JPS62255113A - Manufacture of film of liquid crystal - Google Patents

Manufacture of film of liquid crystal

Info

Publication number
JPS62255113A
JPS62255113A JP61098898A JP9889886A JPS62255113A JP S62255113 A JPS62255113 A JP S62255113A JP 61098898 A JP61098898 A JP 61098898A JP 9889886 A JP9889886 A JP 9889886A JP S62255113 A JPS62255113 A JP S62255113A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
crystal polymer
cooling drum
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098898A
Other languages
Japanese (ja)
Inventor
Seiji Sakamoto
坂本 征二
Yoshiki Sato
嘉記 佐藤
Narihiro Masuda
成裕 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP61098898A priority Critical patent/JPS62255113A/en
Publication of JPS62255113A publication Critical patent/JPS62255113A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To reduce neck-in effect or the variability in thickness and obtain a monoaxially orientated film smoothly by a method wherein the film is contacted closely to a rotary cooling drum by employing the method of static electricity impressing cooling. CONSTITUTION:Liquid crystal polymer is extruded out of an extruder so as to obtain the shape of a film and a film, orientated into the flow direction of the polymer, is obtained by employing static electricity impressing cooling method. In this case, a rotary cooling drum, provided with a mirror surface, is arranged immediately below a slit and an air gap is provided. On the other hand, a positive electrode or a tungsten wire, for example, is suspended on the upper surface of the rotary cooling drum orthogonally to the direction of the flow of the film in order to impress an electrostatic charge and, then, a DC voltage is impressed. The amount of extrusion is controlled and the speed of the rotary cooling drum is increased gradually whereby the film is obtained by melting orientation. In this case, the specific resistance of the liquid crystal polymer upon melting is 5X10<8>OMEGA.cm or less and the sectional area of the film after the melting orientation is 1/3-1/100 as compared with the same before the melting orientation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶ポリマーからフィルムを得る方法に関する
。更に詳しくは機械的強度及び平面性に優れた実質的に
一軸方向に配向した液晶ポリマーから成るフィルムを効
率良く得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for obtaining films from liquid crystal polymers. More specifically, the present invention relates to a method for efficiently obtaining a film made of a substantially uniaxially oriented liquid crystal polymer having excellent mechanical strength and flatness.

〔従来の技術〕[Conventional technology]

従来より高強度、高ヤング率の樹脂成型品を与える素材
として溶融異方性を示すポリマー、即ち液晶ポリマーが
知られている。例えば特開昭ダブ−クコ3デ3号公1、
[開昭36−コ/コク号公報、特開昭、!t?−jAコ
3よ号公報等に記載されたポリマーは、ある温度以上で
は流動性を有すると共に光学的異方性、即ち液晶特性を
示すことが示されている。
BACKGROUND ART Polymers exhibiting melt anisotropy, ie, liquid crystal polymers, have been known as materials for producing resin molded products with high strength and high Young's modulus. For example, JP-A-Sho Dub-Cuco 3 De No. 3 Public 1,
[Kokai 36-ko/Koku No. Publication, JP-A-Sho,! T? It has been shown that the polymers described in Japanese Patent No. 3-JA Co., Ltd. and the like have fluidity and exhibit optical anisotropy, that is, liquid crystal properties, above a certain temperature.

そしてこれらのポリマーはいわゆる自己補強性を有して
おり、繊維又は成型品として有用である他フィルムとし
て利用し得ることもまた開示されている。
It is also disclosed that these polymers have so-called self-reinforcing properties and can be used as films in addition to being useful as fibers or molded articles.

かかる液晶ポリマーからフィルムを得る最も簡便な方法
の一つは例えば特開昭!g−3/り/l号公報に記載さ
れているように押出機ダイススリットからポリマーを溶
融押出し薄膜とする方法である。。
One of the simplest methods for obtaining films from such liquid crystal polymers is, for example, disclosed in JP-A-Sho! This is a method of melt-extruding a polymer into a thin film through a die slit of an extruder as described in Japanese Patent Application No. g-3/ri/l. .

この方法は簡便で工業的容易に実施し得る方法であるが
、本発明者らは、かかる方法によシ得られるフィルムの
機械的強度を増すため溶融ポリマーの流れの方向に張力
をかけて延伸する、即ち溶融延伸を行なおうとすると大
きな問題点が生じることを知見した。
Although this method is simple and can be easily implemented industrially, the present inventors have developed a method for stretching the molten polymer by applying tension in the flow direction of the molten polymer in order to increase the mechanical strength of the film obtained by this method. It has been found that a major problem arises when attempting to perform melt-stretching.

即ち、通常かかる操作を行なうに際しては、ダイススリ
ットの下方又は側方に回転冷却ドラムを配置し、溶融延
伸したフィルムを回転冷却ドラム上で冷却、固化せしめ
るが、この場合引落し比を大きくするに従い延伸フィル
ムのドラムへの固着点が不安定になると共にいわゆるネ
ックイン効果が顕著にガる。また得られる延伸フィルム
の厚みむらも大きくなってしまう。
That is, when performing such an operation, a rotating cooling drum is usually placed below or to the side of the die slit, and the melt-stretched film is cooled and solidified on the rotating cooling drum. The point at which the stretched film is fixed to the drum becomes unstable and the so-called neck-in effect becomes noticeable. Moreover, the thickness unevenness of the obtained stretched film also becomes large.

このネックイン効果は通常の熱可塑性樹脂例えばポリエ
チレンテレフタレートを製膜する場合にも認められるが
、液晶ポリマーを出発原料として機械的特性を向上させ
るため溶融延伸により高度に一軸配向したフィルムを得
ようとした場合には、特に顕著で押出し物は幅方向に収
縮し端部域の厚みが大きくなってしまう。
This neck-in effect is also observed when forming films from ordinary thermoplastic resins such as polyethylene terephthalate, but attempts have been made to obtain highly uniaxially oriented films by melt stretching to improve mechanical properties using liquid crystal polymers as starting materials. In this case, the extrudate shrinks in the width direction, which is particularly noticeable, and the thickness of the end region increases.

従来高度に溶融延伸した液晶ポリマーを冷却、固化せし
める手段としては、特開昭!rg−、3/7/lj号公
報に記載されているように冷却ロール、空気吹込または
水冷などが知られているが、上記ネックイン効果を軽減
させるだめの具体的な手段については一切開示されてい
ない。
As a method for cooling and solidifying liquid crystal polymers that have conventionally been highly melted and stretched, JP-A-Sho! Although cooling rolls, air blowing, water cooling, etc. are known as described in Publication No. RG-, 3/7/LJ, no specific means for reducing the neck-in effect is disclosed at all. Not yet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、本発明の課題は液晶ポリマーを用いて溶融延伸
法により高度に一軸配向したフィルムを得るに際し、延
伸フィルムの回転冷却ドラムへの十分な固定を保証しネ
ックインを軽減する方法を提供することにある。
Therefore, an object of the present invention is to provide a method for ensuring sufficient fixation of the stretched film to a rotating cooling drum and reducing neck-in when obtaining a highly uniaxially oriented film using a melt stretching method using a liquid crystal polymer. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

この課題は、本発明によればいわゆる静電印加冷却法を
適用することにより解決することができる。
According to the invention, this problem can be solved by applying a so-called electrostatic cooling method.

即ち本発明の要旨は、溶融押出した液晶ポリマーをダイ
ススリットと回転冷却ドラムとの間で溶融延伸し、ポリ
マーの流れ方向に高度に配向したフィルムを得るに際し
、該フィルムを静電印加冷却法を用いて回転冷却ドラム
に密着させることを特徴とする液晶ポリマーの製膜方法
に存する。
That is, the gist of the present invention is to melt-stretch a melt-extruded liquid crystal polymer between a die slit and a rotating cooling drum to obtain a film that is highly oriented in the flow direction of the polymer, and to apply an electrostatic cooling method to the film. The present invention relates to a method for forming a film of a liquid crystal polymer, which is characterized in that the film is formed in close contact with a rotating cooling drum using a liquid crystal polymer.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明でいう液晶ポリマーとは光学異方性溶融物を形成
する性質のあるポリマーを指し、例えば完全芳香族ポリ
エステル、芳香族−脂肪族ポリエステル、芳香族ポリア
ゾメチン、芳香族ポリエステル・カーボネート及び芳香
族ポリエステルアミドの一部がとれに該当する。
The liquid crystal polymer used in the present invention refers to a polymer that has the property of forming an optically anisotropic melt, such as fully aromatic polyester, aromatic-aliphatic polyester, aromatic polyazomethine, aromatic polyester/carbonate, and aromatic polyester/carbonate. A part of polyesteramide falls under this category.

これらは溶融状態におけるポリマーがqooに交差した
偏光子を備えた光学系において偏光を通過させる性質を
有しており、具体的にはポリエチレンテレフタレート及
び/又はポリエチレンナフタレートとp−ヒドロキシ安
息香酸との共重合体を典型的な例として挙げられ、るが
もちろんこれらに限定される訳ではない。
These polymers in a molten state have the property of passing polarized light in an optical system equipped with crossed polarizers. A typical example is a copolymer, but the invention is not limited thereto.

本発明における最大の特徴は、液晶ポリエステルから溶
融延伸法により高度に実質的に一軸配向したフィルムを
得るに際し、必然的に生起するネックイン効果を低減さ
せるため静電印加冷却法を用いる点にある。
The greatest feature of the present invention is that an electrostatic cooling method is used to reduce the neck-in effect that inevitably occurs when a highly substantially uniaxially oriented film is obtained from liquid crystalline polyester by a melt-stretching method. .

かかる静電印加冷却法とは例えば特公昭37−41’I
l1号公報に記載されているように、ダイスより押出さ
れたフィルム状の溶融重合体に静電荷を付与せしめ回転
冷却ドラムに密着、固化せしめる方法である。
Such an electrostatic application cooling method is, for example, disclosed in Japanese Patent Publication No. 37-41'I.
As described in Japanese Patent Application No. 11, this is a method in which a film-like molten polymer extruded from a die is given an electrostatic charge and brought into close contact with a rotating cooling drum to solidify it.

かかる静電印加冷却法は溶融時光学的に等方性であるポ
リエチレンテレフタレート等については既に広く適用さ
れているところであるが、光学的に異方性を示し、且つ
配向した場合には電磁気的にも異方性を示す液晶ポリマ
ーについて検討を加えた例は知られていない。
This electrostatic application cooling method has already been widely applied to polyethylene terephthalate, which is optically isotropic when melted, but when it is optically anisotropic and oriented, it is electromagnetically However, there is no known example in which a liquid crystal polymer exhibiting anisotropy has been investigated.

本発明者らは高度に配向した溶融状態にある液晶ポリマ
ーから成るフィルムの回転冷却ドラムへの固着方法につ
き鋭意検討を行なった結果、従来適用を試みられていな
い静電印加冷却法が優れた効果を発揮し得ること及び更
にある特定条件下この効果が極めて顕著であることを見
い出し本発明に至ったものである。
The present inventors have conducted intensive studies on a method for fixing a film made of a highly oriented liquid crystal polymer in a molten state to a rotating cooling drum. As a result, the electrostatic application cooling method, which has not been tried before, has an excellent effect. We have discovered that this effect can be exhibited and that this effect is extremely remarkable under certain specific conditions, leading to the present invention.

即ち、本発明によればネックイン効果を低減させること
ができ、しかも得られるフィルムの平面性を向上させる
ことができるが、この効果は液晶ポリマーの溶融時の比
抵抗が3×10”Ω・m以下、就中/×108Ω・m以
下の時、特に顕著なものとなる。
That is, according to the present invention, the neck-in effect can be reduced and the flatness of the obtained film can be improved, but this effect is only possible when the specific resistance of the liquid crystal polymer when melted is 3 x 10"Ω. It becomes particularly noticeable when the resistance is less than m, especially less than /×10 8 Ω·m.

従来液晶ポリマーの製造に際しては、かかる溶融時の比
抵抗を配慮した検討は餐されていないが、本発明者らは
この点に留意した結果、特に本発明の溶融延伸における
有効性を見い出したものである。
Conventionally, when manufacturing liquid crystal polymers, consideration has not been given to specific resistance during melting, but the present inventors have taken this point into consideration and have found that the present invention is particularly effective in melt-stretching. It is.

本発明において液晶ポリマーの溶融時の比抵抗を低減さ
せるためには液晶ポリマー中に可溶化イオンを存在せし
める必要があるが、このためには例えば次のような方法
が好ましく採用される。即ちその一つは液晶ポリマー製
造時、アルカリ金属化合物及び/又はアルカリ土類金属
化合物の一種以上を0.00 /〜3重量%程度配合し
、少くともその一部を液晶ポリマーに可溶化せしめる方
法である。かかる金属化合物としては例えば酢酸リチウ
ム、酢酸カルシウム、酢酸マグネシウム、酢酸マンガン
、酢酸亜鉛、塩化リチウム、塩化カルシウム、安息香酸
カルシウム、安息香酸バリウム等を挙げることができる
In the present invention, in order to reduce the specific resistance of the liquid crystal polymer when it is melted, it is necessary to make solubilized ions exist in the liquid crystal polymer, and for this purpose, for example, the following method is preferably employed. That is, one of them is a method of blending approximately 0.00 to 3% by weight of one or more alkali metal compounds and/or alkaline earth metal compounds during the production of the liquid crystal polymer, and at least a part of it is solubilized in the liquid crystal polymer. It is. Examples of such metal compounds include lithium acetate, calcium acetate, magnesium acetate, manganese acetate, zinc acetate, lithium chloride, calcium chloride, calcium benzoate, barium benzoate, and the like.

また別の方法として液晶ポリマー製造後上記金属化合物
の一種以上を配合し製膜に供することもできる。この方
法を採用する場合には融点Sθ℃〜3.20℃程度の金
属化合物、例えばセバシン酸亜鉛、セバシン酸鉛、セバ
シン酸カルシウム、セバシン酸マグネシウム、セバシン
酸マンガン、セバシン酸スズ、セバシン酸カドミバルミ
チン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸
マグネシウム、オレイン酸ナトリウム、オレイン酸カリ
ウム、オレイン酸マグネシウム等が特に好ましい化合物
として利用し得る0 本発明の方法が特に効果を発揮するのは高度に一軸配向
した液晶ポリマーを得る場合である。
Alternatively, after producing the liquid crystal polymer, one or more of the above metal compounds may be blended and used for film formation. When this method is adopted, metal compounds having a melting point Sθ°C to 3.20°C, such as zinc sebacate, lead sebacate, calcium sebacate, magnesium sebacate, manganese sebacate, tin sebacate, cadmivalmitic acid sebacate, etc. Magnesium, zinc stearate, magnesium stearate, sodium oleate, potassium oleate, magnesium oleate, etc. can be used as particularly preferred compounds. The method of the present invention is particularly effective for highly uniaxially aligned liquid crystal polymers. This is the case when we obtain

即ち溶融延伸条件が厳しくなればなる程、即ち溶融延伸
後のフィルムの断面積が溶融延伸前のそれに対し1/〜
1/、就中1/〜”10.0となつた時ネックイン効果
が顕著となりフィルムの平面性も悪化し、空気吹き付は
等による方法では満足すべきレベルのフィルムを得るこ
とができない。しかるに本発明者らが初めて明らかにし
た所によれば静電印加冷却法はかかる領域において特に
有用であり、且つ液晶ポリマーの溶融時の比抵抗が5×
/θ8Ω・m以下である時その効果は更に顕著なものと
なる。
In other words, the more severe the melt-stretching conditions, the more the cross-sectional area of the film after melt-stretching becomes 1/~ to that before melt-stretching.
1/, particularly 1/~''10.0, the neck-in effect becomes noticeable and the flatness of the film deteriorates, and it is not possible to obtain a film of a satisfactory level using methods such as air blowing. However, the present inventors have revealed for the first time that the electrostatic cooling method is particularly useful in such a region, and that the specific resistance of the liquid crystal polymer when melted is 5×
/θ8Ω·m or less, the effect becomes even more remarkable.

彦お溶融押出した液晶ポリマーに静電荷を付与する方法
は特に制限されるものではないが、通常例えば特公昭7
7−A/4’J号公報記載のように、フィルムの上面側
にフィルムの流れと直角方向に線状電極を配置する方法
が好ましく用いられるが勿論この方法に限定されるもの
ではガい。例えば電極の形状に関しては線状電極の他ピ
ン状電極、ブラシ状電極等でも良く、また複数の電極を
用いても良く、印加電圧に関しても正負の直流電圧の他
交流電圧も使用し得る。また電極の位置に関しても任意
の場所を採用し得る。いずれにしても本発明の趣旨を損
なわない限りその方法は特に限定されるものではない。
There are no particular restrictions on the method of imparting an electrostatic charge to the melt-extruded liquid crystal polymer, but it is usually
As described in Publication No. 7-A/4'J, a method of arranging a linear electrode on the upper surface of the film in a direction perpendicular to the flow of the film is preferably used, but the method is of course not limited to this method. For example, regarding the shape of the electrodes, in addition to linear electrodes, pin-shaped electrodes, brush-shaped electrodes, etc. may be used, and a plurality of electrodes may be used. Regarding the applied voltage, in addition to positive and negative DC voltages, alternating current voltages may also be used. Further, any position of the electrode can be adopted. In any case, the method is not particularly limited as long as it does not impair the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、これ壕で液晶ポリ
マーを溶融延伸しポリマーの流れの方向に高度に配向し
たフィルムを得るに際し重大な障害と々つていたネック
イン効果や厚みむらを低減させるととができ、極めて円
滑に一軸延伸フイルムを得ることができる。
As detailed above, according to the present invention, the neck-in effect and thickness unevenness, which have been serious obstacles when melting and stretching a liquid crystal polymer in a trench to obtain a film that is highly oriented in the direction of polymer flow, can be solved. By reducing this, it is possible to obtain a uniaxially stretched film extremely smoothly.

そしてこの効果は液晶ポリマーの溶融時の比抵抗がある
特定値以下の時顕著であること、また溶融延伸条件が厳
しい領域において特に効果的でおることを知見したもの
であってその意義は大きい。
It has been found that this effect is remarkable when the specific resistance of the liquid crystal polymer during melting is below a certain value, and that it is particularly effective in areas where melt-stretching conditions are severe, and this is of great significance.

〔実施例〕〔Example〕

以下、本発明を実施例を挙げて更に詳しく説明するが、
本発明はその要旨を越えない限υ以下の実施例に限定さ
れるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples without exceeding the gist thereof.

なお本発明における諸物件の測定は次の方法により行な
った。また実施例中「部」とあるは「重量部」を示す。
In addition, measurements of various objects in the present invention were performed by the following method. In addition, "parts" in the examples indicate "parts by weight."

(1)  溶融時の比抵抗;ブリティッンージターナル
オプ アブ2イド フィジックス (Brit、 J、
Appl。
(1) Specific resistance during melting;
Appl.

Phys、)  第77巻、第1/’Iデ〜//kl1
頁(/ ? A 4年)に記載しである方法。但しこの
場合ポリマー組成物の溶融時の温度を300℃とし、直
流Jooovを印加した直後の値を溶融時の比抵抗とす
る。
Phys,) Volume 77, No. 1/'Ide~//kl1
The method is described on page (/?A 4th year). However, in this case, the temperature at the time of melting the polymer composition is 300° C., and the value immediately after applying DC Jooov is taken as the specific resistance at the time of melting.

(2)  フィルムの機械的強度;東洋ボールドウィン
−テンシロン(UTM−■)を用いて測定した。サンプ
ルを幅/11n、長さ/θ譚に切り出し、チャック間隔
をj(mとし、1otyrv−の引張速度でポリマーの
流れ方向のヤング率を測定した。
(2) Mechanical strength of film: Measured using Toyo Baldwin-Tensilon (UTM-■). The sample was cut into a width of 11 nm and a length of θ, and the Young's modulus of the polymer in the flow direction was measured at a tensile speed of 1 otyrv- with a chuck interval of j (m).

(3)フィルムの厚みむら;フィルムの長手方向/θm
毎のlOケ所の各々について幅方向10σ毎に70点、
合計700点のフィルム厚みを測定する。
(3) Film thickness unevenness; film longitudinal direction/θm
70 points every 10σ in the width direction for each of the 10 locations,
The film thickness is measured at a total of 700 points.

フィルム厚みの測定は安置電子製マイクロメーターを用
いて行ない、該当する箇所の周辺のフィルムを7θ枚重
ねて測定し/枚肖りに換算する。
The film thickness is measured using a micrometer made by Aki Denshi, and 7θ sheets of film around the relevant location are stacked and measured and converted to the thickness of each film.

すべての測定値のうち最大値をX、naア、最小値をX
。in、相加平均値を又とするとき一′41≦:”mi
n、−をフィルムの平面性を代表する厚みむらとするが
、この値は小さいほど良く特にO0!以下が好ましい。
The maximum value of all measured values is X, naa, the minimum value is X
. in, when the arithmetic mean value is 1′41≦:”mi
Let n, - be the thickness unevenness that represents the flatness of the film, and the smaller this value is, the better, especially O0! The following are preferred.

実施例/ (液晶ポリマーの製造) 固有粘度0.63のポリエチレンテレフタレートiq、
a部、p〜アセトキシ安息香酸/l、、2部、酢酸マグ
ネシウム0.07部、及び三酸化アンチモン0.07部
を混合し275℃の温度で反応せしめ次の組成(t/m
/n = rθ/jθ//θOモル比)を有する液晶ポ
リエステルを製造した。
Example/ (Production of liquid crystal polymer) Polyethylene terephthalate iq with an intrinsic viscosity of 0.63,
Part a, p ~ acetoxybenzoic acid/l, 2 parts, magnesium acetate 0.07 part, and antimony trioxide 0.07 part were mixed and reacted at a temperature of 275°C to form the following composition (t/m
/n = rθ/jθ//θO molar ratio) was produced.

このポリエステルの溶融時の比抵抗はg X / 0’
Ω・鋸で、またその融点は約、230℃、固有粘度は0
.A10であった。
The specific resistance of this polyester when melted is gX/0'
Ω・saw, its melting point is approximately 230℃, and its intrinsic viscosity is 0.
.. It was A10.

(フィルムの製造) 得られた液晶ポリエステルを30θ℃で幅、230+1
111クリアランス/rumのスリットを有する押出機
よりフィルム状に押し出し静電印加冷却法を用いてポリ
マーの流れ方向に配向したフィルムを得た。
(Manufacture of film) The width of the obtained liquid crystal polyester was 230+1 at 30θ℃.
A film was extruded from an extruder having slits of 111 clearance/rum and oriented in the flow direction of the polymer using an electrostatic cooling method.

この時直径300tranの鏡面を有する回転冷却ドラ
ムをスリットの真下に配置しエアーギャップを2θ咽と
した。
At this time, a rotating cooling drum having a mirror surface with a diameter of 300 tran was placed directly below the slit to form an air gap of 2θ.

また溶融ポリマーに静電荷を印加するため次の条件を採
用した。即ち、プラス電極として直径0.1mのタング
ステン線を用いこれを回転冷却ドラムの上面にフィルム
の流れと直角方向に張り、直流電圧的gK′vを印加し
た。
In addition, the following conditions were adopted to apply an electrostatic charge to the molten polymer. That is, a tungsten wire with a diameter of 0.1 m was used as a positive electrode and was stretched on the upper surface of the rotating cooling drum in a direction perpendicular to the flow of the film, and a DC voltage gK'v was applied.

押出量を調節すると共に回転冷却ドラムの速度を徐々に
増し、最終的に幅コ10m、厚さ60μのフィルムを得
た0溶融延伸により得られたこのフィルムの断面積はダ
イススリット出口の断面積の1/2oであり、局度に一
軸配向されているものであった。
By adjusting the extrusion rate and gradually increasing the speed of the rotating cooling drum, we finally obtained a film with a width of 10 m and a thickness of 60 μm.The cross-sectional area of this film obtained by melt stretching is the cross-sectional area of the exit of the die slit. It was 1/2o, and was locally uniaxially oriented.

これらの結果を得られたフィルムの機械的強度及び厚み
むらと共に第1表に示すが、いずれも充分満足し得るも
のであった。
The mechanical strength and thickness unevenness of the films obtained are shown in Table 1, and all were sufficiently satisfactory.

比較例/ 静電印加を施さない他は実施例/と同様にして厚さ10
μのフィルムを得た。この時の結果を第1表に示すがネ
ックイン効果が極めて大きく、均質なフィルムは中央部
に近い所のみに限られていた。
Comparative Example/Same as Example/ except that no electrostatic charge was applied, and the thickness was 10.
A film of μ was obtained. The results at this time are shown in Table 1, and the neck-in effect was extremely large, and the homogeneous film was limited only to the area near the center.

比較例コ 実施例/において溶融延伸フィルムの回転冷却ドラムへ
の固着方法として静電印加冷却法の代りに冷風吹付装置
(エアーナイフ)を用いた。
Comparative Example In Example 1, a cold air blower (air knife) was used instead of the electrostatic cooling method to fix the molten stretched film to the rotating cooling drum.

この場合、溶融フィルムが冷却ドラムに接触する部分に
、静電印加時と接触位置が同じになるように噴流速度J
 Om/secで吹付けた。
In this case, at the part where the molten film contacts the cooling drum, the jet velocity J
It was sprayed at Om/sec.

しかしながら、この場合もネックイン効果の低減は不充
分で得られるフィルムの厚みむらも極めて大きいもので
あった。
However, in this case as well, the neck-in effect was insufficiently reduced, and the thickness of the resulting film was extremely uneven.

実施例コ 実施例/の液晶ポリマーの代りに L/m/rr −,
20/ざ0/100である液晶ポリエステルを用いて、
引取速度を速める他は実施例/と同様にして一軸配向フ
イルムを得た。
In place of the liquid crystal polymer in Example/Example/L/m/rr −,
Using liquid crystal polyester with a ratio of 20/0/100,
A uniaxially oriented film was obtained in the same manner as in Example except that the take-up speed was increased.

得られたフィルムの形状、物性等を第1表に示すが、い
ずれも満足すべきレベルにあった。
The shape, physical properties, etc. of the obtained film are shown in Table 1, and all were at a satisfactory level.

Claims (3)

【特許請求の範囲】[Claims] (1)溶融押出した液晶ポリマーをダイススリットと回
転冷却ドラムとの間で溶融延伸し、ポリマーの流れ方向
に高度に配向したフィルムを得るに際し、該フィルムを
静電印加冷却法を用いて回転冷却ドラムに密着させるこ
とを特徴とする液晶ポリマーの製膜方法。
(1) When melt-stretching the melt-extruded liquid crystal polymer between a die slit and a rotating cooling drum to obtain a film that is highly oriented in the flow direction of the polymer, the film is rotary cooled using an electrostatic cooling method. A method for forming a liquid crystal polymer film, which is characterized in that it is brought into close contact with a drum.
(2)液晶ポリマーの溶融時の比抵抗が5×10^8Ω
・cm以下であることを特徴とする特許請求の範囲第1
項記載の液晶ポリマーの製膜方法。
(2) Specific resistance of liquid crystal polymer when melted is 5×10^8Ω
・Claim 1 characterized in that it is less than cm.
A method for forming a film of a liquid crystal polymer as described in .
(3)溶融延伸後のフィルムの断面積が、溶融延伸前の
それに対し1/3〜1/100であることを特徴とする
特許請求の範囲第1項記載の液晶ポリマーの製膜方法。
(3) The method for forming a liquid crystal polymer film according to claim 1, wherein the cross-sectional area of the film after melt-stretching is 1/3 to 1/100 of that before melt-stretching.
JP61098898A 1986-04-28 1986-04-28 Manufacture of film of liquid crystal Pending JPS62255113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098898A JPS62255113A (en) 1986-04-28 1986-04-28 Manufacture of film of liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098898A JPS62255113A (en) 1986-04-28 1986-04-28 Manufacture of film of liquid crystal

Publications (1)

Publication Number Publication Date
JPS62255113A true JPS62255113A (en) 1987-11-06

Family

ID=14231948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098898A Pending JPS62255113A (en) 1986-04-28 1986-04-28 Manufacture of film of liquid crystal

Country Status (1)

Country Link
JP (1) JPS62255113A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185116A (en) * 1989-09-29 1993-02-09 E. I. Du Pont De Nemours And Company Preparing shaped structure of polyarylate copolymers having high tensile elongation at break
US5599412A (en) * 1991-11-27 1997-02-04 Faris; Sadeg M. Method and apparatus for producing aligned cholesteric liquid crystal inks
CN113396040A (en) * 2019-02-19 2021-09-14 科林斯股份公司 Method and device for fixing the edge of an extruded material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831718A (en) * 1981-08-06 1983-02-24 セラニ−ズ・コ−ポレ−シヨン Polyaxial oriented high-performance laminate consisting of monoaxial oriented sheet of thermotropic liquid-crystal polymer
JPS6058829A (en) * 1983-09-12 1985-04-05 Nippon Telegr & Teleph Corp <Ntt> Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831718A (en) * 1981-08-06 1983-02-24 セラニ−ズ・コ−ポレ−シヨン Polyaxial oriented high-performance laminate consisting of monoaxial oriented sheet of thermotropic liquid-crystal polymer
JPS6058829A (en) * 1983-09-12 1985-04-05 Nippon Telegr & Teleph Corp <Ntt> Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185116A (en) * 1989-09-29 1993-02-09 E. I. Du Pont De Nemours And Company Preparing shaped structure of polyarylate copolymers having high tensile elongation at break
US5599412A (en) * 1991-11-27 1997-02-04 Faris; Sadeg M. Method and apparatus for producing aligned cholesteric liquid crystal inks
CN113396040A (en) * 2019-02-19 2021-09-14 科林斯股份公司 Method and device for fixing the edge of an extruded material

Similar Documents

Publication Publication Date Title
JPH10193547A (en) Heat sealable polyester film and its manufacture as well as using method
JPH08207119A (en) Production of thermoplastic resin sheet or film
JPS62255113A (en) Manufacture of film of liquid crystal
JPS6058829A (en) Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion
JPH0691747A (en) Slip sheet made of ultra-high molecular weight polyethylene and manufacture thereof
JPH11217448A (en) Polyester film
JP2000326405A (en) Production of film from thermoplastic liquid crystal polymer
JPS5889323A (en) Manufacture of film
JPH01286820A (en) Biaxially oriented polyoxymethylene film
JP2507522B2 (en) Biaxially oriented polyester film
JPS63170018A (en) Biaxially oriented polyethylene terephthalate film of favorable slit property
JPH02127022A (en) Film for twist wrapping
KR100256557B1 (en) Method for preparing polypropylene film
JPH07118433A (en) Polyester film for delivery slips
JPH01198350A (en) Biaxially oriented polyester film
JPS6374622A (en) Production of film
JP3072717B2 (en) Biaxially oriented polyester film
JP2553190B2 (en) Film and its manufacturing method
JP2661403B2 (en) Biaxially oriented thermoplastic resin film
JPH10217313A (en) Optical polycarbonate sheet and manufacture thereof
JP2001353767A (en) Method for producing polycarbonate resin film
JP2002331571A (en) Method and device for manufacturing thermoplastic film
KR100270713B1 (en) Coextruded polypropylene film
KR100215482B1 (en) Polymer film and manufacturing method thereof
JP3049107B2 (en) Flex-resistant polyarylene sulfide sheet-like molded product