JPS62242638A - Production of chlorinated ether compound - Google Patents

Production of chlorinated ether compound

Info

Publication number
JPS62242638A
JPS62242638A JP61085692A JP8569286A JPS62242638A JP S62242638 A JPS62242638 A JP S62242638A JP 61085692 A JP61085692 A JP 61085692A JP 8569286 A JP8569286 A JP 8569286A JP S62242638 A JPS62242638 A JP S62242638A
Authority
JP
Japan
Prior art keywords
acid
ethanol
chloroethoxy
mono
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085692A
Other languages
Japanese (ja)
Inventor
Satoshi Kitamura
北村 悟志
Shoji Uemura
植村 昭治
Takashi Hida
飛田 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Petrochemical Ind Co Ltd
Original Assignee
Nisso Petrochemical Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Petrochemical Ind Co Ltd filed Critical Nisso Petrochemical Ind Co Ltd
Priority to JP61085692A priority Critical patent/JPS62242638A/en
Publication of JPS62242638A publication Critical patent/JPS62242638A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for organic industries advantageously, by hydrochlorinating hydroxyl group of diethylene glycol and 2-(2'-chloroethoxy)ethanol with hydrogen chloride in the presence of a carboxylic acid such as acetic acid, adipic acid, etc. CONSTITUTION:In chlorinating hydroxyl group of an ether compound shown by formula I (R is OH or Cl), namely, diethylene glycol and 2-(2'-chloroethoxy) ethanol,, with hydrogen chloride, preferably 0.1-10wt% based on the compound shown by formula I of one or more carboxylic acids (e.g. benzoic acid, caproic acid, etc.) selected from carboxylic acid, especially 1-15C mono- or polycarboxylic acids, 6-15C alicyclic mono- or polycarboxylic acids, 7-15C aromatic mono- or polycarboxylic acids and hetero ring-containing mono- or polycarboxylic acids is present to give a chlorinated compound [e.g. 2-(2'- chloroethyoxy)ethanol, etc.] shown by formula II.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は有機工業原料として有用な塩素化エチルエーテ
ル類の有利な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to an advantageous method for producing chlorinated ethyl ethers useful as organic industrial raw materials.

「従来技術」 アルコール性水酸基を塩素化するにあたり従来から塩化
チオニル、三塩化リン、五塩化リン、オキシ塩化リン等
を用いる方法が実用化されており、これらの方法を用い
てアルキレングリコール、クロロアルキルオキシアルコ
ール等の水酸基を塩素化することもよく知られている。
"Prior art" Methods using thionyl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, etc. have been put into practical use for chlorinating alcoholic hydroxyl groups, and these methods have been used to chlorinate alkylene glycols, chloroalkyl It is also well known to chlorinate hydroxyl groups such as oxyalcohols.

しかしながら、この様な方法にあっては前述の如き塩素
化剤が高価である上に、該塩素化剤中の塩素の利用率が
低い他、毒性、取扱い上の危険性が大きいことあるいは
反応後に多量の廃棄物が発生すると云った如き欠点が存
在した。
However, in such a method, the chlorinating agent as mentioned above is expensive, the utilization rate of chlorine in the chlorinating agent is low, and there are also problems such as toxicity, high handling risks, or post-reaction There were drawbacks such as the generation of large amounts of waste.

一方、ジエチレングリコールの水酸基を塩素化し2−(
2’−クロロエトキシ)エタノールを有利に製造するに
際し、上記の如き欠点を回避するべく塩素化剤として塩
化水素を用いる方法が特開昭58−67638号公報及
び特開昭58−109441号公報に開示されている。
On the other hand, the hydroxyl group of diethylene glycol was chlorinated and 2-(
In order to advantageously produce (2'-chloroethoxy) ethanol, a method using hydrogen chloride as a chlorinating agent in order to avoid the above-mentioned drawbacks is disclosed in JP-A-58-67638 and JP-A-58-109441. Disclosed.

しかしながら、前者に用いられるジエチレングリコール
の如きエーテルにあっては、塩化水素によって主鎖が切
断され、目的とする化合物との分離が難しいエチレング
リコールがかなりの量で副生ずる傾向が著しく、目的と
する2−(2’−クロロエトキシ)エタノールの収率が
低下し好ましくなく、更に後者にあっては2−(2’−
クロロエトキシ)エタノールからこの副生グリコールを
分離することが難しいためこれを精製するためには特定
の抽出剤を用いて抽出し。
However, in the case of ethers such as diethylene glycol used for the former, there is a marked tendency for the main chain to be cleaved by hydrogen chloride, resulting in a significant amount of ethylene glycol, which is difficult to separate from the target compound, produced as a by-product. The yield of -(2'-chloroethoxy)ethanol decreases, which is undesirable, and in the latter case, 2-(2'-
Since it is difficult to separate this by-product glycol from ethanol (chloroethoxy), it must be extracted using a specific extractant to purify it.

更に蒸留を行って精製すると云った如き複雑な操作が不
可避であった。
Complicated operations such as further distillation and purification were unavoidable.

更に、この2−(2’−クロロエトキシ)エタノールを
塩化水素を用いて塩素化しジ(2−クロロエチル)エー
テルを製造する場合にも上記と同様にエチレングリコー
ルが副生じ、これを目的とする2−(2’−クロロエト
キシ)エタノールから分離することが難しがった。
Furthermore, when di(2-chloroethyl) ether is produced by chlorinating this 2-(2'-chloroethoxy)ethanol with hydrogen chloride, ethylene glycol is produced as a by-product in the same manner as above, and the desired 2 It was difficult to separate it from -(2'-chloroethoxy)ethanol.

[発明が解決しようとする問題点」 以上の点を考慮し、特定の塩素化エチルエーテルを製造
するに際し、たとえ該塩素化剤として塩化水素を用いて
もエチレングリコールの如き目的とする製品との分離が
難しい副生物が極めて少なくなり。
[Problems to be Solved by the Invention] Considering the above points, when producing a specific chlorinated ethyl ether, even if hydrogen chloride is used as the chlorinating agent, it is difficult to combine it with the target product such as ethylene glycol. By-products that are difficult to separate are extremely reduced.

従って製品の精製が容易となる方法を得るべく検討した
Therefore, we investigated ways to easily purify the product.

r問題を解決するための手段」 すなわち1本発明は下記一般式[I]にて示されるエー
テル化合物の水酸基を RC)l□CH,OCH,CI、OH−−−−−−−−
−−−[I1[ここにRは水酸基又は塩素原子を示す。
Means for Solving the Problem 1. In other words, 1. the present invention is to convert the hydroxyl group of the ether compound represented by the following general formula [I] into RC)l CH, OCH, CI, OH
--- [I1 [Here, R represents a hydroxyl group or a chlorine atom.

]塩化水素を用いて塩素化するに際し、カルボン酸を存
在させることを特徴とする下記一般式[■コにてRCI
I2CH,OCH,(Jl、(1−−−−−−一−−−
[I1][ここにRは前述と同じ。コ 示される塩素化エーテル化合物の製造方法である。
] When chlorinating using hydrogen chloride, the following general formula [■ is characterized in that a carboxylic acid is present]
I2CH, OCH, (Jl, (1-------1----
[I1] [Here, R is the same as above. This is a method for producing a chlorinated ether compound.

本発明にて使用する原料である上記の一般式[I]にて
示される化合物は具体的にはジエチレングリコール及び
2−(2’−クロロエトキシ)エタノールであり。
Specifically, the compound represented by the above general formula [I], which is a raw material used in the present invention, is diethylene glycol and 2-(2'-chloroethoxy)ethanol.

これらは本発明方法に従い塩素化され前者は2− (2
’ −クロロエトキシ)エタノール及び後者はジ(2−
クロロエチル)エーテルとなる。
These are chlorinated according to the method of the present invention, and the former is 2- (2
'-chloroethoxy)ethanol and the latter di(2-
(chloroethyl) ether.

本発明にて使用される塩素化剤は前述の如く塩化水素で
あるが、使用時にあっては単体あるいは水溶液、言い替
えるなら塩酸の形態どちらでもよいが、単体で用いる方
が目的とする生成物の選択性が向上し、好ましい。
The chlorinating agent used in the present invention is hydrogen chloride, as mentioned above, and when used, it may be used alone or in an aqueous solution, or in other words, in the form of hydrochloric acid, but it is better to use it alone to obtain the desired product. Selectivity is improved, which is preferable.

本発明で使用するカルボン酸は前述した様に。The carboxylic acids used in the present invention are as described above.

−COO11基を有するものであれば如何なるものでも
よいが、好ましくは炭素数1〜15の脂肪族モノ又はポ
リカルボン酸、炭素数6〜15の脂環族モノ又はポリカ
ルボン酸、炭素数7〜15の芳香族モノ又はポリカルボ
ン酸及びヘテロ環を持つモノ又はポリカルボン酸であり
、これらの例として蟻酸、酢酸、プロピオン酸、酪酸、
吉草酸、カプロン酸、ラウリン酸、シュウ酸、マロン酸
、アジピン酸、セバシン酸、ドデカン2酸、アクリル酸
、クロトン酸等の脂肪族カルボン酸類;シクロヘキサン
ジカルボン酸類、シクロドデカンモノカルボン酸等の脂
環族カルボン酸類;安息香酸、トルイル酸、テレフタル
酸、トリメリット酸、オキシ安息香酸類、ナフタリンカ
ルボン酸等の芳香族カルボン酸類を挙げることができる
。これらのカルボン酸残基はハロゲン原子、アルキル基
、アルコキシ基、水酸基、メルカプト基、芳香族基及び
シアノ基等で置換されたものでもよい。更に、これらの
カルボン酸として、アミノ酸;フラン、チオフェン、ピ
ロール、ピリジン等の各種複素環をもつカルボン酸も好
ましく用いられる。更に、ポリアクリル酸等のカルボン
酸分銀を持つ重合体或いはカルボン酸型各種イオン交換
樹脂、これらの酸無水物、塩化物及びエステル等の著し
く活性化された誘導体を使用することも出来る。
Any compound having 11 -COO groups may be used, but preferably aliphatic mono- or polycarboxylic acids having 1 to 15 carbon atoms, alicyclic mono- or polycarboxylic acids having 6 to 15 carbon atoms, and 7 to 15 carbon atoms. 15 aromatic mono- or polycarboxylic acids and mono- or polycarboxylic acids with heterocycles, examples of which are formic acid, acetic acid, propionic acid, butyric acid,
Aliphatic carboxylic acids such as valeric acid, caproic acid, lauric acid, oxalic acid, malonic acid, adipic acid, sebacic acid, dodecanedioic acid, acrylic acid, and crotonic acid; alicyclic acids such as cyclohexanedicarboxylic acids and cyclododecane monocarboxylic acid Examples include aromatic carboxylic acids such as benzoic acid, toluic acid, terephthalic acid, trimellitic acid, oxybenzoic acids, and naphthalene carboxylic acid. These carboxylic acid residues may be substituted with a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a mercapto group, an aromatic group, a cyano group, or the like. Furthermore, as these carboxylic acids, amino acids; carboxylic acids having various heterocycles such as furan, thiophene, pyrrole, and pyridine are also preferably used. Further, it is also possible to use polymers having a carboxylic acid fraction such as polyacrylic acid, various carboxylic acid type ion exchange resins, and highly activated derivatives thereof such as acid anhydrides, chlorides and esters.

上記のカルボン酸或は誘導体の使用量は原料である前記
一般式[I]にて示される化合物に対して0.1−1O
重景%、好ましくは0.5〜5重量ぶである。
The amount of the above carboxylic acid or derivative used is 0.1-1O based on the compound represented by the general formula [I] as a raw material.
% by weight, preferably 0.5 to 5% by weight.

本発明方法を実施するに当っては特に方法の限定はない
が1例えば前記一般式[I]式にて示される化合物中に
連続的或は断続的に塩化水素を添加する方法、同化合物
と塩化水素の混合物を反応系に供給する連続方式等を例
示することができる。又、更に、必要ならば該反応に不
活性な溶媒或は前記のカルボン酸に加えて他の添加物或
は触媒を該反応系に存在させることも可能である。
There are no particular limitations on the method in carrying out the method of the present invention, but 1. For example, a method of continuously or intermittently adding hydrogen chloride into the compound represented by the above general formula [I], Examples include a continuous system in which a mixture of hydrogen chloride is supplied to the reaction system. Furthermore, if necessary, in addition to a solvent inert to the reaction or the above-mentioned carboxylic acid, other additives or catalysts may be present in the reaction system.

用いることの出来る溶媒としてはハロゲン化炭化水素、
ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン及
びキシレン等の各種炭化水素類等を例示することができ
る。
Solvents that can be used include halogenated hydrocarbons,
Examples include various hydrocarbons such as hexane, heptane, octane, benzene, toluene, and xylene.

又、カルボン酸以外の添加物としては、反応促進のため
のルイス酸、例えばアルミニウム、亜鉛、鉄、錫、チタ
ン、アンチモン及びマグネシウム等の金属ハロゲン化物
等を例示出来る。
Examples of additives other than carboxylic acids include Lewis acids for promoting reactions, such as metal halides such as aluminum, zinc, iron, tin, titanium, antimony, and magnesium.

反応湿度は50〜150℃、特に80〜120℃が好ま
しく。
The reaction humidity is preferably 50 to 150°C, particularly 80 to 120°C.

50℃未満では反応が極めて遅く、150℃を超える温
度では不純物の副生が著しくなり、又炭化物の発生も見
られ、共に好ましくない。
At a temperature lower than 50°C, the reaction is extremely slow, and at a temperature higher than 150°C, impurity by-products are produced significantly, and carbide formation is also observed, both of which are undesirable.

反応圧力には特に限定はなく、減圧下〜加圧下の如き広
い範囲での反応が可能であるが、反応速度を考慮すれば
若干の加圧下に反応を進めることが好ましく1通常5k
g/ff1−Gの圧力以下で充分である。
There is no particular limitation on the reaction pressure, and the reaction can be carried out in a wide range from reduced pressure to increased pressure; however, in consideration of the reaction rate, it is preferable to proceed with the reaction under slightly increased pressure.1 Usually 5k
A pressure of less than g/ff1-G is sufficient.

本発明方法にあっては前述の如く塩素化剤は塩化水素で
あり、この使用量は本方法の実施態様によって変化させ
るべきである。例えば、前記一般式[■]にて示される
化合物、即ちジエチレングリコール又は2−(2’−ク
ロロエトキシ)エタノールと前述の如きカルボン酸の混
合物に塩化水素を添加する方法を想定すると、該水酸基
含有化合物のすべてが反応に供される迄塩化水素を添加
しても良いが、あまり反応を進め過ぎると、ジエチレン
グリコールからは主鎖切断によりエチレンクロルヒドリ
ンの副生が著しくなり、2−(2’−クロロエトキシ)
エタノールからは二塩化エタンの副生が著しくなる傾向
にあるので、塩化水素の添加量は反応後の目的とする生
成物及び副生物(このものも場合によっては単離するこ
とによって有用な化合物として利用される。)の組成を
考慮して決定すべきである。同様に塩化水素の添加速度
、反応温度及び反応圧力も上記組成に影響を与えるので
これらは総合して勘案し決定すべきである。
In the method of the present invention, the chlorinating agent is hydrogen chloride, as described above, and the amount used should vary depending on the embodiment of the method. For example, assuming a method in which hydrogen chloride is added to the compound represented by the general formula [■], that is, a mixture of diethylene glycol or 2-(2'-chloroethoxy)ethanol and the aforementioned carboxylic acid, the hydroxyl group-containing compound Hydrogen chloride may be added until all of the 2-(2'- chloroethoxy)
Ethane dichloride tends to be a significant by-product from ethanol, so the amount of hydrogen chloride added is determined by controlling the amount of hydrogen chloride that is produced after the reaction to produce the desired product and by-product (which can also be isolated as a useful compound in some cases). It should be determined by taking into account the composition of Similarly, the rate of addition of hydrogen chloride, reaction temperature, and reaction pressure also affect the above composition, so these should be taken into consideration when determining the composition.

かくして本発明方法に従って製造された反応混合物に塩
化水素が残存していれば、これを減圧下に追い出すか、
エチレンオキシド等の添加によってエチレンクロルヒド
リンとするか、或は塩基性の化合物によっ−て中和する
かした後蒸留等の公知方法によって目的とする2−(2
’−クロロエトキシ)エタノール或はジ(2−クロロエ
チル)エーテルを単離して製品とすればよい。
If hydrogen chloride remains in the reaction mixture thus prepared according to the method of the invention, it can be removed under reduced pressure or
The desired 2-(2
'-Chloroethoxy)ethanol or di(2-chloroethyl)ether may be isolated and used as a product.

「実施例」 以下に実施例及び比較例を挙げ本発明を更に詳しく説明
するが、これらに限定されるものではない。
"Examples" The present invention will be explained in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

尚、以下の記述に於いてr部」と記すのは特に限定のな
い限り重量部を示す。
In the following description, "r parts" indicates parts by weight unless otherwise specified.

実施例1 200容量部のガラスフラスコにジエチレングリコール
106部、酢酸1.2部を加え、温度計、攪拌機、コン
デンサーを取付けて攪拌、加熱した。フラスコ内の温度
が100℃になった時点で塩化水素ガスを1時間当り9
.6部の速度で5時間導入し1反応させた。
Example 1 106 parts of diethylene glycol and 1.2 parts of acetic acid were added to a 200-volume glass flask, and a thermometer, a stirrer, and a condenser were attached to the flask, and the flask was stirred and heated. When the temperature inside the flask reached 100°C, hydrogen chloride gas was added at 9°C per hour.
.. One reaction was carried out by introducing at a rate of 6 parts for 5 hours.

反応終了後80℃迄冷却し、系を減圧となし、100m
mHgで30分間塩化水素ガスを追いだした。この時点
での反゛応液重量は136.1部であり、これをガスク
ロマトグラフにて分析した所、 ジエチレングリコール       37.6 tzt
%2−(2’−クロロエトキシ)エタノール 28.2
 wt%エチレンクロロヒドリン     17.6 
wt%ジ(2−クロロエチル)エーテル    3.5
 wt%及び エチレングリコール        0.3 tit%
の組成でありエチレングリコールの生成が極めて少なか
った。
After the reaction was completed, the system was cooled to 80°C, the pressure was reduced, and the 100 m
Hydrogen chloride gas was driven off at mHg for 30 minutes. The weight of the reaction solution at this point was 136.1 parts, and when analyzed by gas chromatography, it was found that diethylene glycol was 37.6 tzt.
%2-(2'-chloroethoxy)ethanol 28.2
wt% ethylene chlorohydrin 17.6
wt% di(2-chloroethyl)ether 3.5
wt% and ethylene glycol 0.3 tit%
composition, and the production of ethylene glycol was extremely low.

上記結果から計算されたジエチレングリコールの転化率
は51.7%であり、 2−(2’−クロロエトキシ)
エタノールの選択率は59.6%、エチレンクロロヒド
リンの選択率は28.7%であった。
The conversion rate of diethylene glycol calculated from the above results was 51.7%, and 2-(2'-chloroethoxy)
The selectivity for ethanol was 59.6%, and the selectivity for ethylene chlorohydrin was 28.7%.

この反応液に炭酸ナトリウム2.3部を加えて過剰の塩
化水素を中和し、長さ300Wlのウィドマー型精溜塔
を用いて精溜した所、純度99.3%、エチレングリコ
ール含有率0.5%の2−(2’−クロロエトキシ)エ
タノ−ルが38.2部得られた。用いたジエチレングリ
コールに対する収率は30.7%であった。
Excess hydrogen chloride was neutralized by adding 2.3 parts of sodium carbonate to this reaction solution, and the mixture was purified using a Widmer-type rectification column with a length of 300 Wl, resulting in a purity of 99.3% and an ethylene glycol content of 0. 38.2 parts of .5% 2-(2'-chloroethoxy)ethanol were obtained. The yield based on the diethylene glycol used was 30.7%.

比較例1 酢酸の添加を行わず、実施例1をくりかえした。Comparative example 1 Example 1 was repeated without the addition of acetic acid.

反応液を分析した所、ジエチレングリコールの転化率は
45.3%、2−(2″−クロロエトキシ)エタノール
の選択率は51.8%、及びエチレンクロロヒドリンの
選択率は28.2%であった。更に、エチレングリコー
ルの含有率は3.2wt%と高かった。
Analysis of the reaction solution revealed that the conversion rate of diethylene glycol was 45.3%, the selectivity of 2-(2''-chloroethoxy)ethanol was 51.8%, and the selectivity of ethylene chlorohydrin was 28.2%. Moreover, the content of ethylene glycol was as high as 3.2 wt%.

この反応液を実施例1と同様の方法で精溜した所、2−
(2’−クロロエトキシ)エタノールが36.7部得ら
れたが、エチレングリコールの含有率は2.9%と高か
った。しかも、用いたジエチレングリコールに対する収
率は10.6%と低かった。
When this reaction solution was purified in the same manner as in Example 1, 2-
Although 36.7 parts of (2'-chloroethoxy)ethanol was obtained, the content of ethylene glycol was as high as 2.9%. Moreover, the yield based on the diethylene glycol used was as low as 10.6%.

比較例2 温度計、攪拌機、ガス導入管及び環流管を有するガラス
フラスコにジエチレングリコール32部をいれ。
Comparative Example 2 32 parts of diethylene glycol was placed in a glass flask equipped with a thermometer, a stirrer, a gas inlet tube, and a reflux tube.

液を冷却しながらガス導入管から塩化水素ガス11部を
供給し、吸収させた。次いで、100℃まで昇温後5時
間lOO℃で反応させた。その後、冷却して反応を終了
した。
While cooling the liquid, 11 parts of hydrogen chloride gas was supplied from the gas inlet pipe and absorbed. Next, the temperature was raised to 100°C, and then the reaction was carried out at 100°C for 5 hours. Thereafter, the reaction was completed by cooling.

この反応液の重量は41部であり、これをガスクロマト
グラフで分析した所。
The weight of this reaction solution was 41 parts, and it was analyzed using a gas chromatograph.

ジエチレングリコール        36.7%+t
%2−(2″−クロロエトキシ)エタノール  26.
4wt%ジ(2−クロロエチル)エーテル     3
.6wt%エチレングリコール         3.
Out%エチレンクロロヒドリン       6,9
wt%の組成であり、副生物が多量に存在した。
Diethylene glycol 36.7%+t
%2-(2″-chloroethoxy)ethanol 26.
4wt% di(2-chloroethyl)ether 3
.. 6wt% ethylene glycol 3.
Out% ethylene chlorohydrin 6,9
wt% composition, and a large amount of by-products were present.

反応液中の2−(2’−クロロエトキシ)エタノールの
収率は28.9%(対ジエチレングリコール)であった
The yield of 2-(2'-chloroethoxy)ethanol in the reaction solution was 28.9% (based on diethylene glycol).

実施例2 1000容量部のガラス製オートクレーブにジエチレン
グリコール530部、塩化アルミニウム5.0部及びア
ジピン酸5.5部を入れ、攪拌、加熱した。その後。
Example 2 530 parts of diethylene glycol, 5.0 parts of aluminum chloride, and 5.5 parts of adipic acid were placed in a 1000-volume glass autoclave, and the mixture was stirred and heated. after that.

100℃にて系内を100■/Hgまで圧力を減じ、速
やかに塩化水素ガスを60部/Hrの速度で導入し1反
応圧力を常圧とした後最大圧力1.0kg/cd−Gに
なる様、ひき続き導入し、全量159部の塩化水素ガス
を導入するのに5時間を要した。
The pressure in the system was reduced to 100 μ/Hg at 100°C, and hydrogen chloride gas was immediately introduced at a rate of 60 parts/Hr to bring the reaction pressure to normal pressure, and then the maximum pressure was increased to 1.0 kg/cd-G. It took 5 hours to continuously introduce hydrogen chloride gas in a total amount of 159 parts.

導入終了後、オートクレーブを開封し反応液をガスクロ
−マドグラフを用いて分析した所、ジエチレングリコー
ルの転化率は53.4%、2−(2ξクロロエトキシ)
エタノールの選択率は60.4%、エチレンクロロヒド
リンの選択率は27.8%そしてエチレングリコールの
含有率は0.lvt%であった。
After the introduction, the autoclave was opened and the reaction solution was analyzed using a gas chromatograph, and the conversion rate of diethylene glycol was 53.4%, 2-(2ξchloroethoxy).
The selectivity of ethanol is 60.4%, the selectivity of ethylene chlorohydrin is 27.8%, and the content of ethylene glycol is 0. lvt%.

反応液を減圧下で脱塩化水素後引続き蒸溜、精製し、2
−(2’クロロエトキシ)エタノール199.7部(純
度99.1%)を得た。この中にはエチレングリコール
は0゜2%しか含まれず、又、蒸溜時の収量への影響は
殆どなかった。このものの用いたジエチレングリコール
に対する収率は32.0%であった。
The reaction solution was dehydrochlorinated under reduced pressure and subsequently distilled and purified.
-(2'chloroethoxy)ethanol 199.7 parts (purity 99.1%) was obtained. This contained only 0.2% ethylene glycol, and it had almost no effect on the yield during distillation. The yield of this product based on the diethylene glycol used was 32.0%.

実施例3 300容量部のガラスフラスコにジエチレングリコール
106部、安息香酸3.0部を加え、これに3錦塩酸水
溶液114部を攪拌しながら加え、100℃で4時間反
応させた。反応液を分析した所、ジエチレングリコール
の転化率は35.6%、2−(2’−クロロエトキシ)
エタノールの選択率は52.6%であり、エチレングリ
コールの含有率はQ、5wt%であった。この反応液を
減圧蒸溜して、純度99.2%の2−(2’−クロロエ
トキシ)エタノール23.0部を得た。このものの用い
たジエチレングリコールに対する収率は18.5%であ
った。
Example 3 106 parts of diethylene glycol and 3.0 parts of benzoic acid were added to a 300-volume glass flask, and to this was added 114 parts of aqueous trichloric acid solution with stirring, and the mixture was reacted at 100° C. for 4 hours. Analysis of the reaction solution revealed that the conversion rate of diethylene glycol was 35.6% and 2-(2'-chloroethoxy).
The selectivity of ethanol was 52.6%, and the content of ethylene glycol was Q, 5 wt%. This reaction solution was distilled under reduced pressure to obtain 23.0 parts of 2-(2'-chloroethoxy)ethanol with a purity of 99.2%. The yield of this product based on the diethylene glycol used was 18.5%.

実施例4 実施例2と同様の反応器に2−(2’−クロロエトキシ
)エタノール623部、塩化亜鉛6.5部及びクロル酢
酸を10.0部を加え、攪拌、゛加熱した。その後、1
00℃にて系内を100mm/l1gまで圧力を減じ、
速やかに塩化水素ガスを60部/llrの速度で導入し
、反応圧力を常圧とした後最大圧力3.0kg/aJ−
Gになる様、ひき続き導入し、全:!1150部の塩化
水素ガスを導入するのに7時間を要した。
Example 4 623 parts of 2-(2'-chloroethoxy)ethanol, 6.5 parts of zinc chloride and 10.0 parts of chloroacetic acid were added to the same reactor as in Example 2, followed by stirring and heating. After that, 1
Reduce the pressure inside the system to 100mm/l1g at 00℃,
Hydrogen chloride gas was quickly introduced at a rate of 60 parts/llr, and after the reaction pressure was brought to normal pressure, the maximum pressure was 3.0 kg/aJ-
In order to become a G, we will continue to introduce all:! It took 7 hours to introduce 1150 parts of hydrogen chloride gas.

反応液を実施例1と同様に分析した所。The reaction solution was analyzed in the same manner as in Example 1.

2−(2’−クロロエトキシ)エタノールの転化率は4
6.8%。
The conversion rate of 2-(2'-chloroethoxy)ethanol is 4
6.8%.

ジ(2−クロロエチル)エーテルの選択率は62.8%
、工チレンクロロヒドリンの選択率は25.4%、及び
エチレングリコールの選択率は0.2%であった。
The selectivity of di(2-chloroethyl)ether is 62.8%
, the selectivity for engineered ethylene chlorohydrin was 25.4%, and the selectivity for ethylene glycol was 0.2%.

実施例5〜8 実施例Iと同様の反応器にジエチレングリコール106
部を入れ、第2表に示す条件で反応を行い、得られた結
果を第2表に示した。
Examples 5-8 Diethylene glycol 106 in a reactor similar to Example I
The reaction was carried out under the conditions shown in Table 2, and the obtained results are shown in Table 2.

[発明の効果」 本発明方法を用いて、水酸基含有塩素化エーテルを塩化
水素で持って塩素化しても該エーテルの主鎖の切断が少
なくなり、依って該エーテルとの分離の暑しい副生物の
生成が少なくなり、純度の高い該エーテルが収率良く得
られる。
[Effects of the Invention] Using the method of the present invention, even if a chlorinated ether containing a hydroxyl group is chlorinated with hydrogen chloride, the main chain of the ether is less likely to be cleaved, and therefore the by-products that are hot to separate from the ether are reduced. The production of the ether is reduced, and the ether with high purity can be obtained in good yield.

Claims (1)

【特許請求の範囲】 1、下記一般式[ I ]にて示されるエーテル化合物の
水酸基を RCH_2CH_2OCH_2CH_2OH_−−−[
I ] [ここにRは水酸基又は塩素原子を示す。] 塩化水素を用いて塩素化するに際し、カルボン酸を存在
させることを特徴とする下記一般式[II] RCH_2CH_2OCH_2CH_2Cl−−−[I
I] [ここにRは前述と同じ。] にて示される塩素化エーテル化合物の製造方法。 2、存在させるカルボン酸が、炭素数1乃至15の脂肪
族モノ又はポリカルボン酸、炭素数6乃至15の脂環族
モノ又はポリカルボン酸、炭素数7乃至15の芳香族モ
ノ又はポリカルボン酸及びヘテロ環を持つモノ又はポリ
カルボン酸からなる群から選ばれる1種又は2種以上の
カルボン酸である特許請求の範囲第1項記載の方法。 3、存在させるカルボン酸の量が前記一般式[ I ]に
て示される化合物に対して0.1乃至10重量%である
特許請求の範囲第1項又は第2項記載の方法。
[Claims] 1. RCH_2CH_2OCH_2CH_2OH_---[
I ] [Here, R represents a hydroxyl group or a chlorine atom. ] The following general formula [II] RCH_2CH_2OCH_2CH_2Cl --- [I
I] [Here R is the same as above. ] A method for producing a chlorinated ether compound shown in 2. The carboxylic acid to be present is an aliphatic mono- or polycarboxylic acid having 1 to 15 carbon atoms, an alicyclic mono- or polycarboxylic acid having 6 to 15 carbon atoms, or an aromatic mono- or polycarboxylic acid having 7 to 15 carbon atoms. and one or more carboxylic acids selected from the group consisting of mono- or polycarboxylic acids having a heterocycle. 3. The method according to claim 1 or 2, wherein the amount of carboxylic acid present is 0.1 to 10% by weight based on the compound represented by the general formula [I].
JP61085692A 1986-04-14 1986-04-14 Production of chlorinated ether compound Pending JPS62242638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085692A JPS62242638A (en) 1986-04-14 1986-04-14 Production of chlorinated ether compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085692A JPS62242638A (en) 1986-04-14 1986-04-14 Production of chlorinated ether compound

Publications (1)

Publication Number Publication Date
JPS62242638A true JPS62242638A (en) 1987-10-23

Family

ID=13865889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085692A Pending JPS62242638A (en) 1986-04-14 1986-04-14 Production of chlorinated ether compound

Country Status (1)

Country Link
JP (1) JPS62242638A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507526A (en) * 2004-07-21 2008-03-13 ダウ グローバル テクノロジーズ インコーポレイティド Conversion of polyhydroxylated aliphatic hydrocarbons or their esters to chlorohydrins.
JP2009007349A (en) * 2003-11-20 2009-01-15 Solvay (Sa) Method for producing dichloropropanol from glycerol wherein the glycerol comes eventually from conversion of animal fat in biodiesel production
US7557253B2 (en) 2005-05-20 2009-07-07 Solvay (Societe Anonyme) Method for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins
US7939696B2 (en) 2005-11-08 2011-05-10 Solvay Societe Anonyme Process for the manufacture of dichloropropanol by chlorination of glycerol
US8197665B2 (en) 2007-06-12 2012-06-12 Solvay (Societe Anonyme) Aqueous composition containing a salt, manufacturing process and use
US8258350B2 (en) 2007-03-07 2012-09-04 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
US8273923B2 (en) 2007-06-01 2012-09-25 Solvay (Societe Anonyme) Process for manufacturing a chlorohydrin
US8314205B2 (en) 2007-12-17 2012-11-20 Solvay (Societe Anonyme) Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol
US8378130B2 (en) 2007-06-12 2013-02-19 Solvay (Societe Anonyme) Product containing epichlorohydrin, its preparation and its use in various applications
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007349A (en) * 2003-11-20 2009-01-15 Solvay (Sa) Method for producing dichloropropanol from glycerol wherein the glycerol comes eventually from conversion of animal fat in biodiesel production
JP2012017340A (en) * 2003-11-20 2012-01-26 Solvay (Sa) Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
JP2013136643A (en) * 2004-07-21 2013-07-11 Dow Global Technologies Llc Conversion of multihydroxylated-aliphatic hydrocarbon or ester thereof to chlorohydrin
JP2008507526A (en) * 2004-07-21 2008-03-13 ダウ グローバル テクノロジーズ インコーポレイティド Conversion of polyhydroxylated aliphatic hydrocarbons or their esters to chlorohydrins.
US7557253B2 (en) 2005-05-20 2009-07-07 Solvay (Societe Anonyme) Method for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins
US7615670B2 (en) 2005-05-20 2009-11-10 Solvay (Société Anonyme) Method for making chlorohydrin in liquid phase in the presence of heavy compounds
KR100979371B1 (en) * 2005-05-20 2010-08-31 솔베이(소시에떼아노님) Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts
US7939696B2 (en) 2005-11-08 2011-05-10 Solvay Societe Anonyme Process for the manufacture of dichloropropanol by chlorination of glycerol
US8258350B2 (en) 2007-03-07 2012-09-04 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
US8273923B2 (en) 2007-06-01 2012-09-25 Solvay (Societe Anonyme) Process for manufacturing a chlorohydrin
US8378130B2 (en) 2007-06-12 2013-02-19 Solvay (Societe Anonyme) Product containing epichlorohydrin, its preparation and its use in various applications
US8399692B2 (en) 2007-06-12 2013-03-19 Solvay (Societe Anonyme) Epichlorohydrin, manufacturing process and use
US8197665B2 (en) 2007-06-12 2012-06-12 Solvay (Societe Anonyme) Aqueous composition containing a salt, manufacturing process and use
US8314205B2 (en) 2007-12-17 2012-11-20 Solvay (Societe Anonyme) Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin

Similar Documents

Publication Publication Date Title
JPS62242638A (en) Production of chlorinated ether compound
JP5359052B2 (en) Method for producing fluorine-containing monomer
JPH06219987A (en) Production of alpha-fluoro-beta-dicarbonyl compound
JP4896040B2 (en) Method for producing polymerizable hydroxydiamantyl ester compound
WO2008008406A1 (en) Process for higher purity decabromodiphenyl oxide
JP2005154379A (en) Method for producing 4,4'-divinyl-substituted aromatic compound
JP4066544B2 (en) Method for producing cyclopentenone
JP2557382B2 (en) Method for producing metabrominated bifunol
JPS604145A (en) Purification of 4-fluorophenol
JP2001187762A (en) Method for producing highly pure aromatic acid chloride
WO2017033813A1 (en) Method for producing alkenyl halide
JP3823385B2 (en) Process for producing 2,4,5-trifluoro-3-iodobenzoic acid and esters thereof
JP3259893B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoropropan-2-one
JP3814943B2 (en) Production method of dialkyl carbonate
JP2002020333A (en) Method for substituting hydroxyl group by chlorine
JPH06239796A (en) Production of vinyl halogenoacetate
JP3777407B2 (en) Method for producing carboxylic acid derivative
JP4572433B2 (en) Process for producing N-acetylhomopiperazines
JP3500895B2 (en) Method for producing 3,4-dihydroxy-5-nitrobenzaldehyde
JPS6312467B2 (en)
EP1244609B1 (en) Preparing method of 2-phenylalkanoic acid derivatives
JP3206451B2 (en) Method for producing diaryl carbonate
JP3482786B2 (en) Preparation of diaryl carbonate
JP3775883B2 (en) Protocatecaldehyde production method
JP3556862B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone