JPS62257968A - Production of highly electrically conductive polymer composition - Google Patents

Production of highly electrically conductive polymer composition

Info

Publication number
JPS62257968A
JPS62257968A JP10085486A JP10085486A JPS62257968A JP S62257968 A JPS62257968 A JP S62257968A JP 10085486 A JP10085486 A JP 10085486A JP 10085486 A JP10085486 A JP 10085486A JP S62257968 A JPS62257968 A JP S62257968A
Authority
JP
Japan
Prior art keywords
polymer composition
aniline
polymerization
conductive material
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10085486A
Other languages
Japanese (ja)
Inventor
Takashi Ikezaki
隆 池崎
Masaaki Kira
吉良 正明
Satoshi Yamamoto
敏 山本
Yoshihiko Murakoshi
村越 佳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP10085486A priority Critical patent/JPS62257968A/en
Publication of JPS62257968A publication Critical patent/JPS62257968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain in high yield the titled polymer composition outstanding in formability and mechanical strength, by polymerization of an aniline-based monomer in the presence of electrically conductive material and thermoplastic polymer powder. CONSTITUTION:The objective composition can be obtained by polymerization, in the presence of (A) 1-59(pref. 2-28)wt% of an electrically conductive material such as in the form of metallic fine powder or fiber (e.g. of nickel, copper, aluminum) or carbon black, and (B) 1-59(pref. 2-28)wt% of thermoplastic polymer powder insoluble to the polymerization solvent to be used with a softening or melting point <=200 deg.C (e.g. of low-density polyethylene, high-density polyethylene), of (C) 98-40(pref. 95-70)wt% of an aniline-based monomer of formula (R1-R6 are each H, halogen, amino, nitro, <=10C-alkyl, etc.) in, e.g. an aqueous solution acidified with hydrochloric acid, using, as an oxidizing agent, ammonium persulfate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高電導性重合体組成物の製造方法に関し、更
に詳しくは、導電性材料および熱可塑性重合体粉末の存
在下にアニリン系モノマーを重合させることを特徴とす
る高電導性重合体組成物の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a highly conductive polymer composition, and more specifically, the present invention relates to a method for producing a highly conductive polymer composition. The present invention relates to a method for producing a highly conductive polymer composition, which comprises polymerizing a highly conductive polymer composition.

(従来の技術) アニリン系重合体を製造する方法としては、電気化学的
に陽極酸化して製造する方法(電気化・予約重合方法)
と化学重合により製造する方法(化学的重合方法)とが
知られている。前者の方法によれば、通常アニリン系重
合体は膜状物で得られるが、後者の方法の場合にはアニ
リン系重合体は粉末状で得られる。
(Prior art) A method for producing aniline polymers is a method of producing them by electrochemical anodic oxidation (electrification/reservation polymerization method).
and a method of manufacturing by chemical polymerization (chemical polymerization method) are known. According to the former method, the aniline polymer is usually obtained in the form of a film, whereas in the case of the latter method, the aniline polymer is obtained in the form of a powder.

現在、アニリン系重合体の製造方法としては、主として
前者の電気化学的重合方法が利用されているが、生産性
が化学的重合方法よりも劣る欠点を有している。従って
、収率よくアニリン系重合体を製造するためには化学的
重合方法が望ましい。
Currently, the former electrochemical polymerization method is mainly used as a method for producing aniline polymers, but it has the disadvantage that productivity is inferior to chemical polymerization methods. Therefore, chemical polymerization methods are desirable in order to produce aniline polymers with good yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来よりアニリン系重合体は、不溶不融
のため成形性が恕く、冷間加工を必要とし、そのため粒
子間の接着性が悪く、得られる成形体は脆いという問題
があった。また、アニリン系重合体の電導性を上げるた
めに、アニリン系重合体へ金属微粉、金属IaH,、カ
ーボンブラック、炭素1111!、黒鉛等の導電性材料
を添加すると、粒子間の接着性が更に悪くなり、そのた
め成形体の機械的強度は低下するという欠点があった。
However, aniline polymers have conventionally had problems in that they have poor moldability because they are insoluble and infusible, and require cold working, resulting in poor adhesion between particles and the resulting molded products are brittle. In addition, in order to increase the conductivity of the aniline polymer, metal fine powder, metal IaH, carbon black, carbon 1111!, etc. are added to the aniline polymer. However, when a conductive material such as graphite is added, the adhesion between the particles becomes worse, resulting in a reduction in the mechanical strength of the molded article.

従って、本発明は、成形性および機械的強度の良好な高
電導性重合体組成物の製造方法を提供することを目的と
する。
Therefore, an object of the present invention is to provide a method for producing a highly conductive polymer composition having good moldability and mechanical strength.

〔問題点を解決するための手段〕[Means for solving problems]

tε 本発明者らは、上ぞ問題点を解決するために種々検討し
た結果、導電性材料および熱可塑性重合体粉末の存在下
にアニリン系モノマーを重合することにより、前記目的
が極めて有効に達せられ、成形性および機械的強度の良
好な高電導性重合体組成物が得られることを見出し、本
発明を完成するに至ったものである。
tε As a result of various studies to solve the above problems, the present inventors have found that the above object can be extremely effectively achieved by polymerizing an aniline monomer in the presence of a conductive material and a thermoplastic polymer powder. The present inventors have discovered that a highly conductive polymer composition with good moldability and mechanical strength can be obtained, and have completed the present invention.

即ち、本発明に従えば、一般式 〔但し、式中R−R6は同一でも異なってもよく、ハロ
ゲン、水素原子、アミノ基、ニトロ基、炭素数が10以
下のアルキル基、炭素数が10以下のアルコキシ基、ア
リル基または炭素数が6〜10の7リール基を示す。〕 で表わされるアニリン系モノマーを導電性材料および熱
可塑性重合体粉末の存在下で重合させることを特徴とす
る高電導性重合体組成物の製造方法が提供される。
That is, according to the present invention, the general formula [wherein R-R6 may be the same or different, halogen, hydrogen atom, amino group, nitro group, alkyl group having 10 or less carbon atoms, or It shows the following alkoxy group, allyl group, or 7-aryl group having 6 to 10 carbon atoms. ] A method for producing a highly conductive polymer composition is provided, which comprises polymerizing an aniline monomer represented by the following in the presence of a conductive material and a thermoplastic polymer powder.

本発明において使用される前記一般式で表わされるアニ
リン系モノマーの代表例としては、アニリン、2−メト
キシアニリン、3−メトキシアニリン、2.3−ジメト
キシアニリン、2.5.−ジメトキシアニリン、3.5
−ジメトキシアニリン、2−エトキシ−3−メトキシア
ニリン、2゜5−ジフェニルアニリン、2−フェニル−
3−メチルアニリン、2,3.5−トリメトキシアニリ
ン、2,3−ジメチルアニリン、2.3.5.6=テト
ラメブルアニリン、2−メチルアニリン、2−アミノア
ニリン、2−ニトロアニリン、N−メチルアニリン、ジ
フェニルアミン、N、N−ジメチルアニリン、トリフェ
ニルアミン等があげられるが、必ずしもこれらに限定さ
れるものではない。
Representative examples of the aniline monomer represented by the above general formula used in the present invention include aniline, 2-methoxyaniline, 3-methoxyaniline, 2.3-dimethoxyaniline, 2.5. -dimethoxyaniline, 3.5
-dimethoxyaniline, 2-ethoxy-3-methoxyaniline, 2゜5-diphenylaniline, 2-phenyl-
3-methylaniline, 2,3.5-trimethoxyaniline, 2,3-dimethylaniline, 2.3.5.6=tetramebruaniline, 2-methylaniline, 2-aminoaniline, 2-nitroaniline, Examples include, but are not limited to, N-methylaniline, diphenylamine, N,N-dimethylaniline, triphenylamine, and the like.

本発明において使用される導電性材料としては、例えば
ニッケル、銅、アルミニウム、鉄、ステン!・1ヘ レス等の金属の微粉、mtIiおよび脩、またはカーボ
ンブラック、炭M繊維、黒鉛等の如き炭素およびそれら
の混合物をあげることができる。
Examples of conductive materials used in the present invention include nickel, copper, aluminum, iron, and stainless steel!・Metal fine powders such as 1 Helles, mtIi, and carbon, such as carbon black, carbon M fiber, graphite, etc., and mixtures thereof can be mentioned.

また、本発明における熱可塑性重合体粉末としては、重
合溶媒に実質的に不溶であり、かつ軟化点または融点が
200℃以下の重合体または共重合体が用いられる。軟
化点または融点が200℃を超す重合体または共重合体
を使用すると、生成した高電導性重合体組成物の熱成形
温度を高くする必要が生じ好ましくない。このような熱
可塑性重合体の代表例としては、低密度ポリエチレン、
高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリ
プロピレン、エチレン−プロピレン共重合体等のポリオ
レフィン、ポリアミド、ポリエステル、ポリカーボネー
トをあげることができる。
Further, as the thermoplastic polymer powder in the present invention, a polymer or copolymer that is substantially insoluble in the polymerization solvent and has a softening point or melting point of 200° C. or lower is used. Use of a polymer or copolymer having a softening point or melting point of more than 200° C. is undesirable because it becomes necessary to raise the thermoforming temperature of the resulting highly conductive polymer composition. Typical examples of such thermoplastic polymers include low density polyethylene,
Examples include polyolefins such as high-density polyethylene, linear low-density polyethylene, polypropylene, and ethylene-propylene copolymers, polyamides, polyesters, and polycarbonates.

アニリン系モノマーと、導電性材料および熱可塑性重合
体粉末との使用割合は、アニリン系tツマー1導電性材
料および熱可塑性重合体粉末の合計量を100重量%と
した場合、アニリン系モノマー98〜40重量%に対し
て導電性材料1〜59重量%熱可塑性重合体粉末1〜5
9重ω%であり、好ましくはアニリン系モノマー95〜
70重量%に対して導電性材FI2〜2812〜28重
量性重合体粉末2〜28重量%であることが望ましい。
The ratio of the aniline monomer to the conductive material and thermoplastic polymer powder is 98% to 98% by weight when the total amount of the aniline monomer 1 conductive material and thermoplastic polymer powder is 100% by weight. 40% by weight of conductive material 1-59% by weight thermoplastic polymer powder 1-5
9 weight ω%, preferably aniline monomer 95~
It is desirable that the amount of the conductive material FI2-2812-28 weight polymer powder is 2-28% by weight relative to 70% by weight.

導電性材料の使用割合が1重量%未湯1では電導度の改
善効果がみられず、59重間%を超えるとアニリン系重
合体本来の特長が失なわれる。熱可塑性樹脂の使用割合
が1重量%未満では成形性の改善効果が十分発揮されず
、59重量%を超えると電導度の低下をおこす。
When the proportion of the conductive material used is 1% by weight, no improvement in conductivity is observed, and when it exceeds 59% by weight, the original characteristics of the aniline polymer are lost. If the proportion of the thermoplastic resin used is less than 1% by weight, the effect of improving moldability will not be sufficiently exhibited, and if it exceeds 59% by weight, the electrical conductivity will decrease.

アニリン系モノマーと導電性材料および熱可塑性重合体
粉末は、重合時に別々に配合してもよく、また重合反応
を行なう前に予め混合しておいてもよい。
The aniline monomer, the conductive material, and the thermoplastic polymer powder may be blended separately during polymerization, or may be mixed in advance before the polymerization reaction.

アニリン系モノマーを導電性材料および熱可塑性重合体
粉末の存在下に重合させるに際して使用される重合触媒
および重合溶媒、重合の制御法、後処理法については本
製造法固有の制限はなく、従来公知のすべての方法を適
用することができる。
Regarding the polymerization catalyst and polymerization solvent used when polymerizing the aniline monomer in the presence of the conductive material and the thermoplastic polymer powder, the polymerization control method, and the post-treatment method, there are no limitations specific to this production method, and conventionally known methods are used. All methods can be applied.

本発明の高電導性重合体組成物の代表的な製造方法とし
ては、アニリン系モノマーを導電性材料および熱可塑性
重合体粉末の存在下、塩Wi酸性水溶液中で過硫酸アン
モニウムを酸化剤に用いて重合させる方法をあげること
ができる。
A typical method for producing the highly conductive polymer composition of the present invention is to prepare an aniline monomer in an acidic aqueous solution of salt Wi in the presence of a conductive material and a thermoplastic polymer powder using ammonium persulfate as an oxidizing agent. Examples include methods of polymerization.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によって得られる高電導性重合体組成物は
、アニリン系重合体と7![性材料および熱可塑性重合
体粉末の単なる様械的混合による組成物に比較して、混
合性が極めて良好であり、電導度、成形性および機械的
強度にすぐれている。
The highly conductive polymer composition obtained by the method of the present invention contains an aniline polymer and 7! [Compared to a composition made by merely mechanically mixing a thermoplastic material and a thermoplastic polymer powder, the composition has extremely good mixability, and has excellent electrical conductivity, moldability, and mechanical strength.

本発明の高電導性重合体組成物は、電池電極材$:lま
たはコンデンサー材料として有用である。
The highly conductive polymer compositions of the present invention are useful as battery electrode materials or capacitor materials.

〔実施例〕〔Example〕

以下、実施例および比較例をあげて本発明を更に詳細に
説明する。なお、各個における成形体の物性値は表に示
した。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. The physical property values of each molded article are shown in the table.

実施例1 攪拌機を備えた1fJの三つロフラスコに、1N−塩酸
水溶液500m、アニリン20g(0,22モル)、ケ
ッチェンブラック2.0g、1度0.939/cm3、
MFRs、o#、/10分の直鎖状低密度ポリエチレン
粉末4.Ogを仕込み、40℃の温度で十分攪拌しなが
ら過硫酸アンモニウム66.7g< 0.29モル)を
加えて4時間重合を行なった。
Example 1 In a 1 fJ three-neck flask equipped with a stirrer, 500 m of 1N hydrochloric acid aqueous solution, 20 g (0.22 mol) of aniline, 2.0 g of Ketjen black, 0.939/cm3 per degree,
MFRs, o#, /10 min linear low density polyethylene powder4. After charging Og, 66.7 g of ammonium persulfate (<0.29 mol) was added with sufficient stirring at a temperature of 40° C., and polymerization was carried out for 4 hours.

次いで、系中にアンモニア水を加えて中和後、濾過し、
500 dの水で3回洗浄してから80℃で減圧乾燥し
て、24gの電導性重合体組成物を得た。
Next, add aqueous ammonia to the system to neutralize it, and then filter it.
After washing three times with 500 d of water and drying under reduced pressure at 80° C., 24 g of a conductive polymer composition was obtained.

得られた重合体組成物中のケッチェンブラックの割合は
8重量%、直鎖状低密度ポリエチレンの割合は17重量
%であった。この?l!導性重合体組成物を圧力100
1(9/α2、温度100℃で熱プレスして厚さが1履
の成形体を作製した。
The proportion of Ketjen black in the obtained polymer composition was 8% by weight, and the proportion of linear low density polyethylene was 17% by weight. this? l! The conductive polymer composition was heated to a pressure of 100
1 (9/α2) and a temperature of 100° C. to produce a molded product with a thickness of 1 shoe.

実施例2 実施例1において、アニリンの代わりにN−メチルアニ
リンを使用し、ケッチェンブラックの代わりに銅粉末を
使用し、直鎖状低密度ポリエチレン粉末の代わりにエチ
レン−プロピレン共重合体(プロピレンユニットが35
モル%、MFR2,09/10分)を使用した以外は、
実施例1と同様に重合および後処理を行なって、24g
の重合体組成物を得た。得られた重合体組成物中の銅粉
末の割合は8重量%、エチレン−プロピレン共重合体の
割合は17重耐%であった。
Example 2 In Example 1, N-methylaniline was used instead of aniline, copper powder was used instead of Ketjenblack, and ethylene-propylene copolymer (propylene) was used instead of linear low-density polyethylene powder. 35 units
mol%, MFR2,09/10 min) was used.
Polymerization and post-treatment were carried out in the same manner as in Example 1, and 24 g
A polymer composition was obtained. The proportion of copper powder in the obtained polymer composition was 8% by weight, and the proportion of ethylene-propylene copolymer was 17% by weight.

比較例1 実施例1でケッチェンブラックおよび直鎖状低密度ポリ
エチレンを使用しなかった以外は、実施例1と同様に重
合および後処理を行なって197の粉末状ポリアニリン
を得た。この粉末状ポリアニリン9.Og、ケッチェン
ブラック1.0g、直鎖状低密度ポリエチレン(実施例
1と同製品)  2.0!Jとを乳鉢中で混合して電導
性重合体組成物を得た。
Comparative Example 1 Polymerization and post-treatment were carried out in the same manner as in Example 1, except that Ketjenblack and linear low-density polyethylene were not used, to obtain 197 powdered polyaniline. This powdered polyaniline9. Og, Ketjenblack 1.0g, linear low density polyethylene (same product as Example 1) 2.0! J and were mixed in a mortar to obtain a conductive polymer composition.

この組成物を実施例1と同様な方法で加熱加圧して成形
体を作製した。なお、電導性重合体組成物中のケッチェ
ンブラックの割合は8重量%、直鎖状低書度ポリエチレ
ンの割合は17重量%であった。
This composition was heated and pressed in the same manner as in Example 1 to produce a molded body. The proportion of Ketjenblack in the conductive polymer composition was 8% by weight, and the proportion of linear low-density polyethylene was 17% by weight.

比較例2 比較例1でケッチェンブラックの代わりに銅粉末1.0
9を使用し、直鎖状ポリエチレンの代わりにエチレン−
プロピレン共重合体(実施例2ど同製品)2.09を使
用した以外は比較例1と同様の方法で成形体を作製した
Comparative Example 2 Copper powder 1.0 was used instead of Ketjen black in Comparative Example 1.
9, and instead of linear polyethylene, ethylene-
A molded body was produced in the same manner as in Comparative Example 1, except that 2.09 g of the propylene copolymer (same product as Example 2) was used.

注)折り曲げ強度:成形体から長さ4α、111cmの
シートを切り出し、 公知の折り曲げ強度測定 法で測定 電気伝導度:四端子法にて測定 特許出願人  昭和電工株式会社 株式会社 日立製作所
Note) Bending strength: Cut out a sheet with a length of 4α and 111 cm from the molded body, and measure it using a known bending strength measurement method.Electrical conductivity: Measure it using the four-probe method.Patent applicant: Showa Denko K.K., Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 一般式 ▲数式、化学式、表等があります▼ 〔但し、式中R_1〜R_6は同一でも異なってもよく
、ハロゲン、水素原子、アミノ基、ニトロ基、炭素数が
10以下のアルキル基、炭素数が10以下のアルコキシ
基、アリル基または炭素数が6〜10のアリール基を示
す。〕 で表わされるアニリン系モノマーを導電性材料および熱
可塑性重合体粉末の存在下で重合させることを特徴とす
る高電導性重合体組成物の製造方法。
[Claims] General formula ▲ Numerical formula, chemical formula, table, etc. ▼ [However, in the formula, R_1 to R_6 may be the same or different, and include halogen, hydrogen atom, amino group, nitro group, and carbon number of 10 or less represents an alkyl group, an alkoxy group having 10 or less carbon atoms, an allyl group, or an aryl group having 6 to 10 carbon atoms. ] A method for producing a highly conductive polymer composition, which comprises polymerizing an aniline monomer represented by the following in the presence of a conductive material and a thermoplastic polymer powder.
JP10085486A 1986-05-02 1986-05-02 Production of highly electrically conductive polymer composition Pending JPS62257968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085486A JPS62257968A (en) 1986-05-02 1986-05-02 Production of highly electrically conductive polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10085486A JPS62257968A (en) 1986-05-02 1986-05-02 Production of highly electrically conductive polymer composition

Publications (1)

Publication Number Publication Date
JPS62257968A true JPS62257968A (en) 1987-11-10

Family

ID=14284896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085486A Pending JPS62257968A (en) 1986-05-02 1986-05-02 Production of highly electrically conductive polymer composition

Country Status (1)

Country Link
JP (1) JPS62257968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962675B2 (en) 1999-05-10 2005-11-08 California Institute Of Technology Use of spatiotemporal response behavior in sensor arrays to detect analytes in fluids
US7122152B2 (en) 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US8394330B1 (en) * 1998-10-02 2013-03-12 The California Institute Of Technology Conductive organic sensors, arrays and methods of use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394330B1 (en) * 1998-10-02 2013-03-12 The California Institute Of Technology Conductive organic sensors, arrays and methods of use
US6962675B2 (en) 1999-05-10 2005-11-08 California Institute Of Technology Use of spatiotemporal response behavior in sensor arrays to detect analytes in fluids
US7122152B2 (en) 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US7595023B2 (en) 1999-05-10 2009-09-29 The California Institute Of Technology Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

Similar Documents

Publication Publication Date Title
Rannou et al. Ageing of PANI: chemical, structural and transport consequences
JPH0657104A (en) Thermoplastic conductive polymer mixture and its use
JPS6058430A (en) Manufacture of electroconductive powdery pyrrole polymer
WO1989007323A1 (en) Production of base-type conducting polymers
US5206297A (en) Electrically conductive moulding compositions and fillers from polyheteroaromatic compounds and polymeric sulfates
KR101623195B1 (en) Preparation method of conductive polymer nano-marterial
JPS62257968A (en) Production of highly electrically conductive polymer composition
JPH0673270A (en) Conductive plastic composition and its use
JPS6295343A (en) Production of highly electrically conductive polymer composition
JPH04268375A (en) Polyamide composite
JPS5898308A (en) Polymeric organic electroconductors treated with concentrated solution and manufacture
EP0455222B1 (en) Production process of polyaniline derivatives
JPS5957741A (en) Method of processing conductive pyrrole polymer and shape and multilayer material which can be manufactured on basis othe method
CN104479190A (en) Preparation method of medium-density polyethylene/graphene/polyaniline ternary composite conductive functional material
JPS63199228A (en) Thermosetting resin raw material composition
Panzik et al. Polyampholyte synthesis by cyclopolymerization
JPH0832815B2 (en) Polymer composition
JPS62168B2 (en)
Gal et al. Synthesis and Properties of Poly (2-ethynyl-N-propargylpyridinium bromide)
JPH0665318A (en) Sulfated polyvinyl phenol, composition containing sulfated polyvinyl phenol, and use thereof
JPH0397758A (en) Modification of electrical conductivity of molded article of resin
JPH07118370A (en) Fine pyrrole polymer particle and production thereof
JPH07207021A (en) Polyaniline derivative and its production
JP2003192786A (en) Method for preparing low-molecular-weight polyaniline and product prepared thereby
JPS62131029A (en) Production of aniline polymer