JPS62273408A - Measuring apparatus of vehicle position and posture angle - Google Patents

Measuring apparatus of vehicle position and posture angle

Info

Publication number
JPS62273408A
JPS62273408A JP11685786A JP11685786A JPS62273408A JP S62273408 A JPS62273408 A JP S62273408A JP 11685786 A JP11685786 A JP 11685786A JP 11685786 A JP11685786 A JP 11685786A JP S62273408 A JPS62273408 A JP S62273408A
Authority
JP
Japan
Prior art keywords
vehicle
light
light receiving
inclination angle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11685786A
Other languages
Japanese (ja)
Other versions
JP2603068B2 (en
Inventor
Toyoichi Ono
小野 豊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP11685786A priority Critical patent/JP2603068B2/en
Publication of JPS62273408A publication Critical patent/JPS62273408A/en
Application granted granted Critical
Publication of JP2603068B2 publication Critical patent/JP2603068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To enable realtime measurement with high accuracy at a construction work site with frequent changes of the road surface shape, by installing two light-flashing means set at two constant points, two light-receiving means arranged on a vehicle, and detecting means for a vehicle inclination angle. CONSTITUTION:xy co-ordinate positions of a light-receiving position at an apparatus 2 are obtained and also those of the apparatus 3, based upon a setting distance between light-flashing apparatuses 11, 12 and two rotating angles of a laser beam when the light-receiving apparatus 2 received each rotating laser beam from the apparatuses 11, 12. And left and right inclination angle of a vehicle is detected directly from a left and right inclination sensor 4 and fore and aft inclination angle and direction angle are obtained based upon the setting distance of the apparatuses 2, 3, light- receiving height position detected by the apparatuses 2, 3 and xy co-ordinate position and inclination angle previously determined. Next, xy co-ordinate position of a vehicle representing point is obtained based upon one of the xy co-ordinate positions of the apparatuses 2, 3, and inclination angle and direction angle detected or calculated and the z-co-ordinate position of the vehicle representing point is obtained by the z-co-ordinate position of the rotating laser beam, light-receiving height position of one of the apparatuses 2, 3 and inclination angle of them.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発BAは車両位置及び姿勢角の計測装置に係り、特に
建設現場において稼動する作条車両への運転支援及び作
業の自動化に際して必要となる車両の現在位置及び現場
の地形等の情報を得る次めの車両位置及び姿勢角の計6
:II装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] This BA relates to a device for measuring vehicle position and attitude angle, and is particularly applicable to driving support for construction vehicles operating at construction sites. A total of 6 vehicle positions and attitude angles to obtain information such as the current position of the vehicle and the topography of the site, which are necessary when automating work.
:Relating to II device.

〔従来の技術〕[Conventional technology]

従来、建設現場における作業車両の運転支援および作条
を、自動化する次めに車両の3次元位置を計測して利用
するシステムとしては、特開59−180422(走行
軌跡解析システム)が挙げられる。
Conventionally, as a system that automates the driving support and cutting of work vehicles at construction sites and then measures and utilizes the three-dimensional position of the vehicle, Japanese Patent Application Laid-Open No. 59-180422 (travel trajectory analysis system) can be cited.

この7ステムは、車両の走行速度と車両前後傾斜角と走
行方位をそれぞれ一定時間毎にサンプリングし、これら
のサンプリング値に基づいて車両の現在位置を一定時間
毎に算出するようにしている。
These seven stems sample the vehicle running speed, vehicle longitudinal inclination angle, and running direction at regular intervals, and calculate the current position of the vehicle at regular intervals based on these sampled values.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記うE米のポ両位置計シ!1システムの場合
、車両の相対的移動量を累算して車両の現在位置t?g
出する定め、路面の凹凸や′j@、輪のスリップ、ある
いはサンプリング1直の誤差によって車両の現在位置に
累積g4差が生じ、車両の位置計測で5度が悪いという
問題がある。
However, the above-mentioned E and the two position meters are not correct! In the case of one system, the vehicle's current position t? is calculated by accumulating the relative movement amount of the vehicle. g
There is a problem in that a cumulative g4 difference occurs in the current position of the vehicle due to irregularities in the road surface, 'j@, wheel slip, or errors in one sampling shift, resulting in a 5 degree error in vehicle position measurement.

本発明は上記実情に鑑みてなされtもので、作業路面形
状が頻繁に変化するような建設現場においても、実時間
で車両の三次元位置及び車両の姿勢角を高精度で計測す
ることができる車両位置及び姿勢角の計測装置t−提供
することを目的とする。
The present invention was developed in view of the above-mentioned circumstances, and is capable of measuring the three-dimensional position of a vehicle and the attitude angle of the vehicle in real time with high precision even at construction sites where the shape of the working road surface changes frequently. An object of the present invention is to provide a vehicle position and attitude angle measuring device.

〔間絨点を解決するための手段〕[Means for solving the gap]

本発明では上記目的を達成する念めに、予め設定し九2
定点に設置され、それぞれ一定周期で回転する回転レー
ザ光を投光する第1.第2の投光手段と、車両(配設さ
n1前記回転レーザ光の受光タイミングおよび受光高さ
位置を検出する第1゜第2の受光手段と、車両の左右若
しくは前後のいずれか一方の第1の#1$Ir角を検出
する傾斜角検出手段と、前記第1の受光手段によって検
出した受光タイミングに基づいて該受光時における前記
第1、第2の投光手段からの回転レーザ光の第1゜第2
の回転角および前記第2の受光手段によつて検出した受
光タイミングに基づいて該受光時における前1r[1,
菓20投光手段からの回転レーザ光のM3.g4の回転
角を求める回転角W出手段と、前記第1.第2の投光手
段の設置間隔と前記回転角筑出手段によって算出した第
1.第2の回転角および第3.第4の回転角に基づいて
前記第1および第2の受光手段における各受光位置の或
るxyZ座標系上の第1のxy座座標位置オニび第2の
xy座Jd位置を算出する第1の演算手段と、前記第1
.第2の受光手段の配設間隔、該受光手段に工ってそれ
ぞれ検出した受光高さ位置、前記傾斜色検出手段によっ
て検出した第1の傾斜角および前記第1の演算手段によ
つて算出した第1゜第2のxy座標位置に基づいて車両
の前後若しくは左右の第2の傾斜角および万位角を算出
する第2の演1手段と、前記第1.第2の受光手段によ
って検出した少なくとも一方の受光高さ位置、前記第1
の演算手段によって算出した少なくとも一方のxyFE
標位置、前記傾斜角検出手段および第2の演算手段によ
って検出若しくは算出した車両の前後傾斜角、左右傾斜
角および方位角に基づいて車両代表点のxyf%標位置
を算出する第3の演算手段と、前記回転レーザ光の2座
標位(媒、前記第1.第2の受光手段によって検出した
少なくとも一方の受光高さ位置、前記傾斜角検出手段お
よび第2の演算手段によって噴出若しくは算出した■両
の前後傾斜角および左右傾斜角に基づいて前記本両代表
点の2座標位置を屈出する第4のtiI算手段とを具え
たことを特徴としている。
In order to achieve the above object, the present invention has 92 settings in advance.
The first laser beam is installed at a fixed point and emits a rotating laser beam that rotates at a constant period. A second light projecting means, a second light receiving means disposed in the vehicle (n1) detecting the light receiving timing and light receiving height position of the rotating laser beam; tilt angle detection means for detecting the #1$Ir angle of 1; 1st゜2nd
1r[1,
M3 of the rotating laser beam from the light projecting means. g4; rotation angle W output means for determining the rotation angle of rotation angle W; The first. the second rotation angle and the third rotation angle. A first method for calculating a first xy coordinate position and a second xy coordinate position Jd on a certain xyZ coordinate system of each light receiving position in the first and second light receiving means based on the fourth rotation angle. arithmetic means, and the first
.. The distance between the second light receiving means, the light receiving height position detected by the light receiving means, the first tilt angle detected by the tilt color detecting means, and the first tilt angle calculated by the first calculation means. 1. A second calculation means for calculating a second angle of inclination and a ten-thousand angle in the front and back or left and right directions of the vehicle based on the second xy coordinate position; at least one light receiving height position detected by the second light receiving means;
At least one xyFE calculated by the calculation means of
Third calculation means for calculating the xyf% target position of the vehicle representative point based on the target position, the longitudinal inclination angle, the left-right inclination angle, and the azimuth angle of the vehicle detected or calculated by the inclination angle detection means and the second calculation means. and the two coordinate positions (medium) of the rotating laser beam, at least one of the light receiving height positions detected by the first and second light receiving means, the ejection or calculation by the inclination angle detecting means and the second calculating means; The present invention is characterized by comprising a fourth tiI calculation means for determining the two coordinate positions of the two representative points based on both longitudinal and lateral inclination angles and lateral inclination angles.

〔作 用〕[For production]

まず、前記第1.第2の投光手段の設置間隔とmlの受
光手段が該第1.第2の投光手段からの各回転レーザ光
を受光したときの回転レーザ光の第1.第2の回転角に
基づいて三角測量の原理により第1の受光手段における
受光位置の或る!72座標系上の第1のxy座標位位置
求める。同様にして、第2の受光手段における受光位置
のた)2のxy座梯位喧を求める。
First, the above-mentioned 1. The installation interval of the second light projecting means and the light receiving means of ml are the same as the first. The first rotating laser beam when each rotating laser beam is received from the second light projecting means. Based on the second rotation angle, the light receiving position of the first light receiving means is determined by the principle of triangulation. The first xy coordinate position on the 72 coordinate system is determined. Similarly, the xy position of the light receiving position in the second light receiving means (2) is determined.

車両は常に水平状態にないため、上記xyy標位置から
直ちに車両代表点のX’f座標位置を求めることはでき
ない。そこで、車両の姿勢角(車両の前後傾斜角、左右
傾斜角、方位角)を求める。
Since the vehicle is not always in a horizontal state, it is not possible to immediately determine the X'f coordinate position of the vehicle representative point from the xyy marker position. Therefore, the attitude angle of the vehicle (vehicle longitudinal inclination angle, lateral inclination angle, and azimuth angle) is determined.

車両の前後傾斜角および左右傾斜角のいずれか一方は傾
斜角検出手段によって直接検出し、他方の傾斜角および
方位角は、第1.第2の受光手段の配設間隔、該受光手
段によってそれぞれ検出した受光高さ位な(、前記傾斜
角検出手段によって検出した傾斜角および前記第1.第
2のxyy標位置に基づいて求める。
One of the longitudinal and lateral inclination angles of the vehicle is directly detected by the inclination angle detection means, and the other inclination angle and azimuth are detected by the first. The arrangement interval of the second light receiving means, the light receiving height detected by the light receiving means, and the tilt angle detected by the tilt angle detecting means and the first and second xyy target positions are determined.

そして、車両代表点のxy服標位寮は前記第1゜第2の
χy座標位鷺の少なくとも一方のxy!IK!樟位rk
’tと前記検出又i−t、x出して得た車両の姿勢角に
基づいて求め、車両代表点の2座標位置は回転レーザ光
の2座標位看、第1.第2の受光手段によりで検出した
少なくとも一方の受光高さ位置および車両の姿勢角(こ
の助合、方位角は除く)に基づいて求める。
The xy coordinate position of the vehicle representative point is at least one of the first and second χy coordinate positions xy! IK! Camphori rk
't, the above-mentioned detection, i-t, and x, and the two-coordinate position of the vehicle representative point is determined based on the two-coordinate position of the rotating laser beam. It is determined based on at least one of the light receiving height positions detected by the second light receiving means and the attitude angle of the vehicle (excluding the auxiliary and azimuth angles).

〔実施例〕〔Example〕

以下、本発明を添付図面を参照して′#−t−細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

まず、本発明に係る車両の三次元位置等の計測方法を原
理的に説明する。
First, a method for measuring the three-dimensional position of a vehicle, etc. according to the present invention will be explained in principle.

瀉2図ICおいて、A点とB点の距離をLXx軸と線分
ACとのなす角をα、XUと線分BCとのなす角をαb
とすると、C点のxy座標は、次式、によって表わすこ
とができる。そこで、本発明では、上記α8.αbを求
めるに際し、A点およびB点にそれぞれ回転レーザ光を
投光する投光装置燵ヲ設置し、車両(受光装置咬を搭載
し、この受光装置か上記回転レーザ5?、を受光したと
きの各々の回転レーザ光の回転角を検出することにエリ
行なう。
In Figure 2 IC, the distance between points A and B is the angle between the LXx axis and the line segment AC, and the angle between XU and the line segment BC is αb.
Then, the xy coordinates of point C can be expressed by the following equation. Therefore, in the present invention, the above α8. When calculating αb, a light projector that projects rotating laser beams is installed at points A and B, respectively, and a vehicle (equipped with a light receiver) receives the light from either this light receiver or the rotating laser 5. The purpose is to detect the rotation angle of each rotating laser beam.

この回転角α1.αbは、w、3図に示すように回転レ
ーザ光の周期をT(第3図(、) ) 、A点およびB
点に設置した設光装置からの各々の回転レーザ光が基準
方位(X軸方向)に達してから単載受光装dK入射する
までの時間をそれぞれt、およびJ。
This rotation angle α1. αb is w, the period of the rotating laser beam is T (Fig. 3(, )), and points A and B are
The time from when each rotating laser beam from the light installation device installed at the point reaches the reference direction (X-axis direction) until it enters the single-mounted light receiving device dK is t and J, respectively.

(第3図(b)および(C))とすると、次式、のよう
に算出される。
(Fig. 3(b) and (C)), it is calculated as follows.

上記第(1)式によって算出されるxy座標は、単載受
光装置のレーザ光受光点のが棒であやで、車両代表点の
座標でにない。そこで、車両代表点の座標に換算するに
際し、車両の姿勢角(車両の前後傾斜角、左右傾斜角、
方位角)を求める。
The xy coordinates calculated by the above equation (1) are the coordinates of the laser beam receiving point of the single light receiving device and are not the coordinates of the representative point of the vehicle. Therefore, when converting to the coordinates of the vehicle representative point, the attitude angle of the vehicle (vehicle longitudinal inclination angle, lateral inclination angle,
azimuth angle).

次に、上記姿勢角の求め方について説明する。Next, a method for determining the attitude angle will be explained.

lず、第4図に示すように車体1と受光装置2゜3をモ
デル化して考える。ここで、P点tx’y’z’座標の
座標原点とし、車両の前後傾斜角θ、左右傾斜角δおよ
び方位角ψがそれぞれOのときにおける上記第4図に示
した車体各部の点x/ y/ s/座標における座標位
置を示すと第5図のようになる。
First, consider modeling the vehicle body 1 and the light receiving device 2.3 as shown in FIG. Here, point P is the origin of the coordinates of the tx'y'z' coordinates, and the point x of each part of the vehicle body shown in FIG. The coordinate position in the /y/s/ coordinates is shown in FIG.

なお、Q点およびT点はそれぞれ受光装置2および3に
おけるレーザ光受光点である。
Note that point Q and point T are laser beam receiving points in the light receiving devices 2 and 3, respectively.

さて、車体の姿勢角が変化した場合における上記Q点お
よびT点のxt y/ z/座標系における移動位置(
Xqe Fq+  Zq )および(4t* 3’te
  Zt)は1次式、 によつて表わされる。
Now, the movement position of the Q point and T point in the xt y/z/ coordinate system when the attitude angle of the vehicle body changes (
Xqe Fq+ Zq ) and (4t* 3'te
Zt) is expressed by the linear equation,

したがって、第2図のAAを原点とするxyz座像系に
おけるP点の位f& ’t” P (Xg + )’6
 m ’ 10)とすると、前記Q AZ N T点の
xyz座傾系におけを位置()Cq+3’qsZq×お
よび(X乞* )’l + ”t)は、次式 ここで、第(5)式、第(6)式における( xq *
 74 )および(xt+yt)は、ナれぞれ前記第(
1)式に基づいてJl、出できる。ま之、車両の前後傾
斜角θおよび左右傾斜角δのうちいずれか一方、本実施
例では左右傾斜角δは傾斜センサを用いて計測するもの
とする。
Therefore, the position of point P in the xyz image system with AA in Fig. 2 as the origin is f &'t'' P (Xg + )'6
m'10), the position ()Cq+3'qsZq× and (X*)'l+''t) of the QAZNT point in the xyz tilt system is expressed by the following equation, where the (5th ) formula, (xq * in formula (6)
74 ) and (xt+yt) are respectively the above-mentioned (
1) Jl can be calculated based on the formula. However, either one of the longitudinal inclination angle θ and the left-right inclination angle δ of the vehicle, and in this embodiment, the left-right inclination angle δ is measured using a tilt sensor.

上記第(3)式から第(6)式より、 = (h、 −h2)部δ内0(2)ψ−h1gIn’
ghiψ−baisθcaψ10.(7)= (h、−
h2)(2)δ画θ廊ψ +h1−δ■ψ−b部θ―ψ   ・・・(8)上記第
(7)式および第(8)式からθを消去すると、h、I
IIIIδ= (7q −y t ””ψ−(xq−x
t)thψ=U癲(ψ+U)        ・・・(
9)xq−xt となり、上紀鄭(9)式を変形すると、となる。また、
第(7)式をθについて解くと、友だし、u ’ = 
、/ (h 1−h 2)2as2δas2(p+ b
2cos29)となる。すなわち、計測した( Xq 
+ 3’q ) + (Xt*yt)およびδから、上
記四穴および第09式によつて車両の方位角ψおよび前
後傾斜角θを求めることができる。
From equations (3) to (6) above, = (h, -h2) part δ 0(2)ψ-h1gIn'
ghiψ−baisθcaψ10. (7) = (h, -
h2) (2) δ gallery θ gallery ψ + h1 − δ ■ ψ − b part θ − ψ ... (8) If θ is eliminated from the above equations (7) and (8), h, I
IIIδ= (7q −y t ””ψ−(xq−x
t) thψ=U癲(ψ+U) ...(
9)xq-xt, and when the Joki-Zheng (9) equation is transformed, it becomes. Also,
When we solve equation (7) for θ, we get a friend, u' =
, / (h1-h2)2as2δas2(p+b
2cos29). In other words, the measured (Xq
+3'q) + (Xt*yt) and δ, the azimuth angle ψ and longitudinal inclination angle θ of the vehicle can be determined using the above four holes and Equation 09.

上記車両の姿勢角(θ、δ、ψ)が求まると、P点の位
ttieP(x0* y6 * z□ )は、g (3
)式および第(5)式から、次式 X6 =Xq−(JQl’lδ虐θ房ψ−h、I−δ虐
ψ)y6 = 74− (h、(2)a−θ龜ψ+h、
廁6(2)ψ)16 =Xq−111QJsl−〇=h
、 −hjcr15δ朝θ・・・(2) となる。友だし、hoけ回転レーザ光のxyzr標系に
おける高さである。
When the above attitude angles (θ, δ, ψ) of the vehicle are determined, the position of point P (x0*y6*z□) is determined by g (3
) and equation (5), the following equation
廁6(2)ψ)16 =Xq-111QJsl-〇=h
, -hjcr15δmorning θ...(2). This is the height of the rotating laser beam in the xyzr standard system.

したがって、第四式からP点の位f?J、を求めること
ができ、ま7’tP点と一定の関係にある車両代表点の
位置(例えば東心)4求めることもできる。
Therefore, from the fourth equation, the place f of point P? It is also possible to find the position of the vehicle representative point (for example, the center of the east) that has a certain relationship with the point P.

第1図は本発明の一実施例を示すブロック図である。同
図において、地上局側は、地上基準局1012台の投光
装置11,12、地図表示器13および地図r−タ記憶
装置14から構成されている。地上基準局10は更に送
受信機10a1処理装置10bおよび発振器10cから
構成され、投光!4置11.12はパルスモータ目」、
12鳳、回転ヘッドllb、12bおよびレーザ発振器
11e、12cから狩こ成されている。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, the ground station side is composed of 1012 ground reference stations, projecting devices 11 and 12, a map display 13, and a map data storage device 14. The ground reference station 10 further includes a transmitter/receiver 10a1, a processing device 10b, and an oscillator 10c, and emits light! 4th position 11.12 is the pulse motor",
12, rotary heads llb, 12b, and laser oscillators 11e, 12c.

一方、車両には、2つの受光装置2.3、車両左右傾斜
センサ4、送受信機5i?工びその他、棟槌演算、処理
、制御を行なう装置が設けられている。
On the other hand, the vehicle includes two light receiving devices 2.3, a vehicle left/right tilt sensor 4, and a transmitter/receiver 5i? In addition, there are devices for calculating, processing, and controlling the ridge hammer.

投光装fii!:11および12は、第2図に示すよう
に一定の間隔りをもりてxyz座標系のA点およびB点
に設置される。ここで、投光装置11゜12からの回転
レーザ光平面は!y平面と平行になるように、ま友各回
転し−デ光平面の高さは所定高さhoとなるように設置
される。
Floodlight fii! :11 and 12 are installed at points A and B in the xyz coordinate system with a constant interval as shown in FIG. Here, the rotating laser light plane from the light projector 11°12 is! Each light beam is rotated so that it is parallel to the y-plane, and the height of the light plane is set to a predetermined height ho.

投光装置11は、レーザ発振器11aから連続発損され
るレーザ光を回転ヘッド11bK入射し、この、回転ヘ
ッド1lb(i−)#シスモー211mで回転させるこ
とにより、該回転ヘッドflbから回転レーザ光を投光
する。パルスそ一夕11mは地上基準局10の発嘔器1
0aから加えられるクロックパルスに同期して回転する
。なお、投光装置12も投光装置11と同様にして回転
レーザ光を投光する。すなわち、回転ヘッドllbおよ
び12bの回転同期および位相は一致するようになって
いる。
The light projecting device 11 inputs a laser beam that is continuously emitted and lost from a laser oscillator 11a into a rotating head 11bK, and rotates this rotating head 1lb(i-)#sysmo 211m to emit a rotating laser beam from the rotating head flb. Emits light. Pulse length 11m is ground reference station 10 emitter 1
It rotates in synchronization with the clock pulse applied from 0a. Note that the light projecting device 12 also projects a rotating laser beam in the same manner as the light projecting device 11. That is, the rotational synchronization and phase of the rotary heads llb and 12b are made to match.

また、地上基準局10の処理装置10bは、発振器10
 cからのクロックパルスによって投光装置11.12
からのレーザ光が基準方位(X軸方向)を向く時点を検
知し、この時点に送受信機10mより基準方位を示す基
準方位信号を発生させる。
Further, the processing device 10b of the ground reference station 10 includes an oscillator 10
The floodlight device 11.12 by the clock pulse from c.
The point in time when the laser beam from the sensor points toward the reference direction (X-axis direction) is detected, and at this point, the transceiver 10m generates a reference direction signal indicating the reference direction.

3に誠送受信機5は上記基準方位信号f、受信すると、
これを銀画位置演算装置20に加える。また、車両位置
ヌ算装置20には受光装置2および3から回転レーザ光
の受光タイミングを示す信号および受光高さ位置h1お
よびh2t?示すjB号が加えられ、史に車両左右傾斜
センサ4から左右傾斜角δを示す信号が加えられる。な
お、車両側に地上局側の発振器10aと閤−の時刻を計
時する手段を設けるようにすれば、レーザ光が基準方位
を向く時点を車両側のみで検知することもできる。
3, the Makoto transmitter/receiver 5 receives the reference direction signal f.
This is added to the silver image position calculation device 20. Further, the vehicle position calculation device 20 receives signals from the light receiving devices 2 and 3 indicating the timing of receiving the rotating laser beams, and the light receiving height positions h1 and h2t? A signal indicating the left-right tilt angle δ is added to the history from the vehicle left-right tilt sensor 4. If the vehicle side is provided with a means for measuring the time of the oscillator 10a on the ground station side and the ground station side, the point in time when the laser beam is directed toward the reference direction can be detected only on the vehicle side.

車両位置演算装[20鉱、まず各受光装置の受光位[Q
、Tの座標位tR(Xq+ 7qe Zq )およびC
Xt* 1% r Zt)を第(1)式およびg (2
1式に基づいて求める。なお、x、= Q = hoで
ある。次に、このようにして求め九(”q * 7q 
)、(xt、 yt)、受光高さ位置h、および傾斜セ
ンサ4からの傾柵角δf!:g (10式に代入するこ
とによシ方位角ψを求める。更に、上記各値と方位角ψ
および受光高さ位11th2を第0u式に代入すること
により車両前後傾斜角θを求める。
Vehicle position calculation system [20 minerals, firstly the light receiving position of each light receiving device [Q
, the coordinate position tR(Xq+ 7qe Zq) of T and C
Xt* 1% r Zt) in equation (1) and g (2
Calculate based on Equation 1. Note that x, = Q = ho. Next, in this way, find 9 ("q * 7q
), (xt, yt), the light receiving height position h, and the slope angle δf from the slope sensor 4! :g (Determine the azimuth angle ψ by substituting it into equation 10.Furthermore, each value above and the azimuth angle ψ
By substituting the light receiving height 11th2 into the 0uth equation, the vehicle longitudinal inclination angle θ is obtained.

続いて、上記受光位fQ(X4.y、#Z、)およびT
 (Xt* Yt+ zt)と上記のようKして求めた
姿勢角(θ、δ、ψ)に基づいて車両代表点の三次元位
置を求める。なお、受光装置2の車両取付部分のP点の
位#P (X6 e 76 * ”6 )は、第αつ式
に(Xqs 7q+ Zq )および(θ、δ、ψ)を
代入することにより求めることができる。
Next, the above light receiving position fQ (X4.y, #Z,) and T
The three-dimensional position of the vehicle representative point is determined based on (Xt*Yt+zt) and the attitude angle (θ, δ, ψ) determined by K as described above. Note that the position #P (X6 e 76 * ”6) of the P point of the vehicle attachment part of the light receiving device 2 is obtained by substituting (Xqs 7q + Zq) and (θ, δ, ψ) into the αth equation. be able to.

このようにして求めた原画代表点の三次元位置。The three-dimensional position of the representative point of the original image obtained in this way.

を示す信号は地図データ処理装置21に加えられる。地
図データ処理装置!lt、21は地図データ記憶装置2
3からの旧地図データに基づいて車両走行軌跡や地形デ
ータ等を更新して新地図データを作成する。
A signal indicating this is applied to the map data processing device 21. Map data processing device! lt, 21 is the map data storage device 2
New map data is created by updating the vehicle travel trajectory, topographic data, etc. based on the old map data from 3.

例えば、車両の走行領域(作業領域)を第1表のように
Xおよびy方向に有限個(nXn )で区分し、各区分
位置をアドレスとする記憶部を設け、水閘代表点がその
有限個のある位置に達すると、その位置に対応する記憶
部に2座掠を薔き込むことにより三次元走行軌跡の地図
データを記憶させることができる。
For example, the driving area (work area) of a vehicle is divided into a finite number (nXn) in the When the vehicle reaches a certain position, the map data of the three-dimensional travel trajectory can be stored by inserting two digits into the storage unit corresponding to that position.

第1表 なお、すでに2座像が弥き込まれた位置に遅し九場合に
は最新の2座標に傅き換える工すにする。
Table 1 Note that if it is too late to reach the position where the two seated images have already been placed, the system will be used to change the coordinates to the latest two coordinates.

ま九、車両代表点を地面との接地点とすると、上記のよ
うにして記憶し九三次元の走行軌跡データは地形データ
としてとえることができる。
If the representative point of the vehicle is the point of contact with the ground, the three-dimensional travel locus data stored as described above can be regarded as terrain data.

!之、地図データ処理装!21は、地図データ記す、Q
装置23に記憶されている地図f−タに基づいて車両の
走行軌跡あるいは地形を地図表示器22に表示させる。
! The map data processing system! 21 indicates map data, Q
Based on the map data stored in the device 23, the vehicle's travel trajectory or topography is displayed on the map display 22.

第6図は地図表示の一例を示す。もち胸、原画の現在位
置をその地図上に表示させることもできる。
FIG. 6 shows an example of a map display. You can also display the current location of Mochi Chest and the original picture on the map.

!載送受信機5Vi地図データ記憶装置ItK記憶され
ている地図データを送信し、地上基準局10の送受イぎ
機10&はこれを受信して処理装置10bに加える。処
理装置10bは入力した地図データを地図データ記憶装
置14に記憶させるとともに、その記憶させ次地図デー
タに基づいて車両の走行軌跡あるいは地形を地図表示器
13に表示させる。
! The on-board transceiver 5Vi transmits the map data stored in the map data storage device ItK, and the transceiver 10& of the ground reference station 10 receives it and adds it to the processing device 10b. The processing device 10b stores the input map data in the map data storage device 14, and displays the travel trajectory or topography of the vehicle on the map display 13 based on the stored map data.

作業指令発生装置24には予定の作業内容が設定されて
おシ、演算処理装置j125は、作業指令発生装置から
加えられる作業内容を示す信号と、地区データ処理装置
21から加えられるデータ(地図データ、爪側位置デー
タ、姿勢角データ)とて基づいてエンジン制(至)信号
、変速制御信号、ステアリング制御信号および作業機f
lill m信号を形成してエンジン制御装置26、変
速制御装置27、ステアリングItI11御装#、28
および咋桑機制御装責29を制御する。
Scheduled work content is set in the work order generation device 24, and the arithmetic processing unit j125 receives a signal indicating the work content added from the work order generation device and data (map data) added from the district data processing device 21. , claw side position data, attitude angle data), the engine control signal, shift control signal, steering control signal, and work equipment f
The lill m signal is generated to control the engine control device 26, the transmission control device 27, and the steering ItI11 control device #, 28.
and controls the machine control device 29.

なお、上記システムは、実時間で得九車両位置データお
よび地形データや作業指令を地上基準局10とデータ通
信することにより車両の遠隔!1j御等を行なう趨設作
業の管制システムを構成することができる。
Note that the above system obtains vehicle position data, terrain data, and work commands in real time and communicates them with the ground reference station 10 to remotely control the vehicle. It is possible to configure a control system for continuous construction work that performs 1j control, etc.

なお、本実施例では前後傾斜角δは傾斜センナによって
検出するようKLIが、前述した第(5)式および第(
6)弐【、それぞれ@ (3)式および第(4)式を代
入した式は、 xq= x。+ h1cosJfnθcm9+ −h1
magin9+7q = Y0+hlaBδml嘔ψ+
h1mδatsqJzq = go+ h1cosJe
atθXt=X、 + h2可δ龜θ篩ψ+b(2)θ
[有]ψ7t” 7 o + h l CIRδgfa
#*(P + 1)coso癲ψzt= z0+h2c
ce+δ。θ−に+ttnθの合1i6式となり、これ
らの式における未知数は(16m 7G116 )およ
び(δ、θ、ψ)の合計6個であるため、上記6式を解
くことにより全ての未知数を求めることができる。し九
がって、この場分には#ixセンサは不キとなる。
In addition, in this embodiment, the KLI uses the above-mentioned equation (5) and equation (
6) 弐【, respectively @ The equations in which equations (3) and (4) are substituted are xq= x. + h1cosJfnθcm9+ -h1
magin9+7q = Y0+hlaBδml φ+
h1mδatsqJzz = go+ h1cosJe
atθ
[Yes] ψ7t” 7 o + h l CIRδgfa
#*(P + 1) coso ψzt= z0+h2c
ce+δ. The sum of θ- and +ttnθ results in 1i6 equations, and the unknowns in these equations are (16m 7G116 ) and (δ, θ, ψ), a total of 6, so all unknowns can be found by solving the above 6 equations. can. Therefore, the #ix sensor is not suitable for this situation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、建設現場のような
不聚地でも計測誤差が累積することなく車両の:E、次
元位考を精度よく、かつ実時間で求めることができる。
As described above, according to the present invention, the :E, dimensional position of a vehicle can be determined accurately and in real time without accumulating measurement errors even in deserted areas such as construction sites.

また、高梢度なIi r#fi! 曽fl!報および地
形情や)を作菓者に提供して作呟支援を行なうことかで
さる。
In addition, Ii r#fi! Sofl! Information and topographical information) can be provided to confectioners to support their creation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図乃
至第5図は本@明に係る位*i測方法を説明するため【
用いた図、86図はり1図における地図表示器の表示例
を示すメである。 1・・・本体、2.3・・・受光装置、4・・・車両左
右傾斜センサ、5・・・送受偵機、10・・・地上基準
局、11.12・・・投光装置、13.22・・・地図
表示器、14.23・・・地図r−タ記憶装眞、20・
・・車両位1J!t、演算装置、21・・・地図データ
処理装置。 出Pへ人代理へ  木 村 筒 久 第2図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIGS. 2 to 5 are for explaining the position*i measurement method according to the book
This figure shows an example of the display of the map display in Figure 86 and Figure 1 used. DESCRIPTION OF SYMBOLS 1...Main body, 2.3...Light receiving device, 4...Vehicle left and right inclination sensor, 5...Transmission/reception aircraft, 10...Ground reference station, 11.12...Light projector, 13 .22...Map display, 14.23...Map data storage device, 20.
... Vehicle rank 1J! t, calculation device, 21... map data processing device. To the Departure Personnel Representative Hisashi Kimura Tsutsu Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)予め設定した2定点に設置され、それぞれ一定周
期で回転する回転レーザ光を投光する第1,第2の投光
手段と、 車両に配設され、前記回転レーザ光の受光タイミングお
よび受光高さ位置を検出する第1,第2の受光手段と、 車両の左右若しくは前後のいずれか一方の第1の傾斜角
を検出する傾斜角検出手段と、 前記第1の受光手段によって検出した受光タイミングに
基づいて該受光時における前記第1,第2の投光手段か
らの回転レーザ光の第1,第2の回転角および前記第2
の受光手段によって検出した受光タイミングに基づいて
該受光時における前記第1,第2の投光手段からの回転
レーザ光の第3,第4の回転角を求める回転角算出手段
と、前記第1,第2の投光手段の設置間隔と前記回転角
算出手段によって算出した第1,第2の回転角および第
3,第4の回転角に基づいて前記第1および第2の受光
手段における各受光位置の或るxyz座標系上の第1の
xy座標位置および第2のxy座標位置を算出する第1
の演算手段と、前記第1,第2の受光手段の配設間隔、
該受光手段によってそれぞれ検出した受光高さ位置、前
記傾斜角検出手段によって検出した第1の傾斜角および
前記第1の演算手段によって算出した第1第2のxy座
標位置に基づいて車両の前後若しくは左右の第2の傾斜
角および方位角を算出する第2の演算手段と、 前記第1,第2の受光手段によって検出した少なくとも
一方の受光高さ位置、前記第1の演算手段によって算出
した少なくとも一方のxy座標位置、前記傾斜角検出手
段および第2の演算手段によって検出若しくは算出した
車両の前後傾斜角、左右傾斜角および方位角に基づいて
車両代表点のxy座標位置を算出する第3の演算手段と
、前記回転レーザ光のz座標位置、前記第1,第2の受
光手段によって検出した少なくとも一方の受光高さ位置
、前記傾斜角検出手段および第2の演算手段によって検
出若しくは算出した車両の前後傾斜角および左右傾斜角
に基づいて前記車両代表点のz座標位置を算出する第4
の演算手段と、を具えた車両位置及び姿勢角の計測装置
(1) First and second light projecting means installed at two preset fixed points and projecting rotating laser beams that rotate at a constant cycle; first and second light receiving means for detecting a light receiving height position; a tilt angle detecting means for detecting a first tilt angle on either the left or right side or the front or back of the vehicle; Based on the light reception timing, the first and second rotation angles of the rotating laser beams from the first and second light projecting means and the second rotation angle at the time of light reception are determined.
rotation angle calculation means for calculating third and fourth rotation angles of the rotating laser beams from the first and second light projecting means at the time of light reception based on the light reception timing detected by the light reception means; , each of the first and second light receiving means based on the installation interval of the second light projecting means and the first and second rotation angles and the third and fourth rotation angles calculated by the rotation angle calculation means. a first xy coordinate position and a second xy coordinate position on a certain xyz coordinate system of the light receiving position;
an arrangement interval between the calculation means and the first and second light receiving means;
Based on the light receiving height position detected by the light receiving means, the first inclination angle detected by the inclination angle detecting means, and the first and second xy coordinate positions calculated by the first calculating means, a second calculating means for calculating a second left and right inclination angle and an azimuth; at least one of the light receiving height positions detected by the first and second light receiving means; A third method for calculating the xy coordinate position of the vehicle representative point based on the one xy coordinate position, the longitudinal inclination angle, the lateral inclination angle, and the azimuth angle of the vehicle detected or calculated by the inclination angle detection means and the second calculation means. a calculation means, a z-coordinate position of the rotating laser beam, a light reception height position of at least one detected by the first and second light reception means, a vehicle detected or calculated by the tilt angle detection means and the second calculation means; a fourth step of calculating the z-coordinate position of the vehicle representative point based on the longitudinal inclination angle and the lateral inclination angle of the vehicle;
A vehicle position and attitude angle measuring device comprising: calculation means;
(2)前記算出した車両の代表点のxyz座標位置を順
次記憶する記憶手段と、前記記憶手段に記憶したxyz
座標位置に基づいて地図を作成表示する地図出力手段と
を含む特許請求の範囲第(1)項記載の車両位置及び姿
勢角の計測装置。
(2) storage means for sequentially storing the calculated xyz coordinate positions of the representative points of the vehicle, and xyz stored in the storage means;
A vehicle position and attitude angle measuring device according to claim 1, further comprising map output means for creating and displaying a map based on coordinate positions.
(3)前記記憶手段は、同一のxy座標位置を有する三
次元位置の場合には最新の三次元位置のみを記憶する特
許請求の範囲第(2)項記載の車両位置及び姿勢角の計
測装置。
(3) The vehicle position and attitude angle measuring device according to claim (2), wherein the storage means stores only the latest three-dimensional position in the case of three-dimensional positions having the same xy coordinate position. .
(4)予め設定した2定点に設置され、それぞれ一定周
期で回転する回転レーザ光を投光する第1,第2の投光
手段と、 車両に配設され、前記回転レーザ光の受光タイミングお
よび受光高さ位置を検出する第1,第2の受光手段と、 前記第1の受光手段によって検出した受光タイミングに
基づいて該受光時における前記第1,第2の投光手段か
らの回転レーザ光の第1,第2の回転角および前記第2
の受光手段によって検出した受光タイミングに基づいて
該受光時における前記第1,第2の投光手段からの回転
レーザ光の第3,第4の回転角を求める回転角算出手段
と、前記第1,第2の投光手段の設置間隔と前記回転角
算出手段によって算出した第1,第2の回転角および第
3,第4の回転角に基づいて前記第1および第2の受光
手段における各受光位置の或るxyz座標系上の第1の
xy座標位置および第2のxy座標位置を算出する第1
の演算手段と、前記第1,第2の受光手段の配設間隔、
該受光手段によってそれぞれ検出した受光高さ位置およ
び前記第1の演算手段によって算出した第1,第2のx
y座標位置に基づいて車両の前後傾斜角、左右傾斜角お
よび方位角を算出する第2の演算手段と、 前記第1,第2の受光手段によって検出した少なくとも
一方の受光高さ位置、前記第1の演算手段によって算出
した少なくとも一方のxy座標位置および第2の演算手
段によって算出した車両の前後傾斜角、左右傾斜角およ
び方位角に基づいて車両代表点のxy座標位置を算出す
る第3の演算手段と、 前記回転レーザ光のz座標位置、前記第1,第2の受光
手段によって検出した少なくとも一方の受光高さ位置お
よび第2の演算手段によって算出した車両の前後傾斜角
および左右傾斜角に基づいて前記車両代表点のz座標位
置を算出する第4の演算手段と、 を具えた車両位置及び姿勢角の計測装置。
(4) first and second light projecting means that are installed at two preset fixed points and project rotating laser beams that rotate at a constant cycle; first and second light receiving means for detecting a light receiving height position; and rotating laser beams from the first and second light emitting means at the time of light reception based on the light receiving timing detected by the first light receiving means. the first and second rotation angles of and the second rotation angle of
rotation angle calculation means for calculating third and fourth rotation angles of the rotating laser beams from the first and second light projecting means at the time of light reception based on the light reception timing detected by the light reception means; , each of the first and second light receiving means based on the installation interval of the second light projecting means and the first and second rotation angles and the third and fourth rotation angles calculated by the rotation angle calculation means. a first xy coordinate position and a second xy coordinate position on a certain xyz coordinate system of the light receiving position;
an arrangement interval between the calculation means and the first and second light receiving means;
the light receiving height positions detected by the light receiving means and the first and second x calculated by the first calculation means;
a second calculation means that calculates the longitudinal inclination angle, the left and right inclination angle, and the azimuth angle of the vehicle based on the y-coordinate position; and at least one of the light receiving height positions detected by the first and second light receiving means; A third method for calculating the xy coordinate position of the representative point of the vehicle based on at least one of the xy coordinate positions calculated by the first calculation means and the longitudinal inclination angle, the left and right inclination angle, and the azimuth angle of the vehicle calculated by the second calculation means. a calculation means, a z-coordinate position of the rotating laser beam, at least one light reception height position detected by the first and second light reception means, and a longitudinal inclination angle and a left and right inclination angle of the vehicle calculated by the second calculation means; A vehicle position and attitude angle measuring device, comprising: fourth calculation means for calculating the z-coordinate position of the vehicle representative point based on;
JP11685786A 1986-05-21 1986-05-21 Measuring device for vehicle position and attitude angle Expired - Fee Related JP2603068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11685786A JP2603068B2 (en) 1986-05-21 1986-05-21 Measuring device for vehicle position and attitude angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11685786A JP2603068B2 (en) 1986-05-21 1986-05-21 Measuring device for vehicle position and attitude angle

Publications (2)

Publication Number Publication Date
JPS62273408A true JPS62273408A (en) 1987-11-27
JP2603068B2 JP2603068B2 (en) 1997-04-23

Family

ID=14697345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11685786A Expired - Fee Related JP2603068B2 (en) 1986-05-21 1986-05-21 Measuring device for vehicle position and attitude angle

Country Status (1)

Country Link
JP (1) JP2603068B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027516U (en) * 1988-06-30 1990-01-18
JPH02140614A (en) * 1988-11-22 1990-05-30 Sokkisha Co Ltd Surveying method using laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101756555B1 (en) * 2015-12-14 2017-07-11 현대오트론 주식회사 Apparatus for detecting of vehicle pitch angle using time of flight sensor and method therof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027516U (en) * 1988-06-30 1990-01-18
JPH02140614A (en) * 1988-11-22 1990-05-30 Sokkisha Co Ltd Surveying method using laser

Also Published As

Publication number Publication date
JP2603068B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US5983166A (en) Structure measurement system
CN106123908B (en) Automobile navigation method and system
US4818107A (en) System for measuring the position of a moving body
CN111412911A (en) Multi-sensor combined navigation system of coal mine underground continuous coal mining robot
JP6557896B2 (en) Radar axis deviation amount calculation device and radar axis deviation amount calculation method
JP2866289B2 (en) Display method of position and attitude of construction machinery
CN105573310B (en) Coal mine roadway robot positioning and environment modeling method
CN110108255A (en) Universal mobile data acquisition and processing tunnel detection system for multiple scanners
CN113075650A (en) Underground roadway tunneling equipment real-time positioning method based on UWB and inertial unit
CN113970329A (en) Strapdown inertial navigation and laser sensing combined heading machine pose detection system and method
CN114689045A (en) Positioning and navigation system and positioning and navigation method for heading machine
CN114964227A (en) Coal mining machine combined navigation positioning system and method based on depth camera positioning correction
JPS62273408A (en) Measuring apparatus of vehicle position and posture angle
KR20140067397A (en) System for producing 3d space information using lidar sensor
CN114485614B (en) Navigation positioning system and method of mining equipment based on double total stations
JPS62273409A (en) Measuring apparatus of vehicle position and posture angle
KR200303737Y1 (en) Mobile GPS mesuring systen
CN112857367B (en) Heading machine pose detection method based on machine vision and inertial navigation
JP2916708B2 (en) Current position measurement device for moving objects
JP3247143B2 (en) Positioning / posture surveying device for moving objects
CN110850407B (en) Topography measurement method based on radar technology
JP2000356684A (en) Investigation data display method and device therefor
CN114758001B (en) PNT-based automatic traveling method for tyre crane
JP3135364B2 (en) Measuring device for posture and position of moving object
CN111637889A (en) Tunneling machine positioning method and system based on inertial navigation and laser radar three-point distance measurement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees