JPS62252340A - Sintered glass and sintered glass ceramic - Google Patents

Sintered glass and sintered glass ceramic

Info

Publication number
JPS62252340A
JPS62252340A JP9515286A JP9515286A JPS62252340A JP S62252340 A JPS62252340 A JP S62252340A JP 9515286 A JP9515286 A JP 9515286A JP 9515286 A JP9515286 A JP 9515286A JP S62252340 A JPS62252340 A JP S62252340A
Authority
JP
Japan
Prior art keywords
glass
weight
sintered body
composition
sintered glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9515286A
Other languages
Japanese (ja)
Inventor
Masayuki Ishihara
政行 石原
Keizou Makio
槙尾 圭造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP9515286A priority Critical patent/JPS62252340A/en
Publication of JPS62252340A publication Critical patent/JPS62252340A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Abstract

PURPOSE:To obtain sintered glass or sintered glass ceramic suitable as a material for multilayer printed circuit board, by forming a powdery glass composition composed mainly of SiO2, Al2O3 and MgO or a mixture of the composition and specific aggregate and calcining the formed product. CONSTITUTION:A powdery glass composition consisting of 45-60(wt)% SiO2, 10-25% Al2O3 and 25-40% MgO is mixed with <=5% nucleation agent composed of one or more substances selected from TiO2, ZrO2, SnO2, P2O5, ZnO, As2O3, MoO3, etc. The obtained powdery mixture is optionally mixed with 5-30pts.wt. (based on 100pts. of the mixture) of at least one kind of aggregate selected from silica, cordierite, forsterite, steatite, anorthite and celsian. The produced mixture is formed and calcined at <=1,000 deg.C to obtain sintered glass or sintered glass ceramic having dense texture and low dielectric constant and suitable as a material for multilayer printed circuit board.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高集積化したLSIを多数搭載するための
多層配線基板などの絶縁材料などとして用いられ、銀、
銀−パラジウム、金などの低抵抗導体金属と同時焼成で
きるガラス焼結体およびガラスセラミック焼結体に関す
る。
[Detailed Description of the Invention] [Technical Field] This invention is used as an insulating material for multilayer wiring boards on which a large number of highly integrated LSIs are mounted.
The present invention relates to a glass sintered body and a glass ceramic sintered body that can be co-fired with low resistance conductive metals such as silver-palladium and gold.

〔背景技術〕[Background technology]

LSIを搭載する基板として、従来、次のようなものが
あった。すなわち、アルミナを主材にしてグリーンシー
トを形成し、このグリーンシート上に高融点金属(Mo
、W等)の導体配線を厚膜技術により印刷形成する。そ
のあと、このグリーンシートを貼り合わせて積層した多
層グリーンシートを約1500℃前後の高温非酸化雰囲
気中で焼成する。このようにして得られた、いわゆるア
ルミナシート多層基ヰ反である。
Conventionally, there have been the following types of substrates on which LSIs are mounted. That is, a green sheet is formed using alumina as the main material, and a high melting point metal (Mo
, W, etc.) is printed by thick film technology. Thereafter, a multilayer green sheet made by laminating these green sheets together is fired in a high-temperature non-oxidizing atmosphere at about 1500°C. The thus obtained product is a so-called alumina sheet multilayer fabric.

しかし、上述のようなアルミナを主材料とする多層配線
基板では、アルミナの高い比誘電率と、微細化配線導体
(Mo、W等の高融点金属)の高い抵抗によって、多層
配線基板 伝達時間が長くなり、高速化の要望に応え難かった。
However, in the multilayer wiring board mainly made of alumina as described above, the transfer time of the multilayer wiring board is shortened due to the high dielectric constant of alumina and the high resistance of the fine wiring conductor (high melting point metal such as Mo or W). It became long, and it was difficult to meet the demand for faster speeds.

この問題を解決するためには、高抵抗の高融点金属材料
の代わりに、低抵抗金属材料(Au、Ag、Ag  P
d、Cu等)を使って微細化配線を形成することも考え
られる。しかしながら、上記の各低抵抗金属材料は融点
が1000℃付近であり、アルミナの焼結温度よりもは
るかに低くなっている。そのため、仮に用いたとしても
、焼結以前に配線パターンが融解して表面張力で収縮し
、断線したり他の配線とつながったりするという問題が
あった。
To solve this problem, low resistance metal materials (Au, Ag, AgP
It is also conceivable to form miniaturized wiring using d, Cu, etc.). However, each of the above-mentioned low-resistance metal materials has a melting point of around 1000° C., which is much lower than the sintering temperature of alumina. Therefore, even if it were used, there was a problem that the wiring pattern would melt before sintering and shrink due to surface tension, resulting in disconnection or connection with other wiring.

この問題を解決するために、上記の低抵抗金属の融点(
1000℃前後)以下で焼成可能で、しかも、比誘電率
が低い材料が要求されている。
To solve this problem, the melting point (
There is a need for a material that can be fired at temperatures below 1000°C (about 1000°C) and has a low dielectric constant.

この要求を満たすために、ガラス、あるいはガラス粉末
焼結体(ガラス−セラミック体)の多層配線基板が提案
されている。
To meet this requirement, multilayer wiring boards made of glass or glass powder sintered bodies (glass-ceramic bodies) have been proposed.

このようなガラス粉末焼結体の具体例が、特公昭59−
22399号公報、特開昭59−178752号公報、
特公昭57−6257号公報などに記載されている。し
かし、いずれも、組成にNa、に、Li、Pbの比較的
イオン伝導性の高い元素を含んでいることから、マイグ
レーション現象が生ずる。そのため、配線基板としても
っとも重要な特性である絶縁性の劣化が生じやすいとい
う問題がある。
A specific example of such a glass powder sintered body is the
No. 22399, Japanese Patent Application Laid-open No. 178752/1983,
It is described in Japanese Patent Publication No. 57-6257. However, since both of them contain elements with relatively high ionic conductivity, such as Na, Li, and Pb, a migration phenomenon occurs. Therefore, there is a problem in that insulation, which is the most important characteristic of a wiring board, tends to deteriorate.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みて、低抵抗金属の融
点よりも低い温度での焼成で十分緻密化されており、多
層配線基板材料として用いても、マイグレーション現象
による絶縁劣化の心配がなく、しかも誘電率も低いガラ
ス焼結体およびガラスセラミック焼結体を提供すること
を目的としている。
In view of these circumstances, this invention is sufficiently densified by firing at a temperature lower than the melting point of low-resistance metals, and there is no fear of insulation deterioration due to migration phenomena even when used as a multilayer wiring board material. The object of the present invention is to provide a glass sintered body and a glass ceramic sintered body that also have a low dielectric constant.

〔発明の開示〕[Disclosure of the invention]

上記の目的を達成するために、第1の発明は、5iOz
 、Alz OzおよびMgOを主成分とするガラス組
成物の粉末の成形体を焼成してなるガラス焼結体であっ
て、前記ガラス組成物の組成は5iOzが45〜60重
量%、 Al2O,が10〜25重量%、 MgOが25〜40重量%、 Ti0z 、Zr0z 、5nOz 、P20S 、Z
nO,Asz O,およびMoO3、からなる群より選
ばれた少なくとも1種の核発生剤が5重量%以下の各割
合であることを特徴とするガラス焼結体を要旨とし、第
2の発明は、5i02、AlzOzおよびMgOを主成
分とするガラス組成物の粉末と骨材が混合されている粉
末の成形体を焼成してなるガラスセラミック焼結体であ
って、前記ガラス組成物の組成は、 Sin、が45〜60重量%、 Al2O3が10〜25重量%、 MgOが25〜40重量%、 Ti1t 、Zr0z 、Snug 、P2 O5、Z
nO1As20.およびM o 03からなる群より選
ばれた少なくとも1種の核発生剤が5重量%以下の各割
合であり、前記骨材が前記ガラス組成物100重量部に
対する割合で5〜30重量部であることを特徴とするガ
ラスセラミック焼結体を要旨とする。
In order to achieve the above object, the first invention provides 5iOz
A glass sintered body is obtained by firing a molded body of powder of a glass composition containing , AlzOz, and MgO as main components, and the composition of the glass composition is 45 to 60% by weight of 5iOz and 10% by weight of Al2O. ~25 wt%, MgO 25-40 wt%, Ti0z, Zr0z, 5nOz, P20S, Z
The gist of the present invention is a glass sintered body characterized in that the proportion of at least one nucleating agent selected from the group consisting of nO, AszO, and MoO3 is 5% by weight or less, and the second invention , 5i02, a glass ceramic sintered body obtained by firing a powder compact in which aggregate and powder of a glass composition containing AlzOz and MgO as main components are mixed, the composition of the glass composition being: Sin, 45-60% by weight, Al2O3, 10-25% by weight, MgO, 25-40% by weight, Tilt, Zr0z, Snug, P2O5, Z
nO1As20. and M o 03 in a proportion of 5% by weight or less, and the aggregate is present in a proportion of 5 to 30 parts by weight based on 100 parts by weight of the glass composition. The subject matter is a glass-ceramic sintered body characterized by the following.

以下に、第1および第2の発明の詳細な説明する。Below, the first and second inventions will be explained in detail.

上記組成範囲内の、ガラス組成物の粉末、および、この
ガラス組成物の粉末と骨材が混合されている粉末(ガラ
ス−セラミック粉末)は、900〜1000 ’Cの焼
成温度で充分緻密化を行うことができ、焼結体の主結晶
相はコーディエライトであるので、比誘電率が低く機械
的強度も大きい。
Powder of a glass composition within the above composition range and a powder in which the powder of this glass composition and aggregate are mixed (glass-ceramic powder) can be sufficiently densified at a firing temperature of 900 to 1000'C. Since the main crystal phase of the sintered body is cordierite, the dielectric constant is low and the mechanical strength is high.

また、ガラス作製時に、約1400℃以下で原料の溶融
が可能であるので、通常の溶融炉や粘土るつぼを用いる
ことができ製造上都合がよい。また、上記ガラス組成物
は、マイグレーションを起こす心配のあるNa−に−L
i−Pb等の比較的イオン伝導性の高い元素を含まない
。このため、このガラス組成物の粉末の成形体を焼成し
て得られるガラス焼結体はマイグレーションによる絶縁
劣化の心配がない。
Further, since the raw materials can be melted at a temperature of about 1400° C. or lower during glass production, a normal melting furnace or clay crucible can be used, which is convenient for production. In addition, the above glass composition is free from Na- to -L, which may cause migration.
It does not contain elements with relatively high ionic conductivity such as i-Pb. Therefore, the glass sintered body obtained by firing the molded body of the powder of this glass composition has no fear of insulation deterioration due to migration.

第1および第2の発明に用いられるガラス組成物の組成
割合が上記のように限定されるのは、次の理由による。
The reason why the composition ratio of the glass composition used in the first and second inventions is limited as described above is as follows.

S i Ozの組成割合が60重量%を越えると、焼結
温度が高くなり、1000℃以下では緻密化しない。4
5重量%を下回ると、ガラス溶融時に1500〜160
0°Cでも充分にガラス化できなかったり、仮にガラス
が得られても1000℃以下では充分に結晶化が起こら
ない。
When the composition ratio of S i Oz exceeds 60% by weight, the sintering temperature becomes high and densification does not occur below 1000°C. 4
If it is less than 5% by weight, 1500 to 160
Even at 0°C, sufficient vitrification cannot be achieved, and even if glass is obtained, sufficient crystallization does not occur at temperatures below 1000°C.

A+2offの組成割合が25重量%を越えると、焼結
できる温度が上昇して、1000℃以下の焼成温度では
十分な焼結が行えない。10重量%を下回ると、主結晶
相のコーディエライトの結晶量が減少して、ガラスの多
い焼結体となるため、比誘電率が大きくなるだけでなく
、緻密化しにくくなる。
When the composition ratio of A+2off exceeds 25% by weight, the temperature at which sintering can be performed increases, and sufficient sintering cannot be performed at a firing temperature of 1000° C. or lower. If it is less than 10% by weight, the amount of cordierite crystals as the main crystal phase decreases, resulting in a sintered body with a large amount of glass, which not only increases the dielectric constant but also makes it difficult to densify.

MgOの組成割合が40重量%を越えると、1400〜
1500℃で透明なガラスを得ることが難しくなる。ま
た、同時に、焼結温度も上昇する。25重量%を下回る
と、緻密な焼結体となり難い。
When the composition ratio of MgO exceeds 40% by weight, 1400~
It becomes difficult to obtain transparent glass at 1500°C. At the same time, the sintering temperature also increases. If it is less than 25% by weight, it will be difficult to form a dense sintered body.

核発生剤は、焼結体の結晶をより確実にα−コーディエ
ライトとするために、5重量%以下の組成割合で用いる
。核発生剤としては、7i02、Z I” Oz 、S
 n OZ 、P t O5、Z n OlMoO:l
 % Adz 03などが挙げられ、それぞれ1種ずつ
または複数種あわせて用いられる。
The nucleating agent is used at a composition ratio of 5% by weight or less in order to more reliably form the crystals of the sintered body into α-cordierite. As the nucleating agent, 7i02, Z I"Oz, S
nOZ, PtO5, ZnOlMoO:l
% Adz 03 and the like, each of which can be used singly or in combination.

核発生剤は、5重量%を越えると、結晶化速度が極めて
急速となるために、充分に緻密化しなし1焼結体となっ
てしまう。
When the nucleating agent exceeds 5% by weight, the crystallization rate becomes extremely rapid, resulting in insufficient densification and a single sintered body.

第2の発明で用いる骨材(結晶またはガラス)としては
、特に限定するものではないが、シリカ(石英、石英ガ
ラス、クリストバライトなど)、コーディエライト、フ
ォルステライト、ウオラストナイト、アルミナ、ステア
タイト、アノーサイトおよびセルジアンなどが挙げられ
、それぞれ1種ずつまたは複数種あわせて用いられる。
The aggregate (crystal or glass) used in the second invention is not particularly limited, but includes silica (quartz, quartz glass, cristobalite, etc.), cordierite, forsterite, wollastonite, alumina, steatite. , anorthite, and celsian, each of which may be used singly or in combination.

前記骨材は、焼結体の機械的強度を上昇させるばかりで
なく、比誘電率を減少させるなどの働きがある。骨材の
添加割合が前記ガラス組成物100重量部に対する割合
で30重量部を越えると、焼結体バルク内部にボアーを
多く含むようになる。5重量部を下回ると、前記働きが
認められなくなる。
The aggregate functions not only to increase the mechanical strength of the sintered body but also to decrease the dielectric constant. If the addition ratio of aggregate exceeds 30 parts by weight based on 100 parts by weight of the glass composition, a large number of bores will be included in the bulk of the sintered body. If it is less than 5 parts by weight, the above-mentioned function will not be observed.

骨材として、前記シリカ、コーディエライトなど上記比
較的イオン伝導性の高い元素を含まないものを用いるよ
うにすると、マイグレーション現象による絶縁性の劣化
が生じるおそれがない。
If aggregates that do not contain the above-mentioned elements with relatively high ion conductivity, such as the above-mentioned silica and cordierite, are used, there is no risk of deterioration of the insulation properties due to the migration phenomenon.

上記ガラス組成物−の粉末は、たとえば、重量%組成が
上記範囲内となるように各成分を配合して溶融し、この
溶融体を結晶を析出させないように急冷して透明なガラ
スを得たのち、微粉砕して得られるが、他の方法によっ
て得るようにしてもよい。ガラス組成物の粉末の粒度は
、特に限定されないが、平均粒径として1〜10μmと
するのが好ましい。平均粒径が10μmを越えると、ガ
ラス焼結体およびガラスセラミック焼結体の表面凹凸が
はげしくなり、配線基板とした場合、回路の導体精度も
悪くなることがある。また、結晶化温度が高くなること
があるので、1000℃以下の焼成では充分な結晶析出
が起こらず、結晶量の低い焼結体となるため、誘電率の
低下が望めなくなるおそれがある。同時に、機械的強度
が低くなることがあるので、実用性に欠けるおそれがあ
る。
The powder of the above-mentioned glass composition was obtained by, for example, blending each component so that the weight percent composition was within the above-mentioned range, melting the powder, and then rapidly cooling the melt so as not to precipitate crystals to obtain a transparent glass. It is then obtained by finely pulverizing it, but it may also be obtained by other methods. The particle size of the powder of the glass composition is not particularly limited, but the average particle size is preferably 1 to 10 μm. When the average particle size exceeds 10 μm, the surface unevenness of the glass sintered body and glass ceramic sintered body becomes severe, and when used as a wiring board, the conductor accuracy of the circuit may deteriorate. Furthermore, since the crystallization temperature may become high, sufficient crystal precipitation will not occur if the temperature is 1000° C. or lower, resulting in a sintered body with a low amount of crystals, so there is a possibility that a reduction in dielectric constant cannot be expected. At the same time, the mechanical strength may become low, which may lead to a lack of practicality.

他方、1μmを下回ると、ガラス組成物の結晶化速度が
早まることがあり、充分な焼結が起こるまでに、結晶化
が終了してしまうということが発生し、焼結密度が上が
りにくくなるおそれがある。
On the other hand, if it is less than 1 μm, the crystallization rate of the glass composition may accelerate, and the crystallization may end before sufficient sintering occurs, making it difficult to increase the sintered density. There is.

骨材の粒度も、特に限定はしないが、概ね上記ガラス組
成物の粒度と同等か、若干小さいめに設定するのが好ま
しい。
The particle size of the aggregate is also not particularly limited, but it is preferably set to be approximately the same as or slightly smaller than the particle size of the glass composition.

上記ガラス組成物と骨材を混合する方法は、特に限定さ
れず、湿式または乾式のいずれによっても良い。混合は
均一となるように行われるのが好ましい。
The method of mixing the glass composition and aggregate is not particularly limited, and may be wet or dry. Preferably, the mixing is uniform.

上記ガラス組成物の粉末、この粉末と骨材が混合されて
いる粉末の成形体は、たとえば、グリーンシートまたは
これを複数枚積層したものなどがあるが、これらに限る
ものではない。成形体を得るのに樹脂、溶媒などの有機
物を用いた場合には、あらかじめ前焼成を行って有機物
を除去したのちに、焼結のための焼成を行うようにする
のがよい。なお、前記有機物は特に限定されず種々のも
のが用いられる。また、有機物以外のものが用いられた
り、何も用いずに成形体を得てもよい。
Examples of the powder of the above-mentioned glass composition and the molded body of the powder in which the powder and the aggregate are mixed include, but are not limited to, green sheets or a stack of a plurality of green sheets. When an organic substance such as a resin or a solvent is used to obtain a molded body, it is preferable to perform pre-firing in advance to remove the organic substance, and then carry out firing for sintering. Note that the organic substance is not particularly limited, and various types can be used. Moreover, materials other than organic substances may be used, or a molded article may be obtained without using anything.

前記成形体を焼成する条件は、特に限定されないが、上
述の低抵抗金属材料の融点(I Q Q 0℃前後)よ
りも低い温度で焼成を行っても焼結できるので、その温
度で焼成するようにすれば、低抵抗金属材料を印刷など
して同時焼成できる。
The conditions for firing the molded body are not particularly limited, but since sintering can be performed at a temperature lower than the melting point (I Q Q around 0°C) of the above-mentioned low-resistance metal material, the molded body is fired at that temperature. By doing so, it is possible to print and simultaneously fire a low-resistance metal material.

なお、第1および第2の発明にかかる焼結体を配線基板
に用いる場合、金属材料と同時焼成する方法以外の方法
によってもよい。また、用途は、多層配線基、板などの
配線基板に限られない。
Note that when the sintered bodies according to the first and second inventions are used for wiring boards, a method other than the method of co-firing with a metal material may be used. Further, the application is not limited to wiring boards such as multilayer wiring boards and boards.

つぎに、第1および第2の発明を実施例に基づいて詳し
く説明する。
Next, the first and second inventions will be explained in detail based on examples.

第1表の実施例1〜25および比較例1〜5に示す割合
の組成となるようにガラス原料を調合し、混合後アルミ
ナ質るつぼ内に入れて約1400℃の加熱温度下で溶融
した。このようにして得られた溶融液を水中に投下して
、透明なガラス組成物(フリット)を得た。この組成物
を、湿式または乾式で、ボールミル中で粉砕して、平均
粒径1〜10μmのガラス粉末とした。
Glass raw materials were prepared to have compositions shown in Examples 1 to 25 and Comparative Examples 1 to 5 in Table 1, and after mixing, the glass materials were placed in an alumina crucible and melted at a heating temperature of about 1400°C. The melt thus obtained was dropped into water to obtain a transparent glass composition (frit). This composition was wet or dry milled in a ball mill to obtain a glass powder with an average particle size of 1 to 10 μm.

このガラス粉末と第1表に示す骨材を湿式混合してガラ
スセラミック粉末を得た。
This glass powder and the aggregate shown in Table 1 were wet mixed to obtain glass ceramic powder.

前記ガラス粉末およびガラスセラミック粉末にそれぞれ
ポリブチルメタクリレート樹脂、フタル酸ジブチル、ト
ルエン等を加え混練し、減圧下で脱泡処理してスラリー
を得た。そのあと、このスラリーを用いてドクタブレー
ド法によりフィルムシート上に0.2 am厚の連続シ
ートを作製した。これを乾燥した後、フィルムシートか
らはがし、打ち抜きして適当な大きさのグリーンシート
とした。つぎに、個々のグリーンシートにスルホールを
施し、低抵抗金属導体ペーストを用い、配線パターンを
印刷形成した。スルホールと配線パターンを形成したグ
リーンシート複数枚を積層し、プレス成形して成形体と
した。
Polybutyl methacrylate resin, dibutyl phthalate, toluene, etc. were added to the glass powder and glass ceramic powder, respectively, and kneaded, followed by defoaming treatment under reduced pressure to obtain a slurry. Thereafter, using this slurry, a continuous sheet of 0.2 am thick was produced on a film sheet by a doctor blade method. After this was dried, it was peeled off from the film sheet and punched out to obtain a green sheet of an appropriate size. Next, through-holes were formed in each green sheet, and a wiring pattern was printed using a low-resistance metal conductor paste. A plurality of green sheets with through holes and wiring patterns formed thereon were laminated and press-molded to form a molded body.

この積層グリーンシートを、室温から500℃まで2.
5℃/minの速度で昇温し、500 ’Cで2時間4
5分保持して、脱脂を充分に行った。その後、3.3℃
/mtnの速度で第1表に示した所定の焼成温度まで界
温し、この焼成温度で3時間保持して積層グリーンシー
トを焼成した。こののち、1.8℃/minの速度で4
00℃まで降温し、以後、自然眞冷して焼結体を得た。
2. This laminated green sheet is heated from room temperature to 500°C.
Raise the temperature at a rate of 5°C/min and keep at 500'C for 2 hours.
The mixture was held for 5 minutes to ensure sufficient degreasing. After that, 3.3℃
/mtn to the predetermined sintering temperature shown in Table 1, and held at this sintering temperature for 3 hours to sinter the laminated green sheet. After this, at a rate of 1.8°C/min,
The temperature was lowered to 00° C., and then naturally cooled to obtain a sintered body.

このようにして得た実施例1〜25および比較例1〜5
の焼結体について比誘電率および吸水率を測定し、その
結果を第1表に示した。比誘電率の測定は、IMHzの
周波数で行った。吸水率の測定は、JIS C−214
1に従って行った。
Examples 1 to 25 and Comparative Examples 1 to 5 thus obtained
The dielectric constant and water absorption rate of the sintered body were measured, and the results are shown in Table 1. The relative dielectric constant was measured at a frequency of IMHz. Measurement of water absorption rate is based on JIS C-214
I followed 1.

第1表で明らかなように、実施例の焼結体は、いずれも
、1000℃以下の温度で焼成されているが、比較例の
それよりも吸水率が低く、緻密であることがわかる。比
較例4の焼結体は、骨材の添加割合が上記範囲を上回っ
ているため、ポアーが多いことがうかがえる。比較例5
の焼結体は、核発生剤および骨材が含まれない粉末を焼
成しているので、焼成温度も高く比誘電率も高い。また
、吸水率も高く、焼結が不充分であることがわかる。実
施例の焼結体は比誘電率も低く電気特性が優れており、
なかでも、骨材を用いた焼結体の方の比誘電率がより低
く電気特性が優れている。また、実施例の焼結体は、い
ずれも、1000℃以下の温度で焼成されており、上記
の低抵抗金属材料の融点よりも低い温度で焼成できるこ
とがわかる。
As is clear from Table 1, the sintered bodies of the examples were all fired at a temperature of 1000° C. or lower, but they had lower water absorption and were denser than those of the comparative examples. In the sintered body of Comparative Example 4, since the addition ratio of aggregate exceeds the above range, it can be seen that there are many pores. Comparative example 5
Since the sintered body is fired from powder that does not contain a nucleating agent or aggregate, the firing temperature is high and the dielectric constant is high. Furthermore, the water absorption rate was high, indicating that sintering was insufficient. The sintered body of the example has a low dielectric constant and excellent electrical properties,
Among these, sintered bodies using aggregate have lower dielectric constants and better electrical properties. Further, all of the sintered bodies of the examples were fired at a temperature of 1000° C. or lower, which indicates that the sintered bodies can be fired at a temperature lower than the melting point of the above-mentioned low-resistance metal material.

〔発明の効果〕〔Effect of the invention〕

第1の発明のガラス焼結体は、以上にみるように、上記
の組成のガラス組成物の粉末の成形体を焼成してなるの
で、緻密で、比誘電率が小さい。
As described above, the glass sintered body of the first invention is formed by firing a molded body of powder of the glass composition having the above composition, so it is dense and has a small dielectric constant.

しかも、1000℃以下の低い温度で焼結できるので、
低抵抗金属材料を印刷するなどして同時焼成を行う多層
配線基板材料に適する。
Moreover, since it can be sintered at a low temperature of 1000℃ or less,
Suitable for multilayer wiring board materials that are printed with low-resistance metal materials and subjected to simultaneous firing.

第2の発明のガラスセラミック焼結体は、以上にみるよ
うに、上記の組成のガラス組成物の粉末と骨材からなる
粉末の成形体を焼成してなるので、緻密であり、第1の
発明のガラス焼結体よりも機械的強度が上昇し、比誘電
率がより減少する。
As described above, the glass-ceramic sintered body of the second invention is made by firing a powder compact made of the powder of the glass composition having the above composition and aggregate, and is therefore dense. The mechanical strength is increased and the dielectric constant is further reduced than the glass sintered body of the invention.

Claims (3)

【特許請求の範囲】[Claims] (1)SiO_2、Al_2O_3およびMgOを主成
分とするガラス組成物の粉末の成形体を焼成してなるガ
ラス焼結体であって、前記ガラス組成物の組成は、 SiO_2が45〜60重量%、 Al_2O_3が10〜25重量%、 MgOが25〜40重量%、 TiO_2、ZrO_2、SnO_2、P_2O_5、
ZnO、As_2O_3およびMoO_3、からなる群
より選ばれた少なくとも1種の核発生剤が5重量%以下
の各割合であることを特徴とするガラス焼結体。
(1) A glass sintered body obtained by firing a powder compact of a glass composition containing SiO_2, Al_2O_3 and MgO as main components, the composition of the glass composition being: 45 to 60% by weight of SiO_2; Al_2O_3 is 10-25% by weight, MgO is 25-40% by weight, TiO_2, ZrO_2, SnO_2, P_2O_5,
A glass sintered body characterized in that at least one nucleating agent selected from the group consisting of ZnO, As_2O_3 and MoO_3 is contained in a proportion of 5% by weight or less.
(2)SiO_2、Al_2O_3およびMgOを主成
分とするガラス組成物の粉末と骨材が混合されている粉
末の成形体を焼成してなるガラスセラミック焼結体であ
って、前記ガラス組成物の組成は、SiO_2が45〜
60重量%、 Al_2O_3が10〜25重量%、 MgOが25〜40重量%、 TiO_2、ZrO_2、SnO_2、P_2O_5、
ZnO、As_2O_3およびMoO_3からなる群よ
り選ばれた少なくとも1種の核発生剤が5重量%以下の
各割合であり、前記骨材が前記ガラス組成物100重量
部に対する割合で5〜30重量部であることを特徴とす
るガラスセラミック焼結体。
(2) A glass-ceramic sintered body obtained by firing a molded body of powder in which aggregate is mixed with powder of a glass composition containing SiO_2, Al_2O_3, and MgO as main components, the composition of the glass composition being is, SiO_2 is 45~
60% by weight, Al_2O_3 10-25% by weight, MgO 25-40% by weight, TiO_2, ZrO_2, SnO_2, P_2O_5,
At least one nucleating agent selected from the group consisting of ZnO, As_2O_3 and MoO_3 is present in a proportion of 5% by weight or less, and the aggregate is present in a proportion of 5 to 30 parts by weight based on 100 parts by weight of the glass composition. A glass ceramic sintered body characterized by the following.
(3)骨材が、シリカ、コーディエライト、フォルステ
ライト、ステアタイト、アノーサイトおよびセルジアン
からなる群より選ばれた少なくとも1種である特許請求
の範囲第2項記載のガラスセラミック焼結体。
(3) The glass ceramic sintered body according to claim 2, wherein the aggregate is at least one selected from the group consisting of silica, cordierite, forsterite, steatite, anorthite, and celsian.
JP9515286A 1986-04-24 1986-04-24 Sintered glass and sintered glass ceramic Pending JPS62252340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9515286A JPS62252340A (en) 1986-04-24 1986-04-24 Sintered glass and sintered glass ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9515286A JPS62252340A (en) 1986-04-24 1986-04-24 Sintered glass and sintered glass ceramic

Publications (1)

Publication Number Publication Date
JPS62252340A true JPS62252340A (en) 1987-11-04

Family

ID=14129817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9515286A Pending JPS62252340A (en) 1986-04-24 1986-04-24 Sintered glass and sintered glass ceramic

Country Status (1)

Country Link
JP (1) JPS62252340A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329349A (en) * 1989-06-26 1991-02-07 Mitsubishi Electric Corp Material for ceramic substrate
EP0508821A2 (en) * 1991-04-12 1992-10-14 Fujitsu Limited Process for manufacturing multi-layer glass ceramic substrate
US5369067A (en) * 1992-02-19 1994-11-29 Chichibu Cement Co., Ltd. Composite substrates and their production
JP2002121047A (en) * 2000-10-13 2002-04-23 Shinetsu Quartz Prod Co Ltd Plasma corrosion-resistant glass member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329349A (en) * 1989-06-26 1991-02-07 Mitsubishi Electric Corp Material for ceramic substrate
EP0508821A2 (en) * 1991-04-12 1992-10-14 Fujitsu Limited Process for manufacturing multi-layer glass ceramic substrate
US5369067A (en) * 1992-02-19 1994-11-29 Chichibu Cement Co., Ltd. Composite substrates and their production
JP2002121047A (en) * 2000-10-13 2002-04-23 Shinetsu Quartz Prod Co Ltd Plasma corrosion-resistant glass member
JP4614403B2 (en) * 2000-10-13 2011-01-19 信越石英株式会社 Plasma corrosion resistant glass member

Similar Documents

Publication Publication Date Title
US4812422A (en) Dielectric paste and method of manufacturing the paste
US4749665A (en) Low temperature fired ceramics
US4621066A (en) Low temperature fired ceramics
JP3387531B2 (en) Glass-based and glass-ceramic based composites
JPH04231363A (en) Conductive composition containing iolite and glass
JP3943341B2 (en) Glass ceramic composition
JPS63107838A (en) Glass-ceramic sintered body
JPS62278145A (en) Sintered material of glass ceramic
JP3678260B2 (en) Glass ceramic composition
JP3890779B2 (en) Glass ceramic composition
JPH0643258B2 (en) Dielectric material for circuit boards
JPS62252340A (en) Sintered glass and sintered glass ceramic
JPS6350345A (en) Glass ceramic sintered body
JPH10120436A (en) Glass ceramic dielectric material
JPS6379739A (en) Sintered glass ceramic body
JPS63295473A (en) Dielectric material for circuit board
JPH0758454A (en) Glass ceramic multilayered substrate
JPH05116985A (en) Ceramic substrate
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JP2500692B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JPH06199541A (en) Glass-ceramic composition
JPH0517211A (en) Substrate material and circuit substrate
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
JPS62252341A (en) Sintered glass
JP3125500B2 (en) Ceramic substrate