又は第2項記載
の薄板状金属焼結部材の製造法。 5 焼結後の密度を97%以上とし、焼結後鍛造、圧延
等の塑性加工を行ない、高密度化と所望する最終形状を
得る特許請求の範囲第1項〜4項いずれか記載の薄板状
金属焼結部材の製造法。
[Scope of Claims] 1. An alloy powder having a particle size of 50 μm or less and having a composition substantially matching the composition of the desired final product, or a mixed powder of a plurality of constituent elements of the desired final product is used as a raw material powder with an organic binder. After mixing and kneading, it is made into a plastic kneaded body, after which a thin plate material having a similar shape to the final product is extruded, and then the extruded body is placed in a non-oxidizing atmosphere such as a vacuum, a reducing atmosphere, or an inert gas. 1. A method for producing a thin plate metal sintered member, comprising: removing the organic binder by heating, and then consolidating the extruded body after the binder has been removed by a sintering method. 2. A method for producing a thin plate metal sintered member, in which the extruded body has a width of 200 mm or less and a thickness of 10 mm or less. 3 The organic binder is water-soluble, the total amount thereof is 1.0 to 10.0% by weight, and the solvent water is 5.0 to 15.0%.
% of the manufacturing method of a thin plate metal sintered member according to claim 1 or 2. 4 A type of methylcellulose with an organic binder of 1.0 to 7.0% by weight, 1.0 to 10.0% of glycerin as a plasticizer, 5% or less of wax emulsion as a dispersant or lubricant, and stearin. Acid emulsion 5%
Hereinafter, the total amount of microcrystalline is 5% or less, the total amount of these is 1.0 to 10.0% by weight, and the water of the solvent is 5.0 to 5%.
15.0% of the manufacturing method of a thin plate metal sintered member according to claim 1 or 2. 5. The thin plate according to any one of claims 1 to 4, which has a density after sintering of 97% or more and is subjected to plastic working such as forging and rolling after sintering to obtain high density and a desired final shape. A method for producing shaped metal sintered parts.
JP16816185A 1985-03-29 1985-07-30 Production of thin sheet-like sintered metallic member Pending JPS6227503A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16816185A JPS6227503A (en) 1985-07-30 1985-07-30 Production of thin sheet-like sintered metallic member
US07/057,636 US4769212A (en) 1985-03-29 1987-06-04 Process for producing metallic sintered parts
US07/211,269 US4913737A (en) 1985-03-29 1988-06-03 Sintered metallic parts using extrusion process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16816185A JPS6227503A (en) 1985-07-30 1985-07-30 Production of thin sheet-like sintered metallic member

Publications (1)

Publication Number Publication Date
JPS6227503A true JPS6227503A (en) 1987-02-05

Family

ID=15862937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16816185A Pending JPS6227503A (en) 1985-03-29 1985-07-30 Production of thin sheet-like sintered metallic member

Country Status (1)

Country Link
JP (1) JPS6227503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195201A (en) * 1988-01-29 1989-08-07 Toyota Motor Corp Sintered machine part
JP2007051375A (en) * 2005-08-19 2007-03-01 General Electric Co <Ge> Preparation of sheet by injection molding of powder, consolidation, and heat treating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931167A (en) * 1972-07-19 1974-03-20
JPS5665905A (en) * 1979-10-31 1981-06-04 Daido Steel Co Ltd Production of sintered filter
JPS597762A (en) * 1982-07-04 1984-01-14 Kazuo Otsu Ozone generator with forced blowing system for internal-combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931167A (en) * 1972-07-19 1974-03-20
JPS5665905A (en) * 1979-10-31 1981-06-04 Daido Steel Co Ltd Production of sintered filter
JPS597762A (en) * 1982-07-04 1984-01-14 Kazuo Otsu Ozone generator with forced blowing system for internal-combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195201A (en) * 1988-01-29 1989-08-07 Toyota Motor Corp Sintered machine part
JP2007051375A (en) * 2005-08-19 2007-03-01 General Electric Co <Ge> Preparation of sheet by injection molding of powder, consolidation, and heat treating

Similar Documents

Publication Publication Date Title
DE3205877C2 (en)
JPH0244883B2 (en)
JPS6123257B2 (en)
EP0821639B1 (en) Method of producing mouldings
JPS6227503A (en) Production of thin sheet-like sintered metallic member
JPH04329801A (en) Production of sintered parts
EP0409646A2 (en) Compound for an injection molding
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPS6227502A (en) Production of bar-shaped sintered metallic member
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPS63183145A (en) High hardness titanium-aluminum-vanadium alloy and its production
SU1726131A1 (en) Process for manufacturing sintered products from metal powders
JPS5871303A (en) Production of tungstem carbide tool material
JPH04160101A (en) Production of molding material
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product
JPH0754004A (en) Production of sintered product of head metal powder
JPS61223102A (en) Production of metallic sintered member having hollow hole
JPH0140081B2 (en)
JPS6156283B2 (en)
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH066763B2 (en) Method for manufacturing high strength aluminum alloy sintered member
JP3392889B2 (en) Raw material composition for sintering and method for producing sintered body
JPH05339601A (en) Magnetic alloy material
JPS60162701A (en) Production of sintered and forged parts