JPS62250671A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62250671A
JPS62250671A JP9325086A JP9325086A JPS62250671A JP S62250671 A JPS62250671 A JP S62250671A JP 9325086 A JP9325086 A JP 9325086A JP 9325086 A JP9325086 A JP 9325086A JP S62250671 A JPS62250671 A JP S62250671A
Authority
JP
Japan
Prior art keywords
oxide film
region
gate electrode
island
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9325086A
Other languages
Japanese (ja)
Other versions
JPH0575187B2 (en
Inventor
Yutaka Hatano
裕 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9325086A priority Critical patent/JPS62250671A/en
Publication of JPS62250671A publication Critical patent/JPS62250671A/en
Publication of JPH0575187B2 publication Critical patent/JPH0575187B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of leakage and latch-up and thereby to secure a normal operation, by a construction wherein an element region inside an insular region is surrounded by a P-type high-concentration impurity layer, while an oxide film having the same film thickness as a gate oxide film is provided on the insular region except the element region and under a gate electrode. CONSTITUTION:The title device has a structure wherein an annular P<+> layer 6 is so provided as to surround an element region 3a separately therefrom and one end of a gate electrode 8 overlaps partially with the P<+> layer 6, while an oxide film 9 having the same film thickness as a gate oxide film 7 is provided on an insular region 3 except the element region 3a and under the gate electrode 8. Therefore, a thick parasitic transistor of the oxide film is not formed in the end portion of a gate. When radiations are applied, accordingly, the leakage due to the application of radiations can be prevented from occurring between source and drain regions 4 and 5, as is the case with prior art, and therefore a transistor operates normally.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は半導体装置に関し、特に放射線の被曝を受ける
環境下で正常な動作が可能なMoSトランジスタに係わ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor device, and particularly to a MoS transistor that can operate normally in an environment exposed to radiation.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、MoSトランジスタにガンマ線等の放射線
が照射されると、酸化膜中に固定電荷が蓄積し表面準位
が生成されるため、しきい値電圧(Vtb)が負方向ヘ
シフトしチャネル移動度が劣化1ル(R、Freema
n et al、、 I E E E  Trans。
As is well known, when a MoS transistor is irradiated with radiation such as gamma rays, fixed charges accumulate in the oxide film and surface states are generated, which shifts the threshold voltage (Vtb) in the negative direction and reduces the channel mobility. is degraded by 1 Ru (R, Freema)
n et al,, I E E E Trans.

Nucl 、Sci、、N5−25.No、6.I)1
216.1978>。具体的には、放射線によりNMO
Sトランジスタのしきい値電圧は浅く、PMOSトラン
ジスタのしきい値電圧は深くなるため、プロセス温度の
低温化(G、 W、 Hut)heset at 、、
5olid  5tate  TeChnOIOQV 
p、 70゜1979)等による素子パラメータ変動の
抑制が進められている。
Nucl, Sci, N5-25. No, 6. I)1
216.1978>. Specifically, radiation causes NMO
Since the threshold voltage of an S transistor is shallow and that of a PMOS transistor is deep, lowering the process temperature (G, W, Hut) is required.
5solid 5tate TeChnOIOQV
Suppression of element parameter fluctuations due to factors such as P, 70° 1979) is progressing.

ところで、放射線によるしきい値電圧シフト量は酸化膜
厚の2〜3乗に比例する(G、F、Derbenwic
k etal、、 I E E E  Trans、 
Nucl 、 Sci、、N5−22.No、6.p2
151.1975)ため、厚いフィールド酸化膜を介し
て形成される寄生MOSトランジスタにおいては著しく
しきい値電圧が変化する。従って、ゲート端部に形成さ
れる寄生フィールドトランジスタが常時オン状態となり
、ドレイン領域とソース領域の間にリーク1!流が発生
し、正常なトランジスタが得られなくなるという問題が
生じる。
By the way, the amount of threshold voltage shift due to radiation is proportional to the second to third power of the oxide film thickness (G, F, Derbenwick
k etal,, I E E E Trans,
Nucl, Sci, N5-22. No, 6. p2
151.1975), the threshold voltage changes significantly in a parasitic MOS transistor formed through a thick field oxide film. Therefore, the parasitic field transistor formed at the end of the gate is always on, and leakage occurs between the drain and source regions. A problem arises in that a normal transistor cannot be obtained due to the occurrence of current.

また、バルクC(相補型)MOSでは、放射線は寄生サ
イリスタをオンさせ、ラッチアップのト)ツガ−となる
。しかも、放射線は入出力回路のみ卆らず内部回路にお
いてもラッチアップを引起こすが、従来内部回路までラ
ッチアップ対策を施すことは行われていなかった。
Furthermore, in a bulk C (complementary type) MOS, radiation turns on a parasitic thyristor, causing latch-up. Moreover, radiation causes latch-up not only in input/output circuits but also in internal circuits, but conventionally no latch-up measures have been taken to extend to internal circuits.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、放射線の被
曝により、ゲート端部の厚いフィールド酸化膜より構成
される寄生MoSトランジスタのしきい値電圧低下に起
因するリーク及びラッチアップを阻止し、正常な動作を
なしつる半導体装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is designed to prevent leakage and latch-up caused by a drop in threshold voltage of a parasitic MoS transistor made of a thick field oxide film at the gate end due to radiation exposure. An object of the present invention is to provide a semiconductor device that operates normally.

〔発明の概要〕[Summary of the invention]

本願筒1の発明は、P型の高濃度不純物層により島状領
域内の素子領域をこれと離間した状態で囲むとともに、
ゲート電極をその一端が高1度不純物層と部分的にオー
バーラツプするように設け、かつ素子領域を除く島状領
域上でかつゲート電極下にゲート酸化膜と同じ膜厚の酸
化膜を設けた点を主な特徴とし、寄生MOSトランジス
タのしきい値電圧低下に起因するリーク及びラッチアッ
プを阻止し、正常な動作化を図ったものである。
The invention of cylinder 1 surrounds the element region within the island-like region with a P-type high concentration impurity layer while being separated from the element region, and
The gate electrode is provided so that one end thereof partially overlaps with the high-1 degree impurity layer, and an oxide film with the same thickness as the gate oxide film is provided on the island-like region excluding the element region and under the gate electrode. The main feature is to prevent leakage and latch-up caused by a decrease in the threshold voltage of a parasitic MOS transistor, and to ensure normal operation.

本願筒2の発明は、本願筒1の発明と比べ、特にP型の
高濃度不純物層をフィールド酸化膜下ではなくフィール
ド醸化寝間の基板表面に設け、か1ゲート電極の一端を
前記高濃度不純物層まで達するように設けた点が異なり
、本願筒1の発明と1様な効果の他、工程の簡略化を得
ることを図ったものである。
The invention of the present invention 2 differs from the invention of the present invention 1 in that a particularly high-concentration P-type impurity layer is provided on the substrate surface of the field oxidation layer rather than under the field oxide film, and one end of the first gate electrode is This differs in that it is provided so as to reach the concentrated impurity layer, and in addition to achieving the same effects as the invention of cylinder 1 of the present application, it is intended to simplify the process.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図〜第3図を参照する。ここで、第1図はNMOS
トランジスタの平面図、第2図は第1図のA−A線に沿
う断面図、第3図は第1rAのB−B線に沿う断面図で
ある。
Example 1 Please refer to FIGS. 1 to 3. Here, Figure 1 shows NMOS
A plan view of the transistor, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a sectional view taken along the line BB in 1rA.

図中の1は、P型のシリコン基板である。この基板1の
表面には、フィールド酸化I!(第1図の斜線部分)2
が設けられている。このフィールド酸化112で囲まれ
た島状領域3には、N+型のソース・ドレイン領11i
4.5が互いに離間して設けられている。また、前記フ
ィールド酸化11!2の下方の前記基板表面には、環状
のP+層(第1図のX印)6が前記島状領域3内の素子
領域3aをこれと離間した状態で囲むように設けられて
いる。
1 in the figure is a P-type silicon substrate. The surface of this substrate 1 has field oxidation I! (Shaded area in Figure 1) 2
is provided. In the island region 3 surrounded by the field oxide 112, there is an N+ type source/drain region 11i.
4.5 are provided spaced apart from each other. Furthermore, on the surface of the substrate below the field oxide 11!2, a ring-shaped P+ layer (marked with It is set in.

前記島状領域3上には、ゲート酸化膜7を介してゲート
電極8が設けられている。ここで、このゲート電極8の
一端(右端)はフィールド酸化1!2上まで延出し、前
記P+層6と部分的にオーバー)ツブしている。更に、
前記フィールド酸化11!2で囲まれた前記島状鋼11
(素子領域を除く)3上でかつ前記ゲート電[8下には
、ゲート酸化WA7と同じ膜厚の酸化lll9が設けら
れている。
A gate electrode 8 is provided on the island region 3 with a gate oxide film 7 interposed therebetween. Here, one end (right end) of this gate electrode 8 extends over the field oxide 1!2 and partially overlaps the P+ layer 6. Furthermore,
Said steel island 11 surrounded by said field oxidation 11!2
An oxide layer 9 having the same thickness as the gate oxide WA7 is provided above the gate electrode 3 (excluding the element region) and below the gate electrode 8.

実施例1によれば、環状のP” 116が素子領域3a
をこれと離間した状態で囲むように設けられるとともに
、ゲート電極8の一端が前記P+層6と部分的にオーバ
ーラツプし、更に前記素子wA域3aを除く島状領域3
上でかつゲート電極8下にゲート酸化膜7と同じ、lI
厚の酸化膜9を設けた構造となっているため、ゲート端
部に酸化膜の厚い寄生トランジスタが形成されない。従
って、放射線照射を受けた場合、従来の如くソース・ド
レイン領域4.5間に放射線照射に因るリークが生ずる
ことを阻止でき、トランジスタが正常に動作する。また
、本発明を0MO8トランジスタに適用した場合、P+
層6の存在によりP型のシリコン基板1の電位がソース
電位に等しくなっているため、ラッチアップに対しても
耐性に優れ、総合的に耐放射性が向上する。
According to the first embodiment, the annular P'' 116 is the element region 3a.
The gate electrode 8 is provided so as to surround and be separated from the P+ layer 6, and one end of the gate electrode 8 partially overlaps the P+ layer 6, and an island-like region 3 excluding the element wA region 3a.
Above and below the gate electrode 8 is the same as the gate oxide film 7.
Since the structure includes the thick oxide film 9, a parasitic transistor with a thick oxide film is not formed at the gate end. Therefore, when exposed to radiation, it is possible to prevent leakage caused by radiation between the source and drain regions 4.5 as in the conventional case, and the transistor operates normally. Furthermore, when the present invention is applied to a 0MO8 transistor, P+
Since the potential of the P-type silicon substrate 1 is equal to the source potential due to the presence of the layer 6, it has excellent resistance to latch-up and improves overall radiation resistance.

実施例2 第4図〜第6図を参照する。ここで、第4図はNMo5
トランジスタの平面図、第5図は第4図のA−AIに沿
う断面図、第6因は第4図のB−B線に沿う断面図であ
る。また、実施例1と同部材は同符号を付して説明を省
略する。
Example 2 Please refer to FIGS. 4 to 6. Here, Figure 4 shows NMo5
A plan view of the transistor, FIG. 5 is a sectional view taken along line A-AI in FIG. 4, and the sixth factor is a sectional view taken along line BB in FIG. 4. In addition, the same members as in Example 1 are given the same reference numerals, and the description thereof will be omitted.

図中の21は、P型のシリコン基板1の表面に設けられ
た第1のフィールド酸化膜である。前記第1のフィール
ド酸化1121の内側の前記基板表面には、第2のフィ
ールド酸化!22.22が設けられている。この第2の
フィールド酸化膜22.22で囲まれた島状領域23に
は、N+型のソース・ドレイン領域4.5が互いに離間
して設けられている。前記第1・第2のフィールド酸化
膜21.22間の前記基板1の表面には、前記島状領域
23内の素子領域23aをこれと離間して囲むように、
一部が切欠した環状のP+層24が設けられている。前
記島状領域23上にはゲート酸化膜7を介してゲート電
極25が設けられ、該ゲート電極25の一端は前記P+
層24の端まで達している。こうした構造のNMo5ト
ランジスタにおいて、前記P+層24はゲート電極23
に対し自己整合的に形成されている。
21 in the figure is a first field oxide film provided on the surface of the P-type silicon substrate 1. As shown in FIG. The substrate surface inside the first field oxidation 1121 is provided with a second field oxidation! 22.22 is provided. In the island region 23 surrounded by the second field oxide film 22.22, N+ type source/drain regions 4.5 are provided spaced apart from each other. On the surface of the substrate 1 between the first and second field oxide films 21 and 22, a layer is formed so as to surround the element region 23a in the island region 23 at a distance therefrom.
A partially cut-out annular P+ layer 24 is provided. A gate electrode 25 is provided on the island region 23 via the gate oxide film 7, and one end of the gate electrode 25 is connected to the P+
The end of layer 24 has been reached. In the NMo5 transistor having such a structure, the P+ layer 24 is connected to the gate electrode 23.
It is formed in a self-consistent manner.

実施例2によれば、実施例1と同様、ゲート端部に酸化
膜の厚い寄生MOSトランジスタが形成されない。従っ
て、放射線照射を受けた場合、従来の如くソース、ドレ
イン領域4.5間に放射線照射に因るリークが生ずるこ
とを阻止でき、トランジスタが正常に動作する。また、
本発明をCMOSトランジスタに適用した場合、P4″
4層型4の存在によりP型のシリコン基板1の電位がソ
ース電位に等しくなっているため、ラッチアップに対し
ても耐性が優れ、総合的に耐放射性が向上する。更に、
P+層24がゲート電極25に対して自己整合的に形成
されるため、CMOSトランジスタの形成に際し、PM
OSトランジスタのP“型のソース・ドレイン領域とP
ゝ層を同一工程で形成でき、工程を簡略できる。
According to the second embodiment, similarly to the first embodiment, a parasitic MOS transistor with a thick oxide film is not formed at the gate end. Therefore, when exposed to radiation, it is possible to prevent leakage caused by radiation between the source and drain regions 4.5 as in the conventional case, and the transistor operates normally. Also,
When the present invention is applied to a CMOS transistor, P4''
Since the potential of the P-type silicon substrate 1 is equal to the source potential due to the presence of the four-layer type 4, resistance to latch-up is excellent, and radiation resistance is improved overall. Furthermore,
Since the P+ layer 24 is formed in a self-aligned manner with respect to the gate electrode 25, PM
The P" type source/drain region of the OS transistor and the
The two layers can be formed in the same process, simplifying the process.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、放射線の被曝に起因
するリーク電流、及びラッチアップを防止して正常な動
作をなしえる高信頼性の半導体装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a highly reliable semiconductor device that can prevent leakage current and latch-up caused by radiation exposure and can operate normally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係るNMO8トランジスタ
の平面図、第2図は第1図のA−A線に沿う断面図、第
3図は第1図のB−B線に沿う断面図、第4図は本発明
の実施例2に係るNMOSトランジスタの平面図、第5
図は第4図のA−A線に沿う断面図、第6図は第4図の
8−B線に沿う断面図である。 1・・・P型のシリコン基板、2.21.22・・・フ
ィールド酸化膜、3.23・・・島状領域、3a、23
a・・・素子領域、4・・・N1型のソース領域、5・
・・N+型のドレイン領域、6.24・・・P+層(高
濃度不純物層)、7・・・ゲート酸化膜、8.25・・
・ゲート電極、9・・・酸化膜。
FIG. 1 is a plan view of an NMO8 transistor according to Example 1 of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 3 is a cross-sectional view taken along line B-B in FIG. FIG. 4 is a plan view of an NMOS transistor according to the second embodiment of the present invention, and FIG.
The figure is a sectional view taken along line AA in FIG. 4, and FIG. 6 is a sectional view taken along line 8-B in FIG. 4. 1...P-type silicon substrate, 2.21.22...Field oxide film, 3.23...Island region, 3a, 23
a... Element region, 4... N1 type source region, 5...
...N+ type drain region, 6.24...P+ layer (high concentration impurity layer), 7...gate oxide film, 8.25...
- Gate electrode, 9... oxide film.

Claims (2)

【特許請求の範囲】[Claims] (1)P型の半導体基板と、この基板表面に設けられた
フィールド酸化膜と、このフィールド酸化膜で囲まれた
島状領域に互いに離間して設けられたソース・ドレイン
領域と、前記フィールド酸化膜の下方の前記基板表面に
前記島状領域内の素子領域をこれと離間した状態で囲む
ように設けられたP型の高濃度不純物層と、前記島状領
域上にゲート酸化膜を介して設けられ一端が前記高濃度
不純物層と部分的にオーバーラップするゲート電極と、
前記素子領域を除く前記島状領域上でかつゲート電極下
に設けられた前記ゲート酸化膜と同じ膜厚の酸化膜とを
具備することを特徴とする半導体装置。
(1) A P-type semiconductor substrate, a field oxide film provided on the surface of this substrate, source/drain regions provided spaced apart from each other in an island-like region surrounded by this field oxide film, and the field oxide film. A P-type high-concentration impurity layer is provided on the substrate surface below the film so as to surround the element region in the island-like region in a state that is spaced apart therefrom, and a P-type high concentration impurity layer is provided on the island-like region via a gate oxide film. a gate electrode provided with one end partially overlapping the high concentration impurity layer;
A semiconductor device comprising: an oxide film having the same thickness as the gate oxide film provided on the island region excluding the element region and under the gate electrode.
(2)P型の半導体基板と、この基板表面に設けられた
第1のフィールド酸化膜と、このフィールド酸化膜の内
側の前記基板表面に設けられた第2のフィールド酸化膜
と、この第2のフィールド酸化膜で囲まれた島状領域に
互いに離間して設けられたソース・ドレイン領域と、前
記第1・第2のフィールド酸化膜間の前記基板表面に前
記島状領域内の素子領域をこれと離間した状態で囲むよ
うに設けられたP型の高濃度不純物層と、前記島状領域
上にゲート酸化膜を介して設けられ一端が前記高濃度不
純物層まで達するゲート電極と、前記素子領域を除く前
記島状領域上で前記ゲート電極下に設けられた前記ゲー
ト酸化膜と同じ膜厚の酸化膜とを具備することを特徴と
する半導体装置。
(2) a P-type semiconductor substrate, a first field oxide film provided on the surface of this substrate, a second field oxide film provided on the surface of the substrate inside this field oxide film, and a second field oxide film provided on the surface of the substrate inside this field oxide film; a source/drain region provided spaced apart from each other in an island region surrounded by a field oxide film, and an element region in the island region on the substrate surface between the first and second field oxide films. a P-type high-concentration impurity layer provided so as to surround and be spaced apart from this, a gate electrode provided on the island-like region via a gate oxide film and having one end reaching the high-concentration impurity layer; A semiconductor device comprising: an oxide film having the same thickness as the gate oxide film provided under the gate electrode on the island-like region excluding the region.
JP9325086A 1986-04-24 1986-04-24 Semiconductor device Granted JPS62250671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325086A JPS62250671A (en) 1986-04-24 1986-04-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325086A JPS62250671A (en) 1986-04-24 1986-04-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62250671A true JPS62250671A (en) 1987-10-31
JPH0575187B2 JPH0575187B2 (en) 1993-10-20

Family

ID=14077258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325086A Granted JPS62250671A (en) 1986-04-24 1986-04-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62250671A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228174A (en) * 1988-03-08 1989-09-12 Nec Corp Semiconductor device
JPH01293667A (en) * 1988-05-23 1989-11-27 Nec Corp Mos field-effect transistor
US5144394A (en) * 1989-09-01 1992-09-01 Hitachi, Ltd. Semiconductor device and method for fabricating same
US5192993A (en) * 1988-09-27 1993-03-09 Kabushiki Kaisha Toshiba Semiconductor device having improved element isolation area
JPH07106571A (en) * 1993-10-08 1995-04-21 Nec Corp Semiconductor device
JP2007523481A (en) * 2004-02-17 2007-08-16 シリコン・スペース・テクノロジー・コーポレイション Embedded guard ring, radiation-resistant separation structure and manufacturing method thereof
WO2007108104A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Semiconductor device and its fabrication process
US8252642B2 (en) 2005-10-14 2012-08-28 Silicon Space Technology Corp. Fabrication methods for radiation hardened isolation structures
CN108231883A (en) * 2016-12-15 2018-06-29 财团法人工业技术研究院 Transistor arrangement
US10038058B2 (en) 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154570A (en) * 1984-01-24 1985-08-14 Nec Corp Semiconductor device having reinforced radiation resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154570A (en) * 1984-01-24 1985-08-14 Nec Corp Semiconductor device having reinforced radiation resistance

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228174A (en) * 1988-03-08 1989-09-12 Nec Corp Semiconductor device
JPH01293667A (en) * 1988-05-23 1989-11-27 Nec Corp Mos field-effect transistor
US5192993A (en) * 1988-09-27 1993-03-09 Kabushiki Kaisha Toshiba Semiconductor device having improved element isolation area
US5144394A (en) * 1989-09-01 1992-09-01 Hitachi, Ltd. Semiconductor device and method for fabricating same
JPH07106571A (en) * 1993-10-08 1995-04-21 Nec Corp Semiconductor device
US5498894A (en) * 1993-10-08 1996-03-12 Nec Corporation Semiconductor device
US8093145B2 (en) 2004-02-17 2012-01-10 Silicon Space Technology Corp. Methods for operating and fabricating a semiconductor device having a buried guard ring structure
JP2007523481A (en) * 2004-02-17 2007-08-16 シリコン・スペース・テクノロジー・コーポレイション Embedded guard ring, radiation-resistant separation structure and manufacturing method thereof
US8497195B2 (en) 2004-02-17 2013-07-30 Silicon Space Technology Corporation Method for radiation hardening a semiconductor device
US8729640B2 (en) 2004-02-17 2014-05-20 Silicon Space Technology Corporation Method and structure for radiation hardening a semiconductor device
US8252642B2 (en) 2005-10-14 2012-08-28 Silicon Space Technology Corp. Fabrication methods for radiation hardened isolation structures
US8278719B2 (en) 2005-10-14 2012-10-02 Silicon Space Technology Corp. Radiation hardened isolation structures and fabrication methods
WO2007108104A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Semiconductor device and its fabrication process
US10038058B2 (en) 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same
US10615260B1 (en) 2016-05-07 2020-04-07 Silicon Space Technology Corporation Method for forming FinFET device structure
CN108231883A (en) * 2016-12-15 2018-06-29 财团法人工业技术研究院 Transistor arrangement

Also Published As

Publication number Publication date
JPH0575187B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
JPS62250671A (en) Semiconductor device
JP2800702B2 (en) Semiconductor device
JPS63102264A (en) Thin film semiconductor device
JP2001284540A (en) Semiconductor device and its manufacturing method
JPS6235557A (en) Semiconductor device
JP2596340B2 (en) Semiconductor device
JPH01194349A (en) Semiconductor device
JPS62262462A (en) Semiconductor device
JPS61164265A (en) Mis type semiconductor integrated circuit device
JPH0358472A (en) Cmos semiconductor device
JPS5837989B2 (en) field effect semiconductor device
JP2970376B2 (en) Method of manufacturing complementary semiconductor device
JP2021082747A (en) Semiconductor device and integrated circuit
JPH02267970A (en) Semiconductor device
KR950003238B1 (en) Logic element structure using multi-electrode
JP2701853B2 (en) MIS type semiconductor device
JPH0712060B2 (en) Input protection device for complementary MOS device
JPH05218313A (en) Semiconductor input protective device
JPS61256757A (en) Mos type integrated circuit
JP2676769B2 (en) Semiconductor device
JPH0215672A (en) Semiconductor device
JPH03290950A (en) Semiconductor device
JPS62250672A (en) Semiconductor device
JPS63305549A (en) Complementary type mis semiconductor integrated circuit
JPH02268466A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term