JPS62262443A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS62262443A
JPS62262443A JP10610286A JP10610286A JPS62262443A JP S62262443 A JPS62262443 A JP S62262443A JP 10610286 A JP10610286 A JP 10610286A JP 10610286 A JP10610286 A JP 10610286A JP S62262443 A JPS62262443 A JP S62262443A
Authority
JP
Japan
Prior art keywords
wiring
poly
layer
wiring layer
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10610286A
Other languages
Japanese (ja)
Inventor
Kazunori Imaoka
今岡 和典
Tsutomu Saito
勉 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10610286A priority Critical patent/JPS62262443A/en
Publication of JPS62262443A publication Critical patent/JPS62262443A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent Al and Si from reacting with each other by a method wherein the nitride of high melting point metal or silicide is inserted between a poly Si wiring layer and an Al wiring layer. CONSTITUTION:On the cross-connected part of the poly Si wiring layer 3 buried in the aperture part of the insulating film 2 located on an Si substrate 1 and the Al wiring layer 5 formed on the upper part of said Si wiring layer 3, a barrier layer 4 consisting of the nitride such as Ti, W, Mo and the like or silicide is provided between both wiring layers. Consequently, Al and Si do not react with each other, and the generation of a cavity and a P-N junction on a connected part can be prevented.

Description

【発明の詳細な説明】 〔概要〕 埋め込み配線層としてポリSiを有し、その上部にこれ
と接続するAl配線層を有する半導体装置において、両
層間に高融点金属の窒化物またはシリサイドのバリア層
を挟むことにより、Al配線層とポリStとの反応によ
る不具合を防止する。
[Detailed Description of the Invention] [Summary] In a semiconductor device having poly-Si as a buried wiring layer and an Al wiring layer connected thereto above, a barrier layer of high-melting point metal nitride or silicide is provided between both layers. By sandwiching the Al wiring layer and the polySt, problems caused by the reaction between the Al wiring layer and the polySt can be prevented.

〔産業上の利用分野〕[Industrial application field]

本発明は埋め込み配線層を有する半導体装置の配線構造
とその製造方法に関する。
The present invention relates to a wiring structure of a semiconductor device having a buried wiring layer and a manufacturing method thereof.

半導体装置は集積度がIC,LSIと上がるに従って配
線層も多層化され、相互に交叉する場所も多くなって来
ている。このとき下層配線は絶縁層の中に埋め込んで表
面を平坦にし、上部配線層に出来るだけ段差が生じない
ようにして断線防止に努めると同時に、上下配線層の間
の接続は材質的に経年変化のない安定したものであるこ
とが必要である。
As the degree of integration of semiconductor devices increases from IC to LSI, wiring layers are multilayered, and the number of locations where they intersect with each other is increasing. At this time, the lower layer wiring is buried in an insulating layer to make the surface flat, and at the same time, efforts are made to prevent disconnections by minimizing steps in the upper wiring layer, and at the same time, the connection between the upper and lower wiring layers changes over time due to the material. It needs to be stable and free of turbulence.

従来、下層の埋め込み配線層としてポリStを使用し、
上部配線層に旧を使用する方法が用いられているが、こ
の構造のものはAlとポリSiの間に反応が起こり、こ
れが障害の原因となる欠点を有している。そのため、こ
れの効果的な且つ簡易な解決方法が要望されている。
Conventionally, polySt was used as the lower buried wiring layer,
A method of using aluminum for the upper wiring layer has been used, but this structure has the disadvantage that a reaction occurs between Al and poly-Si, which causes trouble. Therefore, an effective and simple solution to this problem is desired.

〔従来の技術〕[Conventional technology]

第3図(a)〜(c)は従来例における埋め込み配線形
成工程の断面模式図である。
FIGS. 3(a) to 3(c) are schematic cross-sectional views of the buried wiring forming process in the conventional example.

第3図(a)はポリSiの被膜を被着した状態を示す。FIG. 3(a) shows a state in which a poly-Si film is applied.

この図において、Si基板1の上に絶縁膜層例えばSi
Oz膜層2を形成し、このSiOz膜層2に開口を設け
た後、表面全面にCVD法で厚さ約1.5μmのポリS
+3を被着する。
In this figure, an insulating film layer, for example, Si
After forming the Oz film layer 2 and providing openings in this SiOz film layer 2, polysilicon with a thickness of approximately 1.5 μm is deposited on the entire surface by CVD method.
Deposit +3.

第3図(b)は埋め込み配線層を形成した状態を示す。FIG. 3(b) shows a state in which a buried wiring layer has been formed.

ドライエツチングによりSiO□膜2の表面が露出する
までエツチングして全体の表面を平坦に仕上げる。ドラ
イエツチングは、CF4 + O□のガスを用い、圧力
0.5 Torr、パワー350uで行う。
Dry etching is performed until the surface of the SiO□ film 2 is exposed, and the entire surface is finished flat. Dry etching is performed using CF4 + O□ gas at a pressure of 0.5 Torr and a power of 350 u.

第3図(c)は上部配線層を形成した状態を示す。FIG. 3(c) shows a state in which an upper wiring layer has been formed.

スパッタリング法により旧配線5の被膜を約1μm被着
し、後パターニングする。
A film of about 1 μm is applied to the old wiring 5 by sputtering, and then patterned.

この方法により形成したものは、下層の埋め込み配線層
のポリSi3と上部の^l配線5が直接、接続されてい
るので半導体装置を使用している間にA1配線5がポリ
Si3を吸い上げ、ポリSi3に空洞が生ずると云う欠
点を有している。
In the case formed by this method, the poly-Si3 of the lower buried wiring layer and the upper ^l wiring 5 are directly connected, so while the semiconductor device is in use, the A1 wiring 5 sucks up the poly-Si3 and the poly-Si3 is removed. It has the disadvantage that cavities are formed in Si3.

又、Si基板1の表面にN型領域を形成し、埋め込み配
線層のポリSi3もN型にした構造のものでは、上部の
Al配線5がポリSi3の中に拡散して来るとポリSi
3をP型に変えPN接合をポリSia中に形成すると云
う不都合がある。
In addition, in a structure in which an N-type region is formed on the surface of the Si substrate 1 and the poly-Si3 in the buried wiring layer is also N-type, when the upper Al wiring 5 diffuses into the poly-Si3, the poly-Si
There is an inconvenience that 3 is changed to P type and a PN junction is formed in polySia.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例において、埋め込み配、%?I層のポリSiと上
部配線層のAl配線が反応することにより起こる不具合
を防止するため、両層の間にバリア層を挟むものである
In the conventional example, embedded allocation, %? In order to prevent problems caused by reactions between the poly-Si of the I layer and the Al wiring of the upper wiring layer, a barrier layer is sandwiched between the two layers.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、Si基板(1)上の絶縁膜層(2
)の開口部に埋め込んだポリSi(3)と、このポリS
i(3)の上部に形成したバリア層(4)と、更にその
上に形成したAl配線(5)を有してなる本発明による
半導体装置により達成される。
The solution to the above problem is the insulating film layer (2) on the Si substrate (1).
) and this poly-Si (3) embedded in the opening of
This is achieved by the semiconductor device according to the present invention, which includes a barrier layer (4) formed on top of i(3) and an Al wiring (5) further formed thereon.

特に、前記バリア層(4)をチタン、タングステン若し
くはモリブデンの窒化物とすることにより本発明は容易
に実施することが出来る。
In particular, the present invention can be easily implemented by making the barrier layer (4) a nitride of titanium, tungsten, or molybdenum.

又、前記バリア層(4)をチタン、タングステン若しく
はモリブデンのシリサイドとすることにより本発明は容
易に実施し得る。
Furthermore, the present invention can be easily carried out by forming the barrier layer (4) from titanium, tungsten, or molybdenum silicide.

更に、Si基板(1)上の絶縁膜層(2)の開口部にポ
リSi(3)を埋め込み、前記ポリSi(3)の上部に
バリアN(4)を形成する工程と、更にその上に屓配線
(5)を形成する工程とを有している本発明による半導
体装置の製造方法により達成することが出来る。
Furthermore, a step of embedding poly-Si (3) in the opening of the insulating film layer (2) on the Si substrate (1) and forming a barrier N (4) on top of the poly-Si (3); This can be achieved by the method for manufacturing a semiconductor device according to the present invention, which includes the steps of forming the wiring (5).

〔作用〕[Effect]

埋め込み配線層としてのポリSiと、その上部のAl配
線の間に高融点金属の窒化物またはシリサイドのバリア
層を挟むことにより、At配線とポリSiとの反応によ
る不具合を防止する。
By sandwiching a barrier layer of high melting point metal nitride or silicide between the poly-Si as the buried wiring layer and the Al wiring above it, problems caused by reactions between the At wiring and the poly-Si are prevented.

〔実施例〕〔Example〕

第1図(a)〜(d)は本発明の実施例(1)における
埋め込み配線形成工程の断面模式図である。
FIGS. 1(a) to 1(d) are schematic cross-sectional views of the embedded wiring forming process in Example (1) of the present invention.

これら図において、第3図と同じ名称のものは同じ符号
で示す。
In these figures, parts with the same names as in FIG. 3 are designated by the same reference numerals.

第1図(a)はポリSiの被膜を被着した状態を示す。FIG. 1(a) shows a state in which a poly-Si film is applied.

この図において、St基板1の上に絶縁膜層例えばSi
O□膜N2膜形2し、このSing膜層2に開口を設け
た後、表面全面にCVD法で厚さ約1.5μmのポリS
i3を被着する。
In this figure, an insulating film layer such as Si is formed on an St substrate 1.
After forming an O□ film N2 film type 2 and providing an opening in this Sing film layer 2, a polysilicon film with a thickness of approximately 1.5 μm is deposited on the entire surface by CVD.
Apply i3.

第1図(b)は埋め込み配線層を形成した状態を示す。FIG. 1(b) shows a state in which a buried wiring layer has been formed.

ドライエツチングによりSing膜2の表面が露出する
までエツチングして全体の表面を平坦に仕上げる。ドラ
イエツチングは、CF4 + O□のガスを用い、圧力
0.5 Torr、パワー350 Wで行う。
Dry etching is performed until the surface of the Sing film 2 is exposed to make the entire surface flat. Dry etching is performed using CF4 + O□ gas at a pressure of 0.5 Torr and a power of 350 W.

これまでは従来例と全く同様な方法で形成される。Up to now, it has been formed in exactly the same manner as in the conventional example.

第1図(c)は上部配線層としてAl配線を形成した状
態を示す。
FIG. 1(c) shows a state in which Al wiring is formed as the upper wiring layer.

この図において、まずバリア層の窒化チタン(TiN 
)  4を厚さ500〜1000人、スパッタリング法
で被着形成する。ついで、スパッタリング法によりAl
配線5の被膜を約1μm被着する。
In this figure, first, titanium nitride (TiN) is used as the barrier layer.
) 4 to a thickness of 500 to 1000 layers by sputtering. Then, by sputtering method, Al
A coating of about 1 μm is applied to the wiring 5.

第1図(d)はAl配線とバリア層をパターニングした
状態を示す。
FIG. 1(d) shows the patterned state of the Al wiring and barrier layer.

フォ]・レジストをマスクにしてAl配線5およびTi
N層4を同時に、異方性ドライエツチングによりパター
ニングする。異方性ドライエツチングはガス:CCl4
、圧カニ0.I Torr 、パワー: 350 Wで
行う。
Al wiring 5 and Ti using the photoresist as a mask.
At the same time, the N layer 4 is patterned by anisotropic dry etching. Anisotropic dry etching uses gas: CCl4
, pressure crab 0. I Torr, power: 350 W.

第2図(a)〜(d)は本発明の実施例(2)における
埋め込み配線形成工程の断面模式図である。
FIGS. 2(a) to 2(d) are schematic cross-sectional views of the embedded wiring forming process in Example (2) of the present invention.

第2図(a)は高融点金属の被膜を被着した状態を示す
FIG. 2(a) shows a state in which a film of a high melting point metal is applied.

この図において、埋め込み配線層のポリSi3を形成す
るまでの工程は第1図(a) 、(b)におけるものと
全く同じである。埋め込み配線層ポリSi3を形成後、
表面にスパッタリング法で高融点金属例えばモリブデン
(Mo) 6を500〜1000人被着する。
In this figure, the steps up to the formation of the poly-Si3 buried wiring layer are exactly the same as those in FIGS. 1(a) and 1(b). After forming the embedded wiring layer poly-Si3,
500 to 1000 high melting point metals such as molybdenum (Mo) 6 are deposited on the surface by sputtering.

第形成(b)は熱処理によりシリサイドを形成した状態
を示す。
Formation (b) shows a state in which silicide is formed by heat treatment.

約800℃でN2中で熱処理すると、Mo6はポリSi
3と接触する下側の部分より漸次シリサイド化しバリア
層4となるモリブデンシリサイド(MoSiz )を形
成する。
When heat treated in N2 at about 800°C, Mo6 becomes polySi
Molybdenum silicide (MoSiz) is gradually silicided from the lower portion in contact with the barrier layer 4 to form a barrier layer 4.

第2図(c)は金属Moをエツチング除去した状態を示
す。
FIG. 2(c) shows a state in which the metal Mo has been etched away.

NH4OH+ HzO□の液でエツチングして金属MO
を除去する。 このときシリサイドのMoSit 11
4が若干周囲のSiO□膜N2膜形2き出ているが、そ
の量は僅かであるため、後工程で形成するAl配線層の
段差には殆ど影響しない。
Metal MO by etching with NH4OH + HzO□ solution
remove. At this time, the silicide MoSit 11
4 protrudes a little from the surrounding SiO□ film N2 film type 2, but the amount is so small that it hardly affects the level difference of the Al wiring layer formed in a later process.

第2図(d)はAl配線層をパターニングした状態を示
す。
FIG. 2(d) shows the patterned state of the Al wiring layer.

Alをスパッタリングで約1μm被着して後パターニン
グし、Al配線5を形成する。
Al is deposited to a thickness of about 1 μm by sputtering and then patterned to form an Al wiring 5.

第1の実施例、第2の実施例ともに下層の埋め込み配線
層ポリSi3と、上層のAl配線5との間に薄いバリア
層4を設けてポリSiとAlが直接接触するの避けてい
るため、両者間の反応は生じない。
In both the first and second embodiments, a thin barrier layer 4 is provided between the lower buried wiring layer poly-Si 3 and the upper layer Al wiring 5 to avoid direct contact between the poly-Si and Al. , no reaction occurs between the two.

ここで、ポリSiは一般に伝導性を良くするためN型ま
たはP型不純物をドープしたものが使用されるが、ノン
ドープのものであってもバリア層の効果は同じである。
Here, poly-Si is generally doped with N-type or P-type impurities to improve conductivity, but the effect of the barrier layer is the same even if it is undoped.

又Al配線は純Alであっても、A1合金であってもよ
い。
Further, the Al wiring may be made of pure Al or may be made of an A1 alloy.

第1の実施例ではバリア層として比抵抗の比較的小さい
TiNとしたがこれをTi2N、曲、W、FJ、MoN
 % MO2N、TaN 5TaJs Zr−としても
効果は同様である。
In the first embodiment, TiN, which has a relatively low resistivity, was used as the barrier layer.
% MO2N, TaN 5TaJs Zr-, the effect is similar.

また、第2の実施例ではバリア層としてMo5tzとし
たがこれをTiSiz、WSizとしても良好な結果を
得ることが出来る。
Further, in the second embodiment, Mo5tz was used as the barrier layer, but good results can also be obtained by using TiSiz or WSiz instead.

〔発明の効果〕〔Effect of the invention〕

埋め込み配線層としてのポリSiと、その上部のAl配
線の間に高融点金属の窒化物またはシリサイドのバリア
層を設けているので、Al配線とポリSiとの反応によ
り生じていた、AtがポリSiを吸い上げ空洞が発生す
る、又はポリSi層中にPN接合を形成する等の欠点を
なくすることが出来る。
Since a barrier layer of high melting point metal nitride or silicide is provided between the poly-Si as the buried wiring layer and the Al wiring above it, the At generated by the reaction between the Al wiring and the poly-Si is removed from the poly-Si. It is possible to eliminate drawbacks such as the generation of cavities due to the absorption of Si or the formation of PN junctions in the poly-Si layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例(1)における
埋め込み配線形成工程の断面模式図、第2図(a)〜(
d)は本発明の実施例(2)における埋め込み配線形成
工程の断面模式図、第3図(a)〜(c)は従来例にお
ける埋め込み配線形成工程の断面模式図である。 この図において、 1はSt基板、 2は絶縁膜層(Sint)、 3はポリS1% 4はバリア層、 5はAl配線、 6は高融点金属 卒1 因
FIGS. 1(a) to (d) are schematic cross-sectional views of the embedded wiring forming process in Example (1) of the present invention, and FIGS. 2(a) to (d) are
d) is a schematic cross-sectional view of the buried wiring forming process in Example (2) of the present invention, and FIGS. 3(a) to 3(c) are cross-sectional schematic diagrams of the buried wiring forming process in the conventional example. In this figure, 1 is the St substrate, 2 is the insulating film layer (Sint), 3 is poly S1%, 4 is the barrier layer, 5 is the Al wiring, 6 is the high melting point metal.

Claims (1)

【特許請求の範囲】 〔1〕Si基板(1)上の絶縁膜層(2)の開口部に埋
め込んだポリSi(3)と、 このポリSi(3)の上部に形成したバリア層(4)と
、 更にその上に形成したAl配線(5)を 有してなることを特徴とする半導体装置。 〔2〕前記バリア層(4)がチタン、タングステン若し
くはモリブデンの窒化物よりなることを特徴とする特許
請求の範囲第1項記載の半導体装置。 〔3〕前記バリア層(4)がチタン、タングステン若し
くはモリブデンのシリサイドよりなることを特徴とする
特許請求の範囲第1項記載の半導体装置。 〔4〕Si基板(1)上の絶縁膜層(2)の開口部にポ
リSi(3)を埋め込み、前記ポリSi(3)の上部に
バリア層(4)を形成する工程と、 更にその上にAl配線(5)を形成する工程とを有して
いることを特徴とする半導体装置の製造方法。
[Claims] [1] Poly-Si (3) embedded in the opening of the insulating film layer (2) on the Si substrate (1), and a barrier layer (4) formed on the poly-Si (3). ), and an Al wiring (5) formed thereon. [2] The semiconductor device according to claim 1, wherein the barrier layer (4) is made of titanium, tungsten, or molybdenum nitride. [3] The semiconductor device according to claim 1, wherein the barrier layer (4) is made of titanium, tungsten, or molybdenum silicide. [4] A step of embedding poly-Si (3) in the opening of the insulating film layer (2) on the Si substrate (1) and forming a barrier layer (4) on top of the poly-Si (3); A method for manufacturing a semiconductor device, comprising the step of forming an Al wiring (5) thereon.
JP10610286A 1986-05-09 1986-05-09 Semiconductor device and manufacture thereof Pending JPS62262443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10610286A JPS62262443A (en) 1986-05-09 1986-05-09 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10610286A JPS62262443A (en) 1986-05-09 1986-05-09 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62262443A true JPS62262443A (en) 1987-11-14

Family

ID=14425150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10610286A Pending JPS62262443A (en) 1986-05-09 1986-05-09 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62262443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914336B2 (en) 2000-01-25 2005-07-05 Nec Electronics Corporation Semiconductor device structure and method for manufacturing the same
JP2014192314A (en) * 2013-03-27 2014-10-06 Citizen Holdings Co Ltd Semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914336B2 (en) 2000-01-25 2005-07-05 Nec Electronics Corporation Semiconductor device structure and method for manufacturing the same
JP2014192314A (en) * 2013-03-27 2014-10-06 Citizen Holdings Co Ltd Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US5838051A (en) Tungsten policide contacts for semiconductor devices
JP2757927B2 (en) Method of interconnecting spaced silicon regions on a semiconductor substrate
JPH06177132A (en) Manufacture of interconnection structure in integrated circuit
JPH07193024A (en) Semiconductor device and its manufacture
JPH06163578A (en) Method for forming contact hole
JPS62262443A (en) Semiconductor device and manufacture thereof
JPH0283978A (en) Semiconductor device
KR100431309B1 (en) Method for forming metal interconnection in semiconductor device
KR100265839B1 (en) Metal wiring method for semiconductor device
JPH0228956A (en) Semiconductor integrated circuit device
KR100252915B1 (en) Metal line of semiconductor device and method for fabricating the same
JP3189399B2 (en) Method for manufacturing semiconductor device
JPS63253647A (en) Semiconductor device
KR0139599B1 (en) Mechod of forming metal wiring in semiconducotr device
JP3038873B2 (en) Method for manufacturing semiconductor device
KR100318273B1 (en) Method for forming bit line of semiconductor device
KR100290771B1 (en) Method of forming contact plug of semiconductor device
JPH01274452A (en) Manufacture of semiconductor device
JPH02203526A (en) Semiconductor device
JPH07111969B2 (en) Method for manufacturing semiconductor device
JPH0355846A (en) Manufacture of semiconductor device
JPH0230113A (en) Semiconductor integrated circuit device
JPH05335426A (en) Semiconductor device and its manufacture
KR20000041700A (en) Method of forming contact of semiconductor device
JPH06232277A (en) Manufacture of semiconductor device