JPS62241932A - Polymer foam having antibacterial and antifungal function and its production - Google Patents

Polymer foam having antibacterial and antifungal function and its production

Info

Publication number
JPS62241932A
JPS62241932A JP8404386A JP8404386A JPS62241932A JP S62241932 A JPS62241932 A JP S62241932A JP 8404386 A JP8404386 A JP 8404386A JP 8404386 A JP8404386 A JP 8404386A JP S62241932 A JPS62241932 A JP S62241932A
Authority
JP
Japan
Prior art keywords
antibacterial
zeolite
mixture
foam
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8404386A
Other languages
Japanese (ja)
Inventor
Zenji Hagiwara
萩原 善次
Satoshi Ando
安藤 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAGIWARA GIKEN KK
MARUSAN SEISHI KK
SHINAGAWA NENRYO KK
Shinagawa Fuel Co Ltd
Kanebo Ltd
Original Assignee
HAGIWARA GIKEN KK
MARUSAN SEISHI KK
SHINAGAWA NENRYO KK
Shinagawa Fuel Co Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAGIWARA GIKEN KK, MARUSAN SEISHI KK, SHINAGAWA NENRYO KK, Shinagawa Fuel Co Ltd, Kanebo Ltd filed Critical HAGIWARA GIKEN KK
Priority to JP8404386A priority Critical patent/JPS62241932A/en
Publication of JPS62241932A publication Critical patent/JPS62241932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled nontoxic, thermally stable foam which can show both antibacterial and antifungal effects for a prolonged period of time even when used in a small amount, by heat-treating a mixture of a specified activated fine zeolite powder with a polymer and foaming this mixture. CONSTITUTION:A porous natural or synthetic zeolite having an ion exchange capacity >=11meq/g (dry basis) and a large specific surface area is allowed to carry 0.005wt% (dry basis) at least one bactericidal metal selected from among silver, copper, zinc and thin and is activated by heating so as to adjust the water content to 5wt% and the average particle diameter to 15mu or below. In this way, activated fine zeolite powder (B) is obtained. A mixture obtained by mixing a polymer (A) such as PE, PS, PVC, polyurethane resin, nylon or rubber with 0.03% above component B is heat-treated to form a uniform mixture, and this mixture is mechanically foamed by using an inert gas such as CO2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は抗菌ならびに防カビ機能を有する高分子発泡体
及びその製造方法に関する。ざらに詳しくは本発明は殺
菌作用を有する金属を保持したゼオライト即ち無機系の
抗菌性ビオライ]〜を含有してなることを特徴とする抗
菌ならびに防カビ機能を有する高分子発泡体及びその¥
A造六方法関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polymeric foam having antibacterial and antifungal functions and a method for producing the same. More specifically, the present invention relates to a polymeric foam having antibacterial and antifungal functions, characterized in that it contains a zeolite holding a metal having a bactericidal effect, that is, an inorganic antibacterial biolyte.
This is related to six methods of A construction.

[従来の技術及びその問題点] 一般に高分子体(プラスチック類)は真菌(カビ)や細
菌のような微生物に対し工高い抵抗性を有する材料と信
じられてきたが、これは今や伝説に過ぎない。現在まで
に各種のプラスチック類の微生物による被害の実例が各
方面から数多く報告されている。これがため特定のプラ
スチックの用途ではこれの防カビ処理が仕様に入って来
ている現状である。プラスチックには可塑剤、安定剤、
充填剤、酸化防止剤、紫外線吸収剤、滑剤、着色剤、改
質材、配合材等が添加されている。またプラスチックの
成形加工の段階では滑剤、酸化防止剤、展延剤、離型剤
等の助剤や添加剤等が必要に応じて使用される。上記に
もとづいて、多くのプラスチック成形体はそれの形状を
問わず微生物による攻撃を受けて劣化しやすい状態にあ
る。本発明者は市販のウレタンフオームやポリ塩化ビニ
ル、ポリエチレンその他の発泡体について、ASTMG
−21の方法により、これらのカビ抵抗性試験やその伯
の抗菌力試験を実施したところ、いずれの市販の発泡体
も力とや一般細菌に対する抵抗性が極めて少ないことを
見出した。これがため、高分子発泡体に対してカビ類の
発育を極力防止すると共に一般細菌に対する抗菌力を付
与すべく高分子発泡体に適した抗菌剤について鋭意検討
を加えた。
[Prior art and its problems] It has been generally believed that polymers (plastics) are highly resistant to microorganisms such as fungi and bacteria, but this is now nothing more than a legend. do not have. To date, many examples of damage caused by microorganisms to various plastics have been reported from various quarters. For this reason, mold-proofing treatment is now included in the specifications for certain plastic applications. Plastics contain plasticizers, stabilizers,
Fillers, antioxidants, ultraviolet absorbers, lubricants, colorants, modifiers, compounding materials, etc. are added. In addition, at the stage of plastic molding, auxiliary agents and additives such as lubricants, antioxidants, spreading agents, and mold release agents are used as necessary. Based on the above, many plastic molded objects, regardless of their shape, are susceptible to attack and deterioration by microorganisms. The present inventor has conducted research on commercially available urethane foam, polyvinyl chloride, polyethylene, and other foams according to
When these mold resistance tests and its antibacterial activity tests were carried out using the method of 21, it was found that all commercially available foams had very little resistance to bacteria and general bacteria. For this reason, we conducted extensive research on antibacterial agents suitable for polymer foams in order to prevent the growth of mold on polymer foams as much as possible and to impart antibacterial activity against common bacteria.

その結果無機系の抗菌性ゼオライトを含有してなる高分
子発泡体は公知の有機系の抗菌剤を含むそれに比較して
、多くの特徴があり、防カビ能も後者に比べてより優れ
ていることを見出した。ざらに上記の抗菌性ゼオライト
を含有してなる高分子発泡体は真菌(カビ類)のみなら
ず、一般の細菌についても抗菌力が市販の有機系抗菌剤
より大きく、かつ長時間にわたり、抗菌効果が安定に持
続されることを見出して本発明に到達した。
As a result, polymer foams containing inorganic antibacterial zeolite have many characteristics compared to those containing known organic antibacterial agents, and their antifungal properties are also superior to the latter. I discovered that. The polymer foam containing the above-mentioned antibacterial zeolite has greater antibacterial activity against not only fungi (molds) but also general bacteria than commercially available organic antibacterial agents, and has a long-lasting antibacterial effect. The present invention was achieved by discovering that this can be maintained stably.

[発明の構成] 本発明は、殺菌作用を有する金属を保持したゼオライト
を含有してなる抗菌ならびに防カビ能を有する高分子発
泡体とそれの製造方法よりなっている。本発明で高分子
発泡体として使用される好適な高分子体は、ポリエチレ
ン(PE)、ポリスチレン(Psi、ポリプロピレン(
PP) 、エチレン−酢酸ビニル共重合体(EVA) 
、ポリ塩化ビニル(PCV) 、アクリロニトリル−ブ
タジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂
、ポリウレタン樹脂(PUR) 、エリア樹脂(UF)
、エポキシ樹脂(EP) 、フェノール樹脂(PF) 
、ナイロン、ポリビニルアルコール、ビスコースまたは
ゴムである。これらの発泡用素材中には可塑剤、安定剤
、充填剤、酸化防止剤、滑剤、着色剤、改質材等が添加
されていても勿論使用上に差し支えない。上記の各種の
素材特性を考慮して、発泡条件を選択して、殺菌作用を
有する金属を保持したゼオライト(以下、抗菌性ゼオラ
イトということがおる)と高分子体の混合物の発泡を実
施すれば本発明の抗菌機能を有する発泡体が得られる。
[Structure of the Invention] The present invention comprises a polymeric foam having antibacterial and antifungal abilities, which contains zeolite holding a metal having a bactericidal effect, and a method for producing the same. Suitable polymers used as polymeric foams in the present invention include polyethylene (PE), polystyrene (Psi, polypropylene (
PP), ethylene-vinyl acetate copolymer (EVA)
, polyvinyl chloride (PCV), acrylonitrile-butadiene-styrene resin (ABS resin), acrylic resin, polyurethane resin (PUR), area resin (UF)
, epoxy resin (EP), phenolic resin (PF)
, nylon, polyvinyl alcohol, viscose or rubber. It goes without saying that these foaming materials may contain plasticizers, stabilizers, fillers, antioxidants, lubricants, colorants, modifiers, etc. without any problem in use. By selecting foaming conditions in consideration of the various material properties mentioned above, and carrying out foaming of a mixture of zeolite that retains metals that have a bactericidal effect (hereinafter referred to as antibacterial zeolite) and a polymer, A foam having an antibacterial function according to the present invention is obtained.

本発明の高分子発泡体中に占める抗菌性ゼオライトの含
有量は少なくとも0.03重量%(無水基準)であるこ
とが、好ましい抗菌なびに防カビ効果を発揮する上に望
ましいことである。具体的に本発明の発泡体中に占める
抗菌性ゼオライトの含有量は発泡体の種類により支配さ
れるが、通常0.01〜10重量%が望ましい範囲でお
り、最も好ましい範囲は0.03〜7重層%である。
It is desirable that the content of the antibacterial zeolite in the polymeric foam of the present invention be at least 0.03% by weight (anhydrous basis) in order to exhibit desirable antibacterial and antifungal effects. Specifically, the content of antibacterial zeolite in the foam of the present invention is controlled by the type of foam, but it is usually in a desirable range of 0.01 to 10% by weight, and most preferably in a range of 0.03 to 10% by weight. 7% multilayer.

即ち後者の上限値より小さい範囲内の抗菌性ゼオライト
の含有量では、それの発泡体内への分散が良好に行われ
た場合に、多孔質発泡体自身の物性、強度等に悪影響を
与えて劣化をきたすこともなく、且つそれの抗菌・防カ
ビ機能も充分に持続される。
In other words, if the content of antibacterial zeolite is within a range smaller than the latter upper limit, if it is well dispersed within the foam, it will adversely affect the physical properties, strength, etc. of the porous foam itself, causing deterioration. The antibacterial and antifungal functions are maintained sufficiently.

本発明で抗菌性金属の保持母体に適したゼオライトとし
てはそれのイオン交換容量が1  meQ/g(無水基
Q−)以上で且つ比表面積の大きい多孔質なものが好ま
しく、例えば合成品としてはA型、X型、またはY型ゼ
オライト、合成モルデナイト等が使用好適なぜオライド
として例示され、一方、天然品としてはモルデナイト、
クリノプチロライト、チャバ1ナイト等が好適なぜオラ
イドとして例示される。前記のゼオライトは高分子発泡
体に含有されるので、出来るだけそれの粒子径の小さな
粉状品が適しており、本発明では平均粒子径(()av
) 15μm以下の活性化ぜオライド粉末が発泡体への
均一分散に好適である。上記の粉末は出来るだけ2次凝
集の少ないものがより好ましい。
In the present invention, the zeolite suitable as a holding matrix for antibacterial metals is preferably a porous one having an ion exchange capacity of 1 meQ/g (anhydride group Q-) or more and a large specific surface area. A-type,
Preferred examples of olides include clinoptilolite and chaba 1 night. Since the above-mentioned zeolite is contained in a polymer foam, a powdered product with a particle size as small as possible is suitable, and in the present invention, the average particle size (()av
) Activated zeolide powder of 15 μm or less is suitable for uniform dispersion in the foam. It is more preferable that the above-mentioned powder has as little secondary agglomeration as possible.

次に本発明で使用される前述のゼオライトの陽イオン交
換量1は大きいものが望まれるが少なくとも上記の値が
1  meQ/び(無水基準)以上であってイオン交換
速度の大きいものが望まれる。かかる特性を有するぜオ
ライドを使用することにより抗菌性金属イオンの単独ま
たは複数以上の保持量をイオン交換法により任意に調節
して、所定の性能を有する抗菌ゼオライトを調製するこ
とが容易に可能である。
Next, it is desirable that the cation exchange rate 1 of the above-mentioned zeolite used in the present invention is large, and it is desirable that the above value is at least 1 meQ/min (anhydrous standard) or higher and that the ion exchange rate is high. . By using a zeolide having such characteristics, it is possible to easily prepare an antibacterial zeolite having a predetermined performance by arbitrarily adjusting the amount of one or more antibacterial metal ions retained by an ion exchange method. be.

本発明に於て殺菌作用を有する金属たとえば銀(1価)
、銅(1または2価)、亜鉛(2価)、錫(2または4
価)の金属群より選ばれた1種または2種以上の金属を
イオン状態で保持しているゼオライトが前述の各種の多
孔性発泡体に均一な分散状態で含有されており、これが
ために抗菌ならびに防カビ機能が、成形体全般にわたっ
て強力に発揮される。本発明で使用されるゼオライト中
において殺菌作用を有する金属の総量即ち抗菌性ゼオラ
イト中の抗菌金属の総量は、一般的に言って、0.00
5重研丸く無水基準)から飽和量(飽和量とは使用する
ゼオライトのイオン交換容量の飽和値)の範囲のものが
望ましい。上記範囲の抗菌性ゼオライトを含む本発明の
各種の発泡体は、後述の実施例にも記載されている如く
、一般細菌や真菌(カビ類)に対して充分な抗菌効果を
発揮することが、抗菌力の評価試験により確認された。
In the present invention, metals having a bactericidal effect, such as silver (monovalent)
, copper (monovalent or divalent), zinc (divalent), tin (divalent or
Zeolite, which holds one or more metals selected from the group of metals (values) in an ionic state, is contained in the various porous foams mentioned above in a uniformly dispersed state, and this makes it antibacterial. In addition, the mold-proofing function is strongly exhibited throughout the molded article. Generally speaking, the total amount of metals having a bactericidal effect in the zeolite used in the present invention, that is, the total amount of antibacterial metals in the antibacterial zeolite, is 0.00
It is desirable to have a saturated amount (the saturated amount is the saturated value of the ion exchange capacity of the zeolite used) to the saturated amount (5-juken round anhydrous standard). Various foams of the present invention containing antibacterial zeolite within the above range exhibit sufficient antibacterial effects against general bacteria and fungi (molds), as described in the Examples below. Confirmed by antibacterial activity evaluation test.

ざらに本発明の多孔質発泡体よりの抗菌金属イオンの溶
出や離脱は実施例に見られるように、極めて僅少でおり
、また発泡体自身の毒性もなく、後述のような各種の用
途が広汎の分野に亘って期待される。
In general, as seen in the examples, the elution and release of antibacterial metal ions from the porous foam of the present invention is extremely small, and the foam itself is not toxic, so it can be used in a wide variety of applications as described below. It is expected that this will be applied to various fields.

本発明の抗菌ならびに防カビ機能を有する高分子発泡体
の製造方法の要旨は下記の如くである。
The gist of the method for producing a polymeric foam having antibacterial and antifungal functions according to the present invention is as follows.

陽イオン交換量が1  meq/g (無水基準)以上
の多孔質ゼオライトに殺菌作用を有する金属として銀(
1価)、銅(1または2価)、亜鉛(2価)、錫(2ま
たは4価)の金属群より選ばれた1種または2種以上の
金属をイオン状態で保持させてから、これを加熱活性化
してそれの水分を5重量%以下とし、かつそれのDaV
(平均粒子径)を15μ瓦以下に調製して得たゼオライ
ト活性化微粉末と高分子体を、抗菌性ゼオライトの含有
量が混合物中少なくとも0.03重量%(無水基準)に
なるような量比で混合し、次いで得られた混合物を加熱
処理して均一な混合物とした後、これを発泡せしめるこ
とを含む抗菌ならびに防カビ能を有する高分子発泡体を
製造する方法を本発明は提供するものである。ここで、
抗菌性ゼオライト微粉末と少量の高分子体を加熱下に混
合して、予めゼオライト/高分子体のマスターバッチを
作り、次にこれを残りの高分子体と混合加熱する二段階
法を行うことも、本発明の一態様として可能でおる。本
発明の成形体の製造に際して使用する抗菌性ゼオライト
は、予め加熱活性化して含水率を5重量%以下にするこ
とが好ましい。含水率が上記の値より多い場合は昇温に
ともない多量の水分にもとづく気泡の発生等により発泡
体に亀裂や割れ、穴、変色等が生じたりして欠陥品が作
られるのでこれを防止するために含水率を5重量%以下
にすることが好ましいことである。加熱は電気炉を使用
して、使用する抗菌性ゼオライトの種類により異なるが
、通常の場合250°〜500 ’C(空気雰囲気)の
加熱または減圧加熱(150’〜350°C)を実施す
ることにより、容易に水分を上記の値以下に低下させる
ことが可能で必る。加熱活性化された抗菌ゼオライト粉
末は発泡用素材と混合される前に予めそれの[)ayが
15μm以下になるように調製され発泡体中の2次凝集
を極力防止して分散を良好ならしめる必要がある。これ
は調製された抗菌性ゼオライトを解砕するか、または粉
砕することにより容易に達成される。かかる調製された
抗菌性LAライ]・または前記の如く調整されたゼオラ
イトの活性化微粉末、少なくとも0.03重量%(無水
基r(u )を予め高分子素材と加熱下に混和して得ら
れた抗菌ゼオライト−高分子含有体は、粉末、粒子、シ
ート、ビーズ、またはペレッ[−等の形状の各種の発泡
用素材と加温下で処理されて均質化され、各種の形状に
発泡される。上記の発泡用の高分子素材中には、既述の
ように助剤、添加材、改質剤、着色剤等が含まれていて
も勿論差し支えない。
Silver is a metal that has a bactericidal effect on porous zeolite with a cation exchange rate of 1 meq/g (anhydrous standard) or more.
After holding one or more metals selected from the metal group of monovalent), copper (monovalent or divalent), zinc (divalent), and tin (divalent or tetravalent) in an ionic state, is activated by heating to reduce its moisture content to 5% by weight or less, and its DaV
The zeolite activated fine powder obtained by adjusting the average particle size to 15μ or less and the polymer are mixed in such an amount that the antibacterial zeolite content is at least 0.03% by weight (anhydrous basis) in the mixture. The present invention provides a method for producing a polymeric foam having antibacterial and antifungal abilities, which comprises mixing the mixture in a uniform ratio, heating the resulting mixture to form a homogeneous mixture, and foaming the resulting mixture. It is something. here,
A two-step method is performed in which a zeolite/polymer masterbatch is prepared in advance by mixing antibacterial zeolite fine powder and a small amount of polymer under heating, and then this is mixed with the remaining polymer and heated. This is also possible as an aspect of the present invention. It is preferable that the antibacterial zeolite used in producing the molded article of the present invention be activated by heat in advance to have a water content of 5% by weight or less. If the moisture content is higher than the above value, cracks, cracks, holes, discoloration, etc. may occur in the foam due to the generation of air bubbles due to the large amount of moisture as the temperature rises, resulting in defective products, so prevent this. Therefore, it is preferable that the water content is 5% by weight or less. Heating is performed using an electric furnace, which varies depending on the type of antibacterial zeolite used, but in normal cases heating is performed at 250° to 500'C (air atmosphere) or reduced pressure heating (150' to 350°C). Therefore, it is possible to easily reduce the moisture content to below the above value. The heat-activated antibacterial zeolite powder is prepared in advance so that its [)ay is 15 μm or less before being mixed with the foaming material to prevent secondary aggregation in the foam as much as possible and improve dispersion. There is a need. This is easily accomplished by crushing or grinding the prepared antimicrobial zeolite. Such prepared antibacterial LA-lye] or an activated fine powder of zeolite prepared as described above, at least 0.03% by weight (obtained by pre-mixing the anhydride group r(u) with the polymeric material under heating). The antibacterial zeolite-polymer-containing body is homogenized by processing it with various foaming materials in the form of powder, particles, sheets, beads, or pellets under heating, and then foamed into various shapes. Of course, the above-mentioned foaming polymer material may contain auxiliary agents, additives, modifiers, colorants, etc. as described above.

本発明の抗菌機能を有する発泡体を調製するに際して、
炭酸ガス等の不活性気体を用いて発泡させる機械的発泡
法、熱分解や化学反応によりガスを発生させる有機また
は無機系の発泡剤又はブタン、ペンタン、フロンガス等
の使用にもとづく常圧、プレス、押出および射出法によ
る発泡方法、溶剤気散法による発泡法、高分子体の重合
や縮合過程で発生する気体を利用して発泡させる方法、
焼結発泡法等が使用可能である。これらの発泡方法は使
用する発泡用の高分子体の物性その他を考慮して選択す
ればよい。
In preparing the foam having antibacterial function of the present invention,
Mechanical foaming method that uses inert gas such as carbon dioxide, normal pressure based on the use of organic or inorganic foaming agents that generate gas through thermal decomposition or chemical reaction, or butane, pentane, chlorofluorocarbon gas, etc., press, Foaming methods using extrusion and injection methods, foaming methods using solvent aeration, foaming methods that utilize gas generated during the polymerization or condensation process of polymers,
Sintering foaming method etc. can be used. These foaming methods may be selected in consideration of the physical properties of the foaming polymer used and other factors.

上述した如き高分子体と抗菌性ゼオライトを使用して、
本発明の方法により、抗菌ならびに防カビ機能を有する
各種の多孔質高分子発泡体が得られる。例えば抗菌能を
有するウレタンフオーム、PP、PE、PS、ABS、
PVC,EP。
Using the above-mentioned polymer and antibacterial zeolite,
By the method of the present invention, various porous polymer foams having antibacterial and antifungal functions can be obtained. For example, urethane foam with antibacterial ability, PP, PE, PS, ABS,
PVC, EP.

PVA等の各種フオームが容易に得られるので、抗菌を
必要とする化粧用小物、食品、建築材料、工業用材料等
の分野で本発明の抗菌能を有する高分子発泡体の床几な
用途が期待される。例えば抗菌能を有するクッション材
、吸音剤、保温剤、魚類の収納容器や各種のバッキング
材などが例示される。
Since various foams such as PVA can be easily obtained, the polymeric foam having antibacterial properties of the present invention can be used in the fields of cosmetic accessories, foods, building materials, industrial materials, etc. that require antibacterial properties. Be expected. Examples include cushioning materials with antibacterial properties, sound absorbers, heat insulators, fish storage containers, and various backing materials.

本発明の抗菌ならびに防カビ機能を有する高分子発泡体
の主な特徴や利点を要約すれば下記の如くでおる。
The main features and advantages of the polymeric foam having antibacterial and antifungal functions of the present invention are summarized as follows.

(a)  無機系の抗菌性ゼオライト含有成形体である
のでこれの変質や性能低下が全く起らない。
(a) Since it is a molded article containing inorganic antibacterial zeolite, no deterioration or performance deterioration occurs at all.

(b)  抗菌性ぜオライドの発泡体よりの溶出や揮発
にもとづく損失は無視しうる程小さい。
(b) Losses due to elution and volatilization of the antibacterial zeolide from the foam are negligible.

(C)  本発明の高分子発泡体は一般細菌やカビ類に
対して優れた抗菌効果を発揮し、しかも抗菌効果が長期
間に亘って持続される利点。
(C) The polymer foam of the present invention exhibits an excellent antibacterial effect against general bacteria and molds, and has the advantage that the antibacterial effect is maintained for a long period of time.

(d)  本発明の抗菌発泡体の毒性は極めて少なく殆
んど無害である。
(d) The antibacterial foam of the present invention has extremely low toxicity and is almost harmless.

(e)  高分子発泡体自身への抗菌力の付与ばかりで
なく、これと接触する雰囲気(気相、液相)の抗菌や殺
菌にも効果がある。
(e) It is effective not only in imparting antibacterial power to the polymer foam itself, but also in antibacterial and sterilizing the atmosphere (gas phase, liquid phase) that comes into contact with it.

(f’)  所定の抗菌効果をあげるために高分子発泡
体中の抗菌ゼオライトの使用量は受樋ですむ。
(f') In order to achieve the desired antibacterial effect, the amount of antibacterial zeolite used in the polymer foam can be reduced to the amount required for the receiving gutter.

(g)本ゼオライト系抗菌剤は熱的に安定であり、加熱
下にこれを高分子発泡体へ分散させても本発明の使用範
囲の量では発泡体の劣化や抗菌力の低下を全く起さない
(g) This zeolite-based antibacterial agent is thermally stable, and even if it is dispersed into a polymeric foam under heating, the amount within the usage range of the present invention will not cause any deterioration of the foam or decrease in antibacterial activity. I don't.

(h)  本発明の抗菌発泡体の抗菌力の経時変化は僅
少である。
(h) The antibacterial activity of the antibacterial foam of the present invention changes little over time.

次に本発明の実施の態様を実施例により説明するが、本
発明は本実施例に限定されるものではない。本発明の実
施例に示されたカビ抵抗性評価試験はASTM  G−
21の試験法に準拠して行われた。培地の組成としては
KH2PO4C0,7’i )、K2 HPO4(0,
7’;i ) 、Mg304・7H20(0,7g> 
、NH4NO3(’1.0g) 、Na C,l!(0
,0059> 、Fe 5o4−7 H20(0,00
2g)、Zn 804−7H2o(0,002g> 、
Mn SO4−7H20(0,001y > 、寒天(
15y>、および純水1000dよりなる培地を使用し
た。試験菌としてはAspergillus  nig
cr  (ATCC9642)、  Penicill
iumfuniculosum (ATCC9644)
 、 Chaetomiumglobosum (AT
CC6205)、 Trichoderma 、  T
−1(八TCC9645) 、および^ureobas
idium pullulans(ATCC9348)
の5種を用い、これらの菌を混合接種した。培養は相対
湿度(R,H,)85〜95%で30日間実施して試験
結果の評価を下記の5段階に別けて行った。
Next, embodiments of the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. The mold resistance evaluation test shown in the examples of the present invention is based on ASTM G-
The test was conducted in accordance with No. 21 test method. The composition of the medium is KH2PO4C0,7'i), K2HPO4(0,
7';i), Mg304・7H20 (0.7g>
, NH4NO3 ('1.0g), Na C,l! (0
,0059>, Fe 5o4-7 H20(0,00
2g), Zn 804-7H2o (0,002g>,
Mn SO4-7H20 (0,001y > , agar (
A medium consisting of 15y> and 1000d of pure water was used. Aspergillus nig was used as a test bacterium.
cr (ATCC9642), Penicill
ium funiculosum (ATCC9644)
, Chaetomium globosum (AT
CC6205), Trichoderma, T
-1 (8TCC9645), and ^ureobas
idium pullulans (ATCC9348)
A mixture of these bacteria was inoculated using five species. Cultivation was carried out for 30 days at relative humidity (R, H,) of 85 to 95%, and the test results were evaluated in the following five stages.

0    閑の発育が全くない 1    わずかな発育(10%以下)2  少し発育
(10〜30%) 3    中間的な発育(30〜60%)さらに抗菌力
の評価に関連して、細菌ならびに真菌の死滅率の測定が
本発明の発泡体を用いて実施されたがこれは下記の方法
によった。
0 No slow growth 1 Slight growth (10% or less) 2 Slight growth (10-30%) 3 Intermediate growth (30-60%) Furthermore, in relation to the evaluation of antibacterial activity, bacterial and fungal Mortality measurements were carried out using the foams of the invention and were carried out in the manner described below.

i〉使用菌株 八spergillus niger IFO4407
(黒麹カビ)Staphylococcus aure
us IFO12732(黄色ブドウ球菌) ii)胞子懸濁液の調製 黒麹カビは前培養培地に十分胞子を形成させた後、胞子
を0.005%ジオクチルスルホンこはく酸ナトリウム
溶液に懸濁し、滅菌生理食塩水で約10” /dになる
ように希釈し、これを胞子懸濁液とした。
i> Bacterial strain used: 8 supergillus niger IFO4407
(Black koji mold) Staphylococcus aure
us IFO12732 (Staphylococcus aureus) ii) Preparation of spore suspension After aspergillus Aspergillus forms sufficient spores in the preculture medium, the spores are suspended in 0.005% dioctyl sulfone sodium succinate solution and added to sterile physiological saline. It was diluted with water to a concentration of about 10"/d, and this was used as a spore suspension.

1ii)菌液の調製 黄色ブドウ球菌は普通ブイヨン培地で35℃、1夜前培
養後、滅菌生理食塩水で適宜希釈し、これを接種菌液と
した。
1ii) Preparation of Bacterial Solution Staphylococcus aureus was cultured overnight at 35° C. in an ordinary bouillon medium, and then diluted appropriately with sterile physiological saline to prepare an inoculum solution.

iV)試験操作 (a)  黒麹カビ:試験片に胞子懸濁液を表面が充分
に濡れるまでスプレーした。スプレー直後の試験片、お
よび密封して30℃48時間保存後の試験片を20−の
Tween 80加減菌生理食塩水で抽出し、この抽出
液中のカビ数をサブロー寒天培地を用いて25℃、7日
間培養後測定し、試験片1枚当りのカビ数を算出した。
iV) Test procedure (a) Black koji mold: A spore suspension was sprayed onto the test piece until the surface was sufficiently wet. The test piece immediately after spraying and the test piece after being sealed and stored at 30°C for 48 hours were extracted with 20% Tween 80 sterilized physiological saline, and the number of molds in this extract was counted using Sabouraud agar medium at 25°C. After culturing for 7 days, the number of molds per test piece was calculated.

(b)  黄色ブドウ球菌:試験片を滅菌生理食塩水4
0meの入った三角フラスコに入れ、これに接種菌液を
1d当り104になるように加えた。
(b) Staphylococcus aureus: Place the test piece in sterile physiological saline 4
The mixture was placed in an Erlenmeyer flask containing 0me, and the inoculum solution was added thereto at a concentration of 104 per 1 d.

この三角フラスコを30℃で振とうして、接種直後およ
び48時間後の生菌数を5CDLP寒天培地を用いて3
5℃、2日間培養後、測定した。
This Erlenmeyer flask was shaken at 30°C, and the number of viable bacteria immediately after inoculation and 48 hours later was determined using 5CDLP agar medium.
After culturing at 5°C for 2 days, measurements were taken.

実施例 1 実施例1は本発明の抗菌ならびに防カビ機能を有する発
泡ポリエチレン(PE)の作成及びこれの抗菌力に関す
る。抗菌性ゼオライトの活性化粉末(Dav= 2.7
.czm;  320℃加熱活性化:Na AgCu 
Z型(Z=A型ゼオライト母体、A(+ = 4.90
%: Cu = 7.85%二町0=3.19%)〕と
LDPE (宇部興産の商品名J3519、MI=35
、密度= 0.919)を230℃以下で加熱混合して
マスターバッチNa A(] CI Z−LDPE成形
体くペレット)を作った。上記のマスターバッチとLD
PEの一定量を配合して押出発泡機内に入れ温度を21
0℃付近にて溶融混合し、その中に発泡用ガスとしてブ
タンを入れながらノズルより押出し第1図に示したよう
’jNaAgCuZ約1%を含有するLDPE網状の発
泡体を作成した。この網状発泡体を切断して約80X5
0g++の試験片とし、既述の方法によって、抗菌力の
評価試験を実施した。第1表は前記形状のPEN−4試
験片(Na ACl CD Z型抗菌剤含有体:八g=
 0.0435%; CO= 0.104%〉の、典型
的な細菌としての5taphylococcus au
reusに対する抗菌効果を試験した結果を示したもの
である。検液中の細菌数は、PEN−4に於ては、48
時間経過時点で4個/dのみでほぼOに到達しており、
一方、PEN−4と同じ形状のPEN−BL (空試験
:PEネット約80X so# ;抗菌性ぜオライド無
添加)では菌数の減少は僅少で48時間の経過時点では
3.8xlO3@で必った。両試験の比較より本発明の
抗菌ネットの細菌に対する優れた効果は明白である。
Example 1 Example 1 relates to the preparation of polyethylene foam (PE) having antibacterial and antifungal functions of the present invention and its antibacterial activity. Antibacterial zeolite activated powder (Dav=2.7
.. czm; 320°C heating activation: Na AgCu
Z type (Z = A type zeolite matrix, A (+ = 4.90
%: Cu = 7.85% Nicho 0 = 3.19%)] and LDPE (Ube Industries product name J3519, MI = 35
, density = 0.919) were heated and mixed at 230° C. or lower to prepare a masterbatch Na A (CI Z-LDPE molded pellets). The above masterbatch and LD
Blend a certain amount of PE into an extrusion foaming machine and raise the temperature to 21
The mixture was melted and mixed at around 0° C., and extruded through a nozzle while introducing butane as a foaming gas to produce an LDPE network foam containing about 1% of NaAgCuZ as shown in FIG. Cut this mesh foam to approximately 80x5
Using a 0g++ test piece, an evaluation test for antibacterial activity was conducted by the method described above. Table 1 shows the PEN-4 test piece of the above shape (Na ACl CD Z-type antibacterial agent containing material: 8 g =
5 taphylococcus au as a typical bacterium with 0.0435%; CO = 0.104%>
This figure shows the results of testing the antibacterial effect against S. reus. The number of bacteria in the test solution was 48 for PEN-4.
As time passed, almost O was reached with only 4 pieces/d,
On the other hand, in PEN-BL, which has the same shape as PEN-4 (blank test: PE net approx. 80 It was. From the comparison of both tests, it is clear that the antibacterial net of the present invention has an excellent effect on bacteria.

第1表 検液1d中の5taphy+ococcus 
aureus(黄色ブドウ球菌)の数 0時間    48時間 PEN−BL   4.2X10   3.8X103
* AQ = 0.0435%; Cu = 0.10
4%;抗菌ゼオライト:NaAgCuZ型 次に第2表は、実施例1で得られたPEネットにおける
抗菌性金属の溶出量の経時変化を示したものでおる。溶
出試験に際しては、実施例1で1qられたネットを切断
してほぼ50X 125mの大きさに試験片を調製した
(試験片の重量約0.59)。
Table 1 5taphy+ococcus in 1d of test solution
aureus (Staphylococcus aureus) several 0 hours 48 hours PEN-BL 4.2X10 3.8X103
*AQ = 0.0435%; Cu = 0.10
4%; Antibacterial zeolite: NaAgCuZ type Next, Table 2 shows the change over time in the amount of antibacterial metal eluted from the PE net obtained in Example 1. For the elution test, a test piece having a size of approximately 50 x 125 m was prepared by cutting 1q of nets in Example 1 (weight of test piece was approximately 0.59).

上記試験片に、水道水(Ca 2+= 3.tppm 
; Mg= 3.6ppfn ; C,ll =4pp
m ; ptl= 7.03)を試験片(PEN−1>
1y/) (水通水)になるように加えた。次に前記の
混合液を時々撹拌し1000時間に亘って水相への溶出
金属の経時変化を測定して第2表記載の結果を得た。表
示した如く抗菌性金属である銅および銀の溶出量は0〜
1000時間の経過″C−は何れも10ppb以下の微
量である。かかる溶出量は全く無害であり、好ましい値
である。
Tap water (Ca 2+ = 3.tppm) was added to the above test piece.
; Mg=3.6ppfn; C,ll=4pp
m; ptl=7.03) as a test piece (PEN-1>
1y/) (water flow). Next, the above-mentioned mixed solution was stirred from time to time, and the time-dependent change in the metal eluted into the aqueous phase was measured over 1000 hours, and the results shown in Table 2 were obtained. As shown, the elution amount of copper and silver, which are antibacterial metals, is 0 to 0.
After 1000 hours, the amount of "C-" is a very small amount of 10 ppb or less. Such elution amount is completely harmless and is a preferable value.

第2表 発泡ポリエチレンネットよりの抗菌性金属の溶
出 試験片: 50x 125In!!IP Eネット(A
O= 0.0435%; CIJ −0,104%)試
験片 抗菌性金属   経過時間(時間)の番号  (
ppb)   10  100 500 100OPE
N−1銅     2.8  3.1  4.0  9
.5銀    0.5  0.7  1.3  3.2
水溶液相のpH約7、O;抗菌性ゼオライト二Na A
!II COZ型 実施例2 実施例2は本発明の抗菌ならびに防カビ機能を有する高
分子発泡体例として発泡ウレタンについて述べたもので
ある。本例ではウレタン(PtJR)としてはエーテル
型およびエステル型の両方を使用してNa AgZn 
Z型の抗菌性ゼオライト0.1〜5%含有の発泡体を作
った。抗菌性ゼオライトとしてはNa A(II Zn
 Z型の活性化粉末(330℃加熱活性化: Dav−
2,lμTrt: H20= 2.6%)を使用して、
これとPUR索材の混合物を発泡させてPURのエーテ
ル型およびエステル型の発泡体を作った。
Table 2 Antibacterial metal elution test piece from foamed polyethylene net: 50x 125In! ! IP E-net (A
O = 0.0435%; CIJ -0,104%) Test piece Antibacterial metal Elapsed time (hours) number (
ppb) 10 100 500 100OPE
N-1 copper 2.8 3.1 4.0 9
.. 5 silver 0.5 0.7 1.3 3.2
pH of aqueous phase approximately 7, O; antibacterial zeolite diNa A
! II COZ Type Example 2 Example 2 describes urethane foam as an example of the polymer foam having antibacterial and antifungal functions of the present invention. In this example, both ether type and ester type urethane (PtJR) are used, and NaAgZn
Foams containing 0.1-5% of Z-type antibacterial zeolite were made. Antibacterial zeolites include Na A (II Zn
Z-type activated powder (heat activated at 330°C: Dav-
2, lμTrt: H20 = 2.6%) using
A mixture of this and PUR rope material was foamed to produce PUR ether type and ester type foams.

q%7たPUR発泡体(フオーム)をsoxsogの形
状に切断し、既述のASTM  G−21の試験法に従
って、5種のカビの混合接種を行ってカビ抵抗性試験を
実施した。結果は第3表に記載されている。PURフt
−ム(エーテル型)の試験片U−28、29及び30 
(AD = 0.011〜0.118%;zn=0.0
062〜o、 065%)に於てはカビの発育は全く認
められず評価はOの好ましい値が得られた。
A mold resistance test was carried out by cutting a PUR foam containing q%7 into a soxsog shape and inoculating a mixture of five molds according to the ASTM G-21 test method described above. The results are listed in Table 3. PUR foot
-um (ether type) test pieces U-28, 29 and 30
(AD = 0.011-0.118%; zn = 0.0
062-0, 065%), no mold growth was observed and a favorable evaluation of O was obtained.

U−BL−16よびU−BL−2は何れも比較例である
(空試験)。前者は形状50×50#のPURプレート
(エーテル型)であり、後者は50X50WII!1形
状のPUR発泡体くフオーム)でおって、何れの試験片
にも抗菌性ゼオライlへは添加されていない。これらの
カビ抵抗性評価はそれぞれ3および2であり、かなりの
カビが発育することが確認された。本発明に従うPUR
フオーム(エステル型)のカビ抵抗性試験では、U−3
5及び36(A(J=0.011〜0.024%; 7
−n = 0.078〜0.130%)の試験片で見ら
れる如く、評価記号はOであり、力どの発育は全く認め
られず、一方、U−31の試験片(Ag= 0.002
%; Zn = 0.040%)ではカビの発育が僅か
に認められた。第3表記載の本発明の抗菌能を有するP
UR発泡体(エーテル型およびエステル型)と比較例の
比較より、本発明の発泡体はカビ抵抗性が極めて大きい
ことは明白である。
U-BL-16 and U-BL-2 are both comparative examples (blank test). The former is a PUR plate (ether type) with a shape of 50x50#, and the latter is a 50x50WII! The antibacterial zeolite was not added to any of the test specimens. These mold resistance ratings were 3 and 2, respectively, and it was confirmed that a considerable amount of mold grew. PUR according to the invention
In the foam (ester type) mold resistance test, U-3
5 and 36 (A (J = 0.011-0.024%; 7
-n = 0.078 to 0.130%), the evaluation symbol is O, and no development of force was observed at all, while the U-31 test piece (Ag = 0.002
%; Zn = 0.040%), slight mold growth was observed. P having antibacterial ability of the present invention listed in Table 3
From a comparison of the UR foams (ether type and ester type) and comparative examples, it is clear that the foams of the present invention have extremely high mold resistance.

第3表 【フレタン成形体のカビ抵抗試験試験片ニブレ
ートおよびフA−−ム(50x50m>(エーテル型) CI−BL−2無 添 加        フオーム 
 2次に一般細菌に対する本発明の発泡体の抗菌力試験
の一例を第4表に示した。既述の方法により、一定時間
経過時の検液1rIIIl当りのESCheriChi
acoliの数を測定し、これより前記の細菌の死滅率
を算出した。試験片U−28およびU−29(PURフ
オーム;エーテル型)ではESCheriChia c
oliの死滅率は24および48時間経過時点は何れも
100%であり、また試験片U−35(PURフオーム
;エステル型)でも全く同様な好ましい結果が得られた
。さらに試験片U−35を用いて、既述の方法により、
一定時間経過時の検液1d当りのAspergillu
s nigerの数の測定が行われ、24時間経過時に
それは著しく減少することが確認された。
Table 3 [Mold resistance test test piece of Fretan molded product Niblate and foam A--(50x50m>(ether type) Without CI-BL-2 Added foam
Second, Table 4 shows an example of the antibacterial activity test of the foam of the present invention against common bacteria. By the method described above, ESCheriChi per 1rIIIl of the test solution after a certain period of time has elapsed.
The number of B. acoli was measured, and from this the killing rate of the bacteria was calculated. For test specimens U-28 and U-29 (PUR form; ether type), ESCheriChia c
The mortality rate of Oli was 100% after 24 and 48 hours, and exactly the same favorable results were obtained with test piece U-35 (PUR form; ester type). Furthermore, using test piece U-35, by the method described above,
Aspergillus per 1 d of test solution after a certain period of time
The number of S. niger was measured and it was confirmed that it decreased significantly after 24 hours.

本発明の発泡体はカビ抵抗性が大きいのみならず、一般
細菌についても抗菌力が強いことが第3及び4表より明
白でおる。
It is clear from Tables 3 and 4 that the foam of the present invention not only has high mold resistance, but also has strong antibacterial activity against common bacteria.

第4表  死滅率の測定 試料の番号Escher 1chla col !に対
する死滅率(¥、)U −28100 LJ −29100 U −35100
Table 4: Mortality rate measurement sample number Escher 1chla col! Mortality rate against (¥,) U -28100 LJ -29100 U -35100

【図面の簡単な説明】[Brief explanation of drawings]

図は実施例1で作った本発明のPE発泡体(ネット)の
形状を示したものである。 出 願 人 品川燃料株式会社 鐘紡株式会社 九三製紙株式会社 株式会社 萩原技研 手続補正基 昭和61年6月22日
The figure shows the shape of the PE foam (net) of the present invention made in Example 1. Applicant Shinagawa Fuel Co., Ltd. Kanebo Co., Ltd. Kusan Paper Co., Ltd. Hagiwara Giken Procedural Amendments June 22, 1985

Claims (1)

【特許請求の範囲】 1)殺菌作用を有する金属を保持したゼオライトを含有
してなる抗菌ならびに防カビ機能を有する高分子発泡体
。 2)殺菌作用を有する金属を保持したゼオライトの含有
量が少なくとも0.03重量%(無水基準)である特許
請求の範囲第1項記載の抗菌ならびに防カビ機能を有す
る高分子発泡体。 3)殺菌作用を有する金属として銀、銅、亜鉛及び錫よ
り成る群より選ばれた1種または2種以上の金属をイオ
ン状態で保持しているゼオライトを含有してなる特許請
求の範囲第1項または第2項記載の抗菌ならびに防カビ
機能を有する高分子発泡体。 4)ゼオライト中における殺菌作用を有する金属の総量
が0.005重量%(無水基準)から飽和量の範囲にあ
る特許請求の範囲第1項ないし第3項のいずれか一つに
記載の高分子発泡体。 5)ゼオライトが1meq/g(無水基準)以上のイオ
ン交換容量を持つ天然または合成ゼオライトである特許
請求の範囲第1項ないし第4項のいずれか一つに記載の
抗菌ならびに防カビ機能を有する高分子発泡体。 6)ゼオライトが平均粒子径15μm以下のゼオライト
の活性化粉末である特許請求の範囲第1項ないし第5項
のいずれか一つに記載の抗菌ならびに防カビ機能を有す
る高分子発泡体。 7)高分子体がポリエチレン、ポリスチレン、ポリプロ
ピレン、エチレン酢酸ビニル共重合体、ポリ塩化ビニル
、アクリロニトリル−ブタジエン−スチレン樹脂、アク
リル樹脂、ポリウレタン、エリア樹脂、エポキシ樹脂、
フェノール樹脂、ナイロン、ポリビニルアルコール、ビ
スコースまたはゴムである特許請求の範囲第1項ないし
第6項のいずれか一つに記載の高分子発泡体。 8)イオン交換容量が1meq/g(無水基準)以上の
ゼオライトに殺菌性を有する金属を保持させてからこれ
を加熱活性化して含有水分を5重量%以下とし、かつそ
の平均粒子径を15μm以下に調整して得たゼオライト
活性化微粉末と高分子体とを、上記ゼオライトの含有量
が混合物中少なくとも0.03重量%(無水基準)にな
るような量比で混合し、次いで得られた混合物を加熱処
理して均一な混合物とした後、これを発泡せしめること
を含む、抗菌ならびに防カビ機能を有する高分子発泡体
を製造する方法。 9)高分子体がポリエチレン、ポリスチレン、ポリプロ
ピレン、エチレン−酢酸ビニル共重合体、ポリ塩化ビニ
ル、アクリロニトリル−ブタジエン−スチレン樹脂、ア
クリル樹脂、ポリウレタン、エリア樹脂、エポキシ樹脂
、フェノール樹脂、ナイロン、ポリビニルアルコール、
ビスコースまたはゴムである特許請求の範囲第8項記載
の方法。
[Scope of Claims] 1) A polymeric foam having antibacterial and antifungal functions and containing zeolite that retains a metal having a bactericidal effect. 2) The polymeric foam having antibacterial and antifungal functions according to claim 1, wherein the content of zeolite retaining a metal having a bactericidal action is at least 0.03% by weight (anhydrous basis). 3) Claim 1 comprising a zeolite that holds one or more metals selected from the group consisting of silver, copper, zinc, and tin in an ionic state as metals having a bactericidal effect. A polymeric foam having antibacterial and antifungal functions according to item 1 or 2. 4) The polymer according to any one of claims 1 to 3, wherein the total amount of metals having a bactericidal effect in the zeolite is in the range of 0.005% by weight (anhydrous basis) to a saturated amount. foam. 5) The zeolite is a natural or synthetic zeolite with an ion exchange capacity of 1 meq/g (anhydrous standard) or more, and has antibacterial and antifungal functions as described in any one of claims 1 to 4. Polymer foam. 6) The polymer foam having antibacterial and antifungal functions according to any one of claims 1 to 5, wherein the zeolite is an activated powder of zeolite with an average particle size of 15 μm or less. 7) The polymer is polyethylene, polystyrene, polypropylene, ethylene vinyl acetate copolymer, polyvinyl chloride, acrylonitrile-butadiene-styrene resin, acrylic resin, polyurethane, area resin, epoxy resin,
The polymeric foam according to any one of claims 1 to 6, which is a phenolic resin, nylon, polyvinyl alcohol, viscose, or rubber. 8) A zeolite with an ion exchange capacity of 1 meq/g or more (anhydrous standard) retains a bactericidal metal, and then heat activates it to reduce the water content to 5% by weight or less, and the average particle size to 15 μm or less. The zeolite-activated fine powder obtained by adjusting the zeolite and the polymer are mixed in a quantitative ratio such that the content of the zeolite is at least 0.03% by weight (anhydrous basis) in the mixture, and then the obtained A method for producing a polymeric foam having antibacterial and antifungal functions, which comprises heating a mixture to form a homogeneous mixture and then foaming the mixture. 9) Polymers include polyethylene, polystyrene, polypropylene, ethylene-vinyl acetate copolymer, polyvinyl chloride, acrylonitrile-butadiene-styrene resin, acrylic resin, polyurethane, area resin, epoxy resin, phenol resin, nylon, polyvinyl alcohol,
9. The method according to claim 8, wherein the material is viscose or rubber.
JP8404386A 1986-04-14 1986-04-14 Polymer foam having antibacterial and antifungal function and its production Pending JPS62241932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8404386A JPS62241932A (en) 1986-04-14 1986-04-14 Polymer foam having antibacterial and antifungal function and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8404386A JPS62241932A (en) 1986-04-14 1986-04-14 Polymer foam having antibacterial and antifungal function and its production

Publications (1)

Publication Number Publication Date
JPS62241932A true JPS62241932A (en) 1987-10-22

Family

ID=13819482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8404386A Pending JPS62241932A (en) 1986-04-14 1986-04-14 Polymer foam having antibacterial and antifungal function and its production

Country Status (1)

Country Link
JP (1) JPS62241932A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424861A (en) * 1987-07-22 1989-01-26 Shinagawa Fuel Co Ltd Antibacterial resin composition
JPH01161053A (en) * 1987-12-16 1989-06-23 Bridgestone Corp Production of antibacterial flexible polyurethane foam
JPH01117264U (en) * 1988-01-30 1989-08-08
US4906464A (en) * 1987-12-26 1990-03-06 Shinagawa Fuel Co., Ltd. Method for preparing dispersions containing antibiotic power
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US4938955A (en) * 1987-04-22 1990-07-03 Shingawa Fuel Co., Ltd Antibiotic resin composition
US5556699A (en) * 1987-06-30 1996-09-17 Shingawa Fuel Co. Ltd. Antibiotic zeolite-containing film
KR20010016825A (en) * 1999-08-04 2001-03-05 이정국 Material for dealing food having antibacterial
KR20020001896A (en) * 2000-03-24 2002-01-09 김희정 Method for Manufacturing Antibacterial Sanitary Goods Using Natural Rubber Latex
KR20020056058A (en) * 2000-12-29 2002-07-10 이계안 Polyurethane containing inorganic antibiosis
US6929705B2 (en) 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
JP2009179707A (en) * 2008-01-30 2009-08-13 Inoac Corp Deodorizing polyurethane foam
KR20190022271A (en) * 2017-08-25 2019-03-06 주식회사 가람매트 Foam for interior metirial of device
JP2019112556A (en) * 2017-12-25 2019-07-11 Dmノバフォーム株式会社 Olefinic foam and method for producing the same
WO2019189564A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Polyolefin resin foamable particles, method for producing same, and foam molded article of polyolefin resin

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US4938955A (en) * 1987-04-22 1990-07-03 Shingawa Fuel Co., Ltd Antibiotic resin composition
US5556699A (en) * 1987-06-30 1996-09-17 Shingawa Fuel Co. Ltd. Antibiotic zeolite-containing film
JPH0545628B2 (en) * 1987-07-22 1993-07-09 Shinagawa Fuel Co Ltd
JPS6424861A (en) * 1987-07-22 1989-01-26 Shinagawa Fuel Co Ltd Antibacterial resin composition
JPH01161053A (en) * 1987-12-16 1989-06-23 Bridgestone Corp Production of antibacterial flexible polyurethane foam
US4906464A (en) * 1987-12-26 1990-03-06 Shinagawa Fuel Co., Ltd. Method for preparing dispersions containing antibiotic power
JPH01117264U (en) * 1988-01-30 1989-08-08
JPH0525503Y2 (en) * 1988-01-30 1993-06-28
KR20010016825A (en) * 1999-08-04 2001-03-05 이정국 Material for dealing food having antibacterial
KR20020001896A (en) * 2000-03-24 2002-01-09 김희정 Method for Manufacturing Antibacterial Sanitary Goods Using Natural Rubber Latex
KR20020056058A (en) * 2000-12-29 2002-07-10 이계안 Polyurethane containing inorganic antibiosis
US6929705B2 (en) 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
JP2009179707A (en) * 2008-01-30 2009-08-13 Inoac Corp Deodorizing polyurethane foam
KR20190022271A (en) * 2017-08-25 2019-03-06 주식회사 가람매트 Foam for interior metirial of device
JP2019112556A (en) * 2017-12-25 2019-07-11 Dmノバフォーム株式会社 Olefinic foam and method for producing the same
WO2019189564A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Polyolefin resin foamable particles, method for producing same, and foam molded article of polyolefin resin
JPWO2019189564A1 (en) * 2018-03-30 2021-03-25 株式会社カネカ Polyolefin-based resin foamed particles, their production method, and polyolefin-based resin foam molded article

Similar Documents

Publication Publication Date Title
JPS62241932A (en) Polymer foam having antibacterial and antifungal function and its production
CN101313698A (en) Nano-antimicrobial preservative film for fruits and vegetables
CN105566831B (en) A kind of Water blown antibacterial, ventilating microporous membrane masterbatch, film and preparation method
CN109438937B (en) Antibacterial PLA-based degradable food packaging material and preparation method thereof
CN106117732B (en) A kind of membrane product and preparation method thereof, application
CN105801938B (en) A kind of environmentally friendly erasing rubber with antibacterial functions and preparation method thereof
CN106977798A (en) Antibacterial PE feed pipes
JPS62241939A (en) Polyolefin resin molding having antibacterial and antifungal activities and production thereof
CN113583422B (en) Biodegradable preservative film with antibacterial function and preparation method thereof
CN104650450A (en) PE type economic breathable waterproof oxygen-absorbing antibacterial fruit and vegetable preservative film
CN108794957A (en) A kind of Efficient antibacterial Perserving materials and preparation method thereof
KR101244778B1 (en) Inorganic antibacterial material using metal ion substituted inorganic carrier containing metal hydroxide, method for preparing said inorganic antibacterial material and articles comprising said inorganic antibacterial material
CN112500587A (en) Antibacterial plastic master batch, preparation method thereof and antibacterial plastic
CN113549320A (en) Graphene quantum dot composite film and preparation method and application thereof
KR20170114161A (en) Manufacturing Method of Antibacterial Packing Material for Keeping Freshness of Food
JP2017179078A (en) Polyolefin resin composition porous body and method for producing the same
KR101039043B1 (en) Zinc sulfied nano particle compositions, anti-bacteria and anti-filamentous fungi polymer masterbatches and methods of the preparation of the same
KR101895794B1 (en) Functional polymer plastic comprising fullerene and phytoncide, and preparation method thereof
KR20110069257A (en) Packing materials for maintaining freshness of foods and method for producing thereof
KR100458129B1 (en) An aromatic resin composition having improved maintaining-aroma, preparing method thereof and article using the same
JP3778881B2 (en) Method for producing antibacterial wood composite molding
WO1995017819A1 (en) Controlled-release ait preparation, process for producing the same, and use thereof
CN111892756A (en) Master batch of antibacterial plastic product, preparation method of master batch and antibacterial garbage can
KR100600492B1 (en) Food packing materials contained nano aluminium hydroxide and process for preparation of the same
CN113024949A (en) Graphene luminescent plastic master batch and preparation method thereof