JPS62274074A - Photochemical vapor deposition device - Google Patents

Photochemical vapor deposition device

Info

Publication number
JPS62274074A
JPS62274074A JP11815086A JP11815086A JPS62274074A JP S62274074 A JPS62274074 A JP S62274074A JP 11815086 A JP11815086 A JP 11815086A JP 11815086 A JP11815086 A JP 11815086A JP S62274074 A JPS62274074 A JP S62274074A
Authority
JP
Japan
Prior art keywords
inert gas
vapor deposition
supply pipe
transmitting window
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11815086A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shichida
七田 弘之
Minoru Kuwayama
桑山 実
Kotaro Sakoda
佐古田 光太郎
Ryosuke Yamaguchi
良祐 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11815086A priority Critical patent/JPS62274074A/en
Publication of JPS62274074A publication Critical patent/JPS62274074A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To improve the working rate of the titled device by providing an inert gas supply pipe close to the inside of a light transmitting window for radiated UV rays, and blowing off an inert gas from a nozzle to prevent the coating of the reaction product on the surface of the light transmitting window. CONSTITUTION:A substrate 6 placed on a substrate holder 5 is heated by a heater 4 to a specified temp. in the reaction vessel 1 provided with a gas outlet 10. A gaseous reactant is then introduced from the supply pipe 9 to keep the pressure in the reaction vessel 1 at a specified value. UV rays are simultaneously radiated from a low-pressure mercury lamp 3 through the light transmitting window 2 provided on the upper surface. The gaseous reactant is excited and decomposed by the UV rays to deposit a film due to the reaction on the surface of the substrate 6. An annular inert gas supply pipe 7 is arranged close to the inner surface side of the light transmitting window 2 in the photochemical vapor deposition device, and an inert gas is blown off to the inner surface side of the light transmitting window 2 from the nozzles 8 provided at regular intervals on the circumferential surface. As a result, the coating of the reaction product on the surface of the light transmitting window 2 is prevented.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は光化学的気相堆積装置に係り、特に光エネルギ
ーを利用して気相化学反応を行わせ、基板上に堆積膜を
形成させる光化学的気相堆積装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a photochemical vapor deposition apparatus, in particular, a photochemical vapor deposition apparatus that performs a vapor phase chemical reaction using light energy to deposit a film on a substrate. The present invention relates to a photochemical vapor deposition apparatus for forming a deposited film.

〔従来の技術〕[Conventional technology]

従来の光化学的気相堆積装置として、例えば特間開60
−30122号に示される第8図および第9図のものが
ある。
As a conventional photochemical vapor deposition apparatus, for example,
8 and 9 shown in No.-30122.

第8図において、反応容器803の上面には透明板80
2が配設され、この透明板802の上部には低圧水銀灯
801が設置されている0反応容器803内には不活性
ガス導入管804が配設されると共に、底部には基板8
05が設置されている。また、反応容器803の側壁面
には排気管806が配管されている。
In FIG. 8, a transparent plate 80 is placed on the top surface of the reaction container 803.
A low-pressure mercury lamp 801 is installed on the top of this transparent plate 802. An inert gas introduction pipe 804 is installed in the reaction vessel 803, and a substrate 8 is installed on the bottom of the reaction vessel 803.
05 is installed. Further, an exhaust pipe 806 is installed on the side wall surface of the reaction container 803 .

第9図においては、反応容器内は、透明板901の下部
に分岐したガス吹出口902および903を有するガス
導入管を配設して構成される。
In FIG. 9, the interior of the reaction vessel is constructed by disposing a gas introduction pipe having branched gas outlets 902 and 903 at the bottom of a transparent plate 901.

第8図の装置では、低圧水銀灯801を点灯して基板8
05面側へ光を照射し、反応ガス供給管から透明板80
2と基板805間に反応ガスを流出させる。同時に、基
板805を加熱する0反応ガスは低圧水銀灯801より
紫外線によって励起、分解し、基板805上に反応生成
物による膜が堆積される。この時、不活性ガスがガス導
入管804から透明板802に向けて放出され、透明板
802に反応生成物による膜の被着するのを防止してい
る。
In the apparatus shown in FIG. 8, a low-pressure mercury lamp 801 is turned on to
Light is irradiated to the 05 side, and the transparent plate 80 is exposed from the reaction gas supply pipe.
2 and the substrate 805. At the same time, the zero reaction gas that heats the substrate 805 is excited and decomposed by ultraviolet light from the low-pressure mercury lamp 801, and a film of reaction products is deposited on the substrate 805. At this time, inert gas is released from the gas introduction pipe 804 toward the transparent plate 802 to prevent the transparent plate 802 from being coated with a film caused by the reaction product.

尚、第9図においては、ガス吹出口が分岐しているため
、反応ガスが透明17i901へ流出することなく遮断
される。このようにガス吹出口を分岐させることによっ
て、第8図および特開昭60=52013号に示される
ような装置に比ベガスシールド層と光透過窓への積極的
なガス吹き付けがなされる点において、光透過窓への被
着を防止する効果が優れている。
In addition, in FIG. 9, since the gas outlet is branched, the reaction gas is blocked without flowing out to the transparent 17i901. By branching the gas outlet in this way, compared to the device shown in FIG. , has an excellent effect of preventing adhesion to light-transmitting windows.

、尚、第9図の構成において、ガス吹出口は、第10図
に示すように、透明板901の下面に複数のガス導入管
1001を並設し、且つ、吹出口分岐管1002が対向
するように配設される。
In the configuration shown in FIG. 9, the gas outlet has a plurality of gas introduction pipes 1001 arranged in parallel on the lower surface of a transparent plate 901, and outlet branch pipes 1002 are opposed to each other, as shown in FIG. It is arranged like this.

この種の装置として、他に特開昭59−67621号、
特開昭60−101927号、特開昭60−52015
号および特開昭60−52013号がある。
Other examples of this type of device include JP-A-59-67621;
JP-A-60-101927, JP-A-60-52015
No. 60-52013.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の光化学的気相堆積装置においては、第1
0図に示すように分岐管を多数並設した場合、ガスの濃
度および流速が低下するため、反応ガスが分岐管に接触
しやすい、これを避けるため分岐管を密に並べた場合、
透明板901を全て吹出口分岐管で覆う必要があり、多
数の管を必要とするために製造費の高騰を招く不具合が
ある。
However, in conventional photochemical vapor deposition equipment, the first
If a large number of branch pipes are arranged side by side as shown in Figure 0, the concentration and flow rate of the gas will decrease, so the reaction gas will easily come into contact with the branch pipes.To avoid this, if the branch pipes are arranged closely together,
It is necessary to cover the entire transparent plate 901 with outlet branch pipes, and this requires a large number of pipes, which poses a problem of increasing manufacturing costs.

また、装置の大型化によって光透過窓の面積が大きくな
った場合、窓の中心部をガスで覆うことが困難になり、
窓中心部に膜が被著しやすい、特に、第9図に示すよう
に反応ガス906がガス吹出口の後方から流入した場合
、吹出したガスが反応ガス906を巻込んで、透明板9
01表面への膜の被着を促進させる結果となる。
In addition, when the area of the light-transmitting window increases due to the enlargement of the device, it becomes difficult to cover the center of the window with gas.
The membrane is likely to be severely damaged in the center of the window, especially when the reactive gas 906 flows in from the rear of the gas outlet as shown in FIG.
This results in promoting the adhesion of the film to the 01 surface.

このため、従来においては頻繁に透明板901表面を洗
浄し、或いは交換する必要があり、装置の稼動率の低下
、成膜コストの増大を招いていた。
For this reason, in the past, it was necessary to frequently clean or replace the surface of the transparent plate 901, leading to a decrease in the operating rate of the apparatus and an increase in film formation cost.

さらに、取扱いが面倒であるばかりか、大気混入、コン
タミネーション(i3明板に付着した膜の微粉の膜上へ
の飛散)等の問題を生じさせていた。
Furthermore, it is not only troublesome to handle, but also causes problems such as air intrusion and contamination (fine powder of the film adhering to the i3 bright plate scattering onto the film).

本発明の目的は、上記した従来技術の問題点を解消し、
透明板(光透過窓)表面への反応生成物の被着を防止し
、装置の稼動率の向上を図ることができる光化学的気相
堆積装置を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a photochemical vapor deposition apparatus that can prevent reaction products from adhering to the surface of a transparent plate (light-transmitting window) and improve the operating rate of the apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、光エネルギーを
利用して気相化学反応を行う光化学的気相堆積装置にお
いて、光透過窓の外周縁に近接して不活性ガス供給管を
周回させ、この不活性ガス供給管の円周方向に所定間隔
をおいて不活性ガスを光透過窓の表面に吐出するノズル
を設けるようにしたものである。
In order to achieve the above object, the present invention provides a photochemical vapor deposition apparatus that performs a vapor phase chemical reaction using light energy, in which an inert gas supply pipe is circulated close to the outer periphery of a light transmission window. Nozzles are provided at predetermined intervals in the circumferential direction of the inert gas supply pipe for discharging inert gas onto the surface of the light transmission window.

〔作用〕[Effect]

吹き出し角度を異ならせて配設したノズルからの不活性
ガスは、光透過窓の表面に均一に吹き出され、反応ガス
が光透過窓の表面に到達するのを阻止する。光透過窓の
表面に反応ガスが到達しないことによって、膜の被着が
防止される。
The inert gas from the nozzles arranged at different blowing angles is uniformly blown onto the surface of the light-transmitting window, thereby preventing the reactive gas from reaching the surface of the light-transmitting window. By preventing the reactive gas from reaching the surface of the light-transmitting window, deposition of the film is prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の詳細な説明す第1図は本
発明の一実施例を示す正面図である。
Hereinafter, the present invention will be described in detail based on the drawings. FIG. 1 is a front view showing an embodiment of the present invention.

反応容器lの天上面には光透過窓2が配設され、この光
透過窓2の上部には低圧水銀ランプ3が配設されている
0反応容器lの底面には基板6を加熱するための加熱体
4が設けられている。加熱体4の上部には基板6を!1
1宣するための基板支持台5が架設されている。光透過
窓2の下面近傍には不活性ガス供給管7が配設され、こ
の不活性ガス供給管7にはノズル8が設けられている。
A light transmitting window 2 is disposed on the top surface of the reaction vessel l, and a low pressure mercury lamp 3 is disposed above the light transmitting window 2.A light transmitting window 2 is disposed on the top surface of the reaction vessel l.A low pressure mercury lamp 3 is disposed on the top of the light transmitting window 2. A heating body 4 is provided. A substrate 6 is placed on top of the heating element 4! 1
A board support stand 5 for displaying the board is installed. An inert gas supply pipe 7 is disposed near the lower surface of the light transmission window 2, and a nozzle 8 is provided on this inert gas supply pipe 7.

また、基板支持台5の上部には反応ガス供給管9が配設
され、基板6の上部に反応ガスを噴出するようになって
いる。さらに、反応容器1の側壁部には容器内のガスを
排気する排気管10が設けられている。
Further, a reactive gas supply pipe 9 is disposed above the substrate support 5 to eject a reactive gas onto the upper part of the substrate 6. Furthermore, an exhaust pipe 10 is provided on the side wall of the reaction vessel 1 to exhaust gas within the vessel.

第2図は不活性ガス供給管7の周辺構成の詳細を示して
いる。ノズル8はノズル11とノズル12とからなり、
ノズル11は不活性ガス供給管7に対し水平方向(光入
射窓2に対し平行方向)に設けられ、ノズル12はノズ
ル11に対し光透過窓2方向に1IJll斜角をもって
設けられている。
FIG. 2 shows details of the peripheral structure of the inert gas supply pipe 7. The nozzle 8 consists of a nozzle 11 and a nozzle 12,
The nozzle 11 is provided horizontally to the inert gas supply pipe 7 (parallel to the light entrance window 2), and the nozzle 12 is provided at an oblique angle of 1IJll to the nozzle 11 in the direction of the light transmission window 2.

ノズル11および12は第3図に示すように、垂直方向
に角度を有するばかりでなく、水平方向に対しても角度
θで設置されている。ノズル12の各々は基板6の中心
を向くように配設されるため、不活性ガス供給管7はリ
ング状を成している。
As shown in FIG. 3, the nozzles 11 and 12 are installed not only at an angle to the vertical direction but also at an angle θ to the horizontal direction. Since each nozzle 12 is arranged so as to face the center of the substrate 6, the inert gas supply pipe 7 has a ring shape.

各ノズルは、光入射窓2を介して照射される紫外線によ
る基板投影面内に突き出ることも許される。
Each nozzle is also allowed to protrude into the plane of projection of the substrate by ultraviolet rays irradiated through the light entrance window 2.

もちろん、窓の面積が小さい場合は、基板投影面にノズ
ルを突き出す必要はない、この場合、ノズル11および
12の径は、光によりその影が基板上に写る場合であっ
ても、基板支持台5を回転させれば、基板面に均等に光
が当たることになるため、ノズル影の影響は回避できる
Of course, if the area of the window is small, there is no need to protrude the nozzles onto the substrate projection surface. By rotating 5, the light hits the substrate surface evenly, so the influence of the nozzle shadow can be avoided.

また、第4図および第5図に示すように、ノズル11お
よび12の近傍に不活性ガス14を放出する第3のノズ
ル13をリング状の不活性ガス供給管7の外方を向くよ
うに設けることもできる。
Further, as shown in FIGS. 4 and 5, a third nozzle 13 for discharging inert gas 14 near the nozzles 11 and 12 is arranged so as to face outward from the ring-shaped inert gas supply pipe 7. It is also possible to provide one.

ノズル13は第4図に示すように、垂直方向に対しては
不活性ガス供給管7の断面垂直線に対し角度αを存し、
不活性ガス供給管7の円周方向に対しては、第5図に示
すように角度βを有するように配設される。角度αは0
くα〈45°が望ましく、角度βはOくβ<45”もし
くは 135゜くβ<180”が望ましい。
As shown in FIG. 4, the nozzle 13 has an angle α with respect to the perpendicular line of the cross section of the inert gas supply pipe 7 with respect to the vertical direction,
With respect to the circumferential direction of the inert gas supply pipe 7, it is arranged at an angle β as shown in FIG. Angle α is 0
It is preferable that α<45°, and the angle β should preferably be 0 x β<45” or 135° and β<180”.

次に、上記のように構成される光化学的気相堆積’21
の作用効果について説明する。
Next, photochemical vapor deposition '21 configured as above
The effects of this will be explained.

基板6を基板支持台5上にセットし、加熱体4にii1
電すると共に低圧水銀灯3を点灯する。さらに、不活性
ガス供給管7に不活性ガスを供給し、ノズル11、+2
(さらには13)の各々から不活性ガスを光透過窓2の
下部へ放出する。同時に反応ガス供給管9より反応ガス
を放出する0反応ガスには低圧水銀灯3により紫外線が
照射されることによって励起、分解し、基板6の表面に
反応生成物による膜を形成する。一方、不活性ガスは光
透過窓2の下部に集中し、反応ガスが光透過窓2の表面
に到達するのを阻止する。したがって、不活性ガスによ
る膜が光透過窓の表面に被着することがない。
The substrate 6 is set on the substrate support stand 5, and ii1 is placed on the heating element 4.
At the same time, the low pressure mercury lamp 3 is turned on. Furthermore, inert gas is supplied to the inert gas supply pipe 7, and the nozzles 11, +2
(and further 13), inert gas is discharged to the lower part of the light transmission window 2. At the same time, the reactive gas released from the reactive gas supply pipe 9 is excited and decomposed by being irradiated with ultraviolet rays from the low-pressure mercury lamp 3, and a film of reaction products is formed on the surface of the substrate 6. On the other hand, the inert gas concentrates at the bottom of the light-transmitting window 2 and prevents the reactive gas from reaching the surface of the light-transmitting window 2. Therefore, a film of inert gas will not adhere to the surface of the light-transmitting window.

複数のノズルを放出角度を変えた設置したことによって
、リング内での広範囲な部分にガスを行   −き渡ら
せることができるためノズル11が窓へ接触しようとす
る反応ガスを排除し、ノズル12が窓へ達した微量の反
応ガスを吹き飛ばすことによって膜の被着を防止でき、
また、大面積の窓であっても、ノズル長さを調整するこ
とにより、窓中央部での膜の被着を防止することが可能
となる。
By installing multiple nozzles with different emission angles, it is possible to spread the gas over a wide area within the ring, which eliminates the reaction gas that is about to come into contact with the window from nozzle 11. By blowing away the small amount of reactive gas that has reached the window, it is possible to prevent film adhesion.
Further, even if the window has a large area, by adjusting the nozzle length, it is possible to prevent the film from adhering to the central part of the window.

さらに、ノズル13を取り付けることにより、第4図に
矢印14で示す方向からの反応ガスの流入をも防止する
ことが可能となる。
Furthermore, by attaching the nozzle 13, it becomes possible to prevent the reaction gas from flowing in from the direction shown by the arrow 14 in FIG.

以上の構成による装置を用いて成膜試験を行ったところ
、第6図の如き結果が得られた0図中、A−1−A−3
は本発明の装置による結果であり、B−1〜B−3は従
来例(不活性ガスを光透過窓方向にのみ吹き付けたもの
)の装置による測定結果である。ここに示す特性は、成
長時間と基板n9厚の関係を示すもので、数字(1〜3
)は成膜回数を示している。成膜は、モノシランとアン
モニアの混合ガスを反応ガスとして用い、不活性ガスと
して窒素を用い、圧力を約10To r rの同条件の
もとに窒化ケイ素膜を作成した。
When a film formation test was conducted using the apparatus with the above configuration, the results shown in Figure 6 were obtained.A-1-A-3 in Figure 0
are the results obtained by the device of the present invention, and B-1 to B-3 are the results measured by the conventional device (in which inert gas was blown only in the direction of the light-transmitting window). The characteristics shown here indicate the relationship between growth time and substrate n9 thickness, and are expressed in numbers (1 to 3).
) indicates the number of times of film formation. A silicon nitride film was formed using a mixed gas of monosilane and ammonia as a reactive gas, nitrogen as an inert gas, and a pressure of about 10 Torr.

第6図でわかるように、成膜回数を重ねる毎に、従来例
の場合、窓への膜の被着により、紫外線の透過が防げら
れ、膜の成長速度が低下する゛が、本発明による装置に
よれば、成膜回数が多くなっても、窓への膜の被着がほ
とんどないため、膜の成長速度が低下しない。
As can be seen in Fig. 6, as the number of times the film is formed increases, in the case of the conventional example, the film adheres to the window, preventing the transmission of ultraviolet rays and reducing the growth rate of the film. According to the apparatus, even if the number of times of film formation increases, the film growth rate does not decrease because the film hardly adheres to the window.

したがって、本発明によれば、光透過窓への膜の被着が
少ないため、頬繁に窓の洗浄あるいは取替えをする必要
がないので、装置の稼動率が良く、膜中へのコンタミネ
ーションも少ないため、良質で安価な膜生成を行うこと
が可能となる。
Therefore, according to the present invention, since there is little adhesion of the film to the light-transmitting window, there is no need to frequently clean or replace the window, which improves the operating efficiency of the device and reduces contamination in the film. Since the amount is small, it is possible to produce a high-quality and inexpensive film.

尚、第7図に示すように、第5図に示したノズル配列に
対し、ノズル13等を増設することによって、反応ガス
シールド効果を高めさせることができる。また、ノズル
13は他のノズル設置位置より離して設けることもでき
る。また、角度θあるいはノズル長さは、適宜変えるこ
とができる。
Incidentally, as shown in FIG. 7, by adding nozzles 13 and the like to the nozzle arrangement shown in FIG. 5, the reaction gas shielding effect can be enhanced. Moreover, the nozzle 13 can also be provided apart from other nozzle installation positions. Further, the angle θ or the nozzle length can be changed as appropriate.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、光化学的気相堆積装置の
光透過窓への膜被着防止を行うことが可能となり、窓の
洗浄、取替え緊度を低減させることができるため、装置
の稼動率向上および膜へのコンタミネーションの防止を
図ることができる。
As described above, according to the present invention, it is possible to prevent film from adhering to the light-transmitting window of a photochemical vapor deposition apparatus, and it is possible to reduce the burden of cleaning and replacing the window. It is possible to improve the operating rate and prevent contamination of the membrane.

これによって製造コストが安く良質な膜を提供すること
が可能となる。
This makes it possible to provide a high-quality film at low manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す正面図、第2図は第1
図に示す不活性ガス供給管7のノズル部の詳細を示す断
面図、第3図は不活性ガス供給管7およびノズル部の詳
細を示す平面図、第4図は本発明の他の実施例を示す要
部断面図、第5図は第4図に示す不活性ガス供給管のノ
ズル部の詳細を示す平面図、第6図は本発明装置と従来
の装置との成長時間に対する膜厚特性図、第7図は本発
明のさらに他の実施例を示す平面図、第8図は従来の光
化学的気相堆積装置の正面図、第9図は従来の他の光化
学的気相堆積装置を示す要部断面図、第10図は第9図
の装置の平面図である。 1・・・・・・反応容器、2・・・・・・光透過窓、3
・・・・・・低圧水銀ランプ、4・・・・・・加熱体、
5・・・・・・基板支持台、6・・・・・・基板、7・
・・・・・不活性ガス供給管、8、it、12.13・
・・・・・ノズル。 代理人 弁理士 西 元 勝 − 第1図 第2図 第3図 第4図 第5図 第6図 〇 八−&時閉 第7図 第8図 第9図
FIG. 1 is a front view showing one embodiment of the present invention, and FIG. 2 is a front view showing one embodiment of the present invention.
3 is a plan view showing details of the inert gas supply pipe 7 and the nozzle part, and FIG. 4 is another embodiment of the present invention. 5 is a plan view showing details of the nozzle part of the inert gas supply pipe shown in FIG. 4, and FIG. 6 is a film thickness characteristic with respect to growth time between the present invention apparatus and the conventional apparatus. 7 is a plan view showing still another embodiment of the present invention, FIG. 8 is a front view of a conventional photochemical vapor deposition apparatus, and FIG. 9 is a front view of another conventional photochemical vapor deposition apparatus. 10 is a plan view of the apparatus shown in FIG. 9. FIG. 1...Reaction container, 2...Light transmission window, 3
・・・・・・Low pressure mercury lamp, 4・・・・・・Heating body,
5... Board support stand, 6... Board, 7.
...Inert gas supply pipe, 8, it, 12.13.
·····nozzle. Agent Patent Attorney Masaru Nishimoto - Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (6)

【特許請求の範囲】[Claims] (1)反応容器に反応ガスを導入し、光透過窓を介して
前記反応ガスに紫外線を照射して励起ならびに分解し、
前記反応容器内に設置した基板の表面に反応にともなう
膜を堆積させる光化学的気相堆積装置において、前記光
透過窓の内面側に近接させて配設されるリング状の不活
性ガス供給管と、不活性ガスを前記光透過窓の内面側に
吹き出すノズルを、前記不活性ガス供給管の円周面上に
所定の間隔で配設したことを特徴とする光化学的気相堆
積装置。
(1) Introducing a reaction gas into a reaction container, irradiating the reaction gas with ultraviolet rays through a light transmission window to excite and decompose it,
In a photochemical vapor deposition apparatus for depositing a film accompanying a reaction on the surface of a substrate placed in the reaction container, a ring-shaped inert gas supply pipe disposed close to the inner surface of the light transmission window; . A photochemical vapor deposition apparatus, characterized in that nozzles for blowing out inert gas toward the inner surface of the light transmission window are arranged at predetermined intervals on the circumferential surface of the inert gas supply pipe.
(2)吹き出し方向の異なる複数のノズルを前記所定間
隔毎に設置したことを特徴とする特許請求の範囲第(1
)項記載の光化学的気相堆積装置。
(2) Claim No. 1 characterized in that a plurality of nozzles with different blowing directions are installed at each predetermined interval.
) The photochemical vapor deposition apparatus described in item 2.
(3)前記複数のノズルの少なくとも1つの吹き出し方
向を前記光透過窓の中心部に向けて配設したことを特徴
とする特許請求の範囲第(2)項記載の光化学的気相堆
積装置。
(3) The photochemical vapor deposition apparatus according to claim (2), wherein the blowing direction of at least one of the plurality of nozzles is directed toward the center of the light transmission window.
(4)前記複数のノズルの少なくとも1つの吹き出し方
向を前記光透過窓の内面側と平行に配設したことを特徴
とする特許請求の範囲第(2)項記載の光化学的気相堆
積装置。
(4) The photochemical vapor deposition apparatus according to claim (2), wherein the blowing direction of at least one of the plurality of nozzles is arranged parallel to the inner surface of the light transmission window.
(5)前記複数のノズルの少なくとも1つの吹き出し方
向を前記不活性ガス供給管の円周方向より所定角度で外
側に向けたことを特徴とする特許請求の範囲第(2)項
記載の光化学的気相堆積装置。
(5) A photochemical device according to claim (2), characterized in that the blowing direction of at least one of the plurality of nozzles is directed outward at a predetermined angle from the circumferential direction of the inert gas supply pipe. Vapor phase deposition equipment.
(6)ノズルの吹き出し方向を前記光透過窓の中心部に
対し所定角度づらせたことを特徴とする特許請求の範囲
第(4)項戴の光化学的気相堆積装置。
(6) The photochemical vapor deposition apparatus according to claim (4), wherein the blowing direction of the nozzle is offset by a predetermined angle with respect to the center of the light transmission window.
JP11815086A 1986-05-22 1986-05-22 Photochemical vapor deposition device Pending JPS62274074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11815086A JPS62274074A (en) 1986-05-22 1986-05-22 Photochemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11815086A JPS62274074A (en) 1986-05-22 1986-05-22 Photochemical vapor deposition device

Publications (1)

Publication Number Publication Date
JPS62274074A true JPS62274074A (en) 1987-11-28

Family

ID=14729324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11815086A Pending JPS62274074A (en) 1986-05-22 1986-05-22 Photochemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPS62274074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205532A (en) * 1988-02-12 1989-08-17 Toshikazu Suda Optical pumping process apparatus
JP2007098357A (en) * 2005-10-07 2007-04-19 Fujitsu Ltd Apparatus and method for photochemistry treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205532A (en) * 1988-02-12 1989-08-17 Toshikazu Suda Optical pumping process apparatus
JP2007098357A (en) * 2005-10-07 2007-04-19 Fujitsu Ltd Apparatus and method for photochemistry treatment

Similar Documents

Publication Publication Date Title
US5551982A (en) Semiconductor wafer process chamber with susceptor back coating
JP4219441B2 (en) Method and apparatus for depositing film
JP4232330B2 (en) Excited gas forming apparatus, processing apparatus and processing method
JP2930960B2 (en) Atmospheric pressure chemical vapor deposition apparatus and method
US6821347B2 (en) Apparatus and method for depositing materials onto microelectronic workpieces
US4509456A (en) Apparatus for guiding gas for LP CVD processes in a tube reactor
WO1997003223A1 (en) Gas distribution apparatus
US6007633A (en) Single-substrate-processing apparatus in semiconductor processing system
KR950012635A (en) Method and apparatus for forming tungsten silicide layer on semiconductor wafer using dichlorosilane gas
JPH01107519A (en) Vapor growth apparatus
JPH09246192A (en) Thin film gas phase growing device
US5503677A (en) Process and device for coating the inner surface of greatly arched, essentially dome-shaped substrates by CVD
JPS62274074A (en) Photochemical vapor deposition device
US4500565A (en) Deposition process
TW201731590A (en) Substrate processing apparatus including exhaust gas decomposition module and method of processing exhaust gas
JP3194017B2 (en) Processing equipment
US20200385858A1 (en) Coating of fluid-permeable materials
JP3407400B2 (en) Thin film vapor deposition equipment
US6254687B1 (en) Chemical vapor deposition system with reduced material deposition on chamber wall surfaces
JPH03257167A (en) Reaction gas flow mechanism of atmospheric batch operated cvd device
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPS61279120A (en) Vapor growth method
JPH02252234A (en) Photo assisted cvd equipment
JPH01255671A (en) Vapor phase reactor
FI20205586A1 (en) Coating of particulate materials