JPS62234495A - Magnetic recording and reproducing device - Google Patents

Magnetic recording and reproducing device

Info

Publication number
JPS62234495A
JPS62234495A JP61073343A JP7334386A JPS62234495A JP S62234495 A JPS62234495 A JP S62234495A JP 61073343 A JP61073343 A JP 61073343A JP 7334386 A JP7334386 A JP 7334386A JP S62234495 A JPS62234495 A JP S62234495A
Authority
JP
Japan
Prior art keywords
circuit
noise
signal
luminance signal
noise reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61073343A
Other languages
Japanese (ja)
Inventor
Mineo Mizukami
嶺雄 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP61073343A priority Critical patent/JPS62234495A/en
Publication of JPS62234495A publication Critical patent/JPS62234495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

PURPOSE:To attain digital signal processing with a the number of bits lower in degree than that in a case a digital signal processing is applied to the full frequency band of a brightness signal by separating the higher band of the brightness signal, and applying noise reduction processing by means of digital signal processing only to the said higher band. CONSTITUTION:A brightness signal is separated into the higher band including much noise components and the lower band by a high-pass filter circuit 14 and a low-pass filter circuit 15. And the noise is supplied to a noise reduction processing circuit 13 along with the higher band of brightness signal. The circuit 13 A/D converts the said components, then lets a field memory circuit 20a store the data in the unit of field. Based on the output of the circuit 20a, a noise detector circuit 19 detects the noise included in the brightness signal by making use of the field correlation. The detected noise is subtracted from the brightness signal by a noise subtracter 18, and D/A converted by a D/A converter 17. An output from the circuit 13 is added with thc lower band part of the brightness signal separatcd by the circuit 15 by an adder 24.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、輝度信号に含まれるノイズをディジタル信
号処理により効果的に除去する磁気記録再生装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording/reproducing device that effectively removes noise contained in a luminance signal by digital signal processing.

[従来の技術] 家庭用に用いられるビデオテープレコーダ等の磁気記録
再生装置は、周波数変調した輝度信号に低域変換した色
信号を周波数多重して記録する構成をとるが、輝度信号
の場合、記録・再生時の信号処理過程でノイズが混入し
た信号をそのまま復、四すると、周波数が高くなるほど
周波数液・復調方式に特(fの三角ノイズが増えてしま
うため、通常は、第2図に示した従来の磁気記録再生装
置lのように、輝度信号を周波数変調する前にプリエン
フアシス回路(図示せず)により高域成分を強調してお
き、信号再生時に磁気記録再生回路2内に設けたディエ
ンファシス回路2aにより高域強調を解除する方法がと
られる。しかし、ディエンファシス回路2aを経た輝度
信号にもノイズが含まれるため、本例にあっては、ディ
エンファシス回路2aにノイズ低減回路3を接続し、ラ
イン相関の高い輝度信号とライン相関のほとんどないノ
イズ成分との性質の違いを利用して、ノイズ成分を抽出
除去する構成としである。ノイズ低減回路3は、ライン
相関を利用してノイズを検出するノイズ検出回路3aが
、信号線路3bと並列に減算器3cに接続された構成で
あり、減算器3cにて輝度信号からノイズ成分の除去が
行われる。ノイズ低減回路3を経た輝度信号は、次段の
加算器4にて色信号と混合され、再生信号として出力さ
れる。
[Prior Art] A magnetic recording/reproducing device such as a video tape recorder used for home use has a configuration in which a frequency-modulated luminance signal is frequency-multiplexed with a low-frequency converted color signal, but in the case of a luminance signal, If a signal with noise mixed in during the signal processing process during recording and playback is recovered as is, the higher the frequency, the more triangular noise (f) will occur in the frequency liquid/demodulation method. As shown in the conventional magnetic recording/reproducing device 1 shown in FIG. A method is used to cancel high-frequency emphasis using the de-emphasis circuit 2a.However, since the luminance signal that has passed through the de-emphasis circuit 2a also contains noise, in this example, the de-emphasis circuit 2a is equipped with a noise reduction circuit 3. The noise reduction circuit 3 extracts and removes noise components by using the difference in properties between a luminance signal with high line correlation and a noise component with almost no line correlation.The noise reduction circuit 3 uses line correlation to A noise detection circuit 3a that detects noise is connected to a subtracter 3c in parallel with the signal line 3b, and the subtracter 3c removes noise components from the luminance signal. The luminance signal is mixed with the color signal in the adder 4 at the next stage and output as a reproduced signal.

[発明が解決しようとする問題点] 上記従来の磁気記録再生装置1は、ノイズ検出回路3a
内で1水平走査線分の輝度信号を遅延し、遅延させた輝
度信号を遅延前の輝度信号に正帰還することにより、数
ライン分の輝度信号の相関をとっているため、正帰還の
ゲインを1にらかづけ、相関をとる対象となるライン数
を増やすほど、SN改善度が高くなるのであるが、ライ
ン相関を利用する方式である以上、SN改善度に限界が
あった。そこで、ライン相関利用を一歩進め、フィール
ド相関を利用したノイズ除去を図れば、さらにSN改善
度を高めうるごとが予想されるが、輝度信号全部をフィ
ールド単位で記憶できるフィールドメモリ回路を用意す
るとなると、最低でも振幅分解能として256ステツプ
をもつ8ビツトのAD変換回路を用いる必要があり、8
ビツトのAD変換回路と逆変換に必要な8ビツトのDA
変換回路を搭載することは、これらのディジタル変換素
子の製造単価からみて、製品コストの圧迫要因となるた
め、実現性に乏しい等の問題点があった。
[Problems to be Solved by the Invention] The conventional magnetic recording/reproducing device 1 described above has a noise detection circuit 3a.
By delaying the luminance signal for one horizontal scanning line within the range and positively feeding back the delayed luminance signal to the luminance signal before the delay, the correlation between the luminance signals for several lines is taken, so the gain of positive feedback is The degree of SN improvement increases as the number of lines to be correlated is increased by increasing the number of lines to 1, but as long as the method utilizes line correlation, there is a limit to the degree of SN improvement. Therefore, if we take line correlation one step further and remove noise using field correlation, it is expected that the degree of SN improvement will be further improved, but if we prepare a field memory circuit that can store all luminance signals in field units, , it is necessary to use an 8-bit AD conversion circuit with at least 256 steps of amplitude resolution;
8-bit AD conversion circuit and 8-bit DA required for inverse conversion
Incorporating a conversion circuit poses a problem in that it is difficult to implement because it puts pressure on the product cost in terms of the manufacturing cost of these digital conversion elements.

[問題点を解決するための手段] この発明は、上記問題点を解決したものであり、映像信
号を構成する輝度信号と色信号のうち、色信号を除いた
輝度信号について高域成分とそれ以外の低域成分に分離
するろ技手段と・このろ技手段により分離した輝度信号
の高域成分を、ディジタル信号に変換し、ノイズを低減
するノイズ低減処理を施したのちアナログ信号に変換す
るノイズ低減処理回路と、このノイズ低減処理回路の出
力に前記が技手段により分離した輝度信号の低域成分及
び色信号を加算する加算器とを設けて構成したことを特
徴とするものである。
[Means for Solving the Problems] The present invention solves the above problems. Among the brightness signals and color signals constituting the video signal, the brightness signals excluding the color signals are divided into high-frequency components and their high-frequency components.・The high frequency component of the luminance signal separated by this filtering method is converted into a digital signal, subjected to noise reduction processing to reduce noise, and then converted into an analog signal. The present invention is characterized in that it is constructed by providing a noise reduction processing circuit and an adder for adding the low frequency component of the luminance signal and the color signal separated by the above technique to the output of the noise reduction processing circuit.

[作用] この発明は、輝度信号の高域成分を分離し、この高域成
分についてのみディジタル信号処理によるノイズ低減処
理を施す構成とし、輝度信号を全帯域にわたってディジ
タル信号処理するようにした場合のAD変換又はDA変
換に必要なビット数よりも、低次のビット数でディジタ
ル信号処理を可能にする。
[Operation] The present invention has a configuration in which the high-frequency component of the luminance signal is separated and noise reduction processing is performed by digital signal processing only on this high-frequency component, and the luminance signal is digitally processed over the entire band. To enable digital signal processing with a lower number of bits than the number of bits required for AD conversion or DA conversion.

[実施例] 以下、この発明の実施例について、第1図を参照して説
明する。第1図は、この発明の磁気記録再生装置の一実
施例を示す回路構成図である。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. 1. FIG. 1 is a circuit diagram showing an embodiment of the magnetic recording/reproducing apparatus of the present invention.

第1図中、磁気記録再生装置11は、磁気記録再生回路
I2内のディエンファシス回路(図示せず)の後段にノ
イズ低減処理回路13を設けたものである。このノイズ
低減処理回路13は、この実施例の場合、輝度信号の高
域成分にのみノイズ低減処理を施すため、まず輝度信号
は、高域が波回路14と低域が波回路15により、ノイ
ズ成分を多く含む高域成分とそれ以外の低域成分に分離
される。この実施例では、両が波回路14.15の遮断
周波数をI M Hzに設定してあり、この遮断周波数
を越えるノイズ成分が輝度信号の高域成分とともに、ノ
イズ低減処理回路13に供給される。
In FIG. 1, a magnetic recording/reproducing device 11 is provided with a noise reduction processing circuit 13 downstream of a de-emphasis circuit (not shown) in a magnetic recording/reproducing circuit I2. In this embodiment, the noise reduction processing circuit 13 performs noise reduction processing only on the high frequency components of the luminance signal. It is separated into high frequency components, which contain many components, and low frequency components. In this embodiment, the cutoff frequency of both wave circuits 14 and 15 is set to I MHz, and noise components exceeding this cutoff frequency are supplied to the noise reduction processing circuit 13 together with the high frequency components of the luminance signal. .

ノイズ低減処理回路13は、ディジタル信号処理により
ノイズ低減を図るものであり、高域が波回路!4の出力
をAD変換するAD変換回路16と、その逆変換回路で
あるDA変換回路17の間に、原信号からノイズ成分を
減算する減算器18を設け、この減算器■8の減算入力
側にノイズ検出回路19を接続した構成とされている。
The noise reduction processing circuit 13 aims to reduce noise by digital signal processing, and the high frequency is a wave circuit! A subtracter 18 that subtracts the noise component from the original signal is provided between the AD conversion circuit 16 that AD converts the output of 4 and the DA conversion circuit 17 that is the inverse conversion circuit. A noise detection circuit 19 is connected to the noise detection circuit 19.

ノイズ検出回路I9は、輝度信号とノイズ成分をフィー
ルド相関の違いで分離するものであり、水平走査線26
2本分の輝度データを記憶するフィールドメモリ回路2
Qaの出力を正帰還してフィールド相関のある信号を検
出する相関検出回路20と、相関検出回路20により検
出されたフィールド相関の高い信号を原信号から減算す
る減算器21及び減算121の出力を振幅制限し、ノイ
ズ成分を残してフィールド相関の少ない輝度信号成分を
除去する振幅制限回路22とからなる。
The noise detection circuit I9 separates the luminance signal and the noise component based on the difference in field correlation.
Field memory circuit 2 that stores luminance data for two lines
The outputs of a correlation detection circuit 20 that positively feeds back the output of Qa to detect a signal with field correlation, and a subtracter 21 and a subtraction 121 that subtract a signal with high field correlation detected by the correlation detection circuit 20 from the original signal. It consists of an amplitude limiting circuit 22 that limits the amplitude and removes luminance signal components with little field correlation while leaving noise components.

相関検出回路20は、正帰還の一巡伝達ゲインK(K<
1)により信号レベルが1/(1−K)倍されるのを補
償するため、初段に(1−K)のゲインをもつアッテネ
ータ回路20bが接続しである。アッテネータ回路20
bは、加算器20cと前向き伝達ゲインがIの信号線路
20dを介して、重犯フィールドメモリ回路20aに接
続されている。フィールドメモリ回路20aには、水平
走査線263本分の輝度データを得るため、内挿捕間回
路23が接続しである。内挿補間回路23は、!水平走
査線分の信号遅延を行うラインメモリ回路23aとこれ
を迂回する信号線路23bを、加算器23 cを介して
ゲインが1/2のアッテネータ回路23dに接続した構
成をとる。内挿補間回路23は、ゲインにのアッテネー
タ回路20eを介して加算器20cに接続されている。
The correlation detection circuit 20 has a positive feedback loop transfer gain K (K<
In order to compensate for the signal level being multiplied by 1/(1-K) due to 1), an attenuator circuit 20b having a gain of (1-K) is connected to the first stage. Attenuator circuit 20
b is connected to the serious crime field memory circuit 20a via an adder 20c and a signal line 20d with a forward transfer gain of I. An interpolation interpolation circuit 23 is connected to the field memory circuit 20a in order to obtain luminance data for 263 horizontal scanning lines. The interpolation circuit 23 is! A configuration is adopted in which a line memory circuit 23a that delays a signal for a horizontal scanning line and a signal line 23b that bypasses this are connected to an attenuator circuit 23d with a gain of 1/2 via an adder 23c. The interpolation circuit 23 is connected to the adder 20c via a gain attenuator circuit 20e.

24は、加算器で、ノイズ低減処理回路13の出力に低
域が波回路I5の出力と色信号を加算する。
24 is an adder that adds the output of the noise reduction processing circuit 13, the output of the low-frequency wave circuit I5, and the color signal.

ここで、アッテネータ回路20eのゲインには、何フィ
ールド萌までの輝度信号を相関検出に利用するかを設定
する目安となるものであり、Kを1にちかづけるほど、
相関検出に利用されるフィールド数が増え、それだけS
N比改善効果が上がることになる。すなわち、加算器2
0cの入力である輝度信号は、数フイールド前の信号を
循環的に加算されることにより、フィールド相関のある
信号成分については1/(1−k)倍され、相関のない
ノイズ成分については、その約0.7倍程度の振幅増加
にとどまる。このため、加算器20cからは、ノイズ成
分を抑圧した輝度信号成分が抽出され、この輝度信号成
分を減算n21にて原信号から減算することにより、ノ
イズ成分とフィールド相関の少ない輝度信号成分が得ら
れる。従って、減算器21の出力を振幅制限回路22に
て振幅制限することにより、フィールド相関の少ない輝
度信号成分は抑圧され、ノイズ成分のみが得られるわけ
である。
Here, the gain of the attenuator circuit 20e is a guideline for setting up to how many fields of luminance signals are used for correlation detection, and the closer K is to 1, the more
The number of fields used for correlation detection increases, and S
The effect of improving the N ratio will increase. That is, adder 2
The luminance signal that is the input of 0c is cyclically added with signals from several fields before, so that signal components with field correlation are multiplied by 1/(1-k), and noise components with no correlation are multiplied by 1/(1-k). The amplitude increase is only about 0.7 times that amount. Therefore, the adder 20c extracts a luminance signal component with the noise component suppressed, and by subtracting this luminance signal component from the original signal in subtraction n21, a luminance signal component with little field correlation with the noise component is obtained. It will be done. Therefore, by amplitude-limiting the output of the subtracter 21 by the amplitude limiting circuit 22, the luminance signal component with little field correlation is suppressed, and only the noise component is obtained.

ところで、ノイズ低減処理回路I3に用いるAD変換回
路16としては、l/64の振幅分解能をもつ6ビツト
のものを使用しており、このAD変換回路16を色副搬
送波の2倍のサンプリング周波数rcp(455fo)
で駆動するようにしている。ただし、f uは、水平走
査周波数である。
By the way, the AD conversion circuit 16 used in the noise reduction processing circuit I3 is a 6-bit one with an amplitude resolution of 1/64, and this AD conversion circuit 16 is operated at a sampling frequency rcp that is twice that of the color subcarrier. (455fo)
I am trying to drive it with. However, f u is the horizontal scanning frequency.

この場合、フィールドメモリ回路20aとしては、25
6にビットダイナミックRAMを3個用いれば足ること
になる。すなわち、フィールドメモリ回路201に要求
されるメモリ数Mは、M=ntfcp で表される。ここで、nはビット数、Lはメモこの実施
例では、t = l / 59゜94sec。
In this case, the field memory circuit 20a includes 25
It is sufficient to use 3 bit dynamic RAMs for 6. That is, the number of memories M required for the field memory circuit 201 is expressed as M=ntfcp. Here, n is the number of bits, and L is the memo. In this example, t = l / 59°94sec.

n=6.fcp=7.15909x108であるから、
M=716,625.6ビツトとなる。従って、256
にビットRAMを3個用いることにより得られる786
,432ビツトのメモリ数で、十分対応できることにな
る。
n=6. Since fcp=7.15909x108,
M=716,625.6 bits. Therefore, 256
786 obtained by using three bit RAMs in
, 432 bits of memory is sufficient.

このように、上記磁気記録再生装置11は、高域が波回
路14にて輝度信号の高域成分を分離し、この高域成分
についてのみディジタル信号処理によるノイズ低減処理
を施す構成としたから、輝度信号を全帯域にわたってデ
ィジタル信号処理する場合のAD変換又はDA変換に必
要なビット数よりも、低次のビット数でディジタル信号
処理が可能であり、ノイズ低減処理回路13内のディジ
タル信号処理に必要なAD変換回路16又はDA変換回
路17のビット数を、ディジタルIC等の製造弔価から
みて、製品コストへの跳ね返りが少ない低次のビット数
に押さえることが可能である。
In this way, the magnetic recording/reproducing device 11 has a configuration in which the high frequency component of the luminance signal is separated in the high frequency wave circuit 14, and the noise reduction processing by digital signal processing is performed only on this high frequency component. Digital signal processing is possible with a lower number of bits than the number of bits required for AD conversion or DA conversion when digital signal processing is performed over the entire band of the luminance signal, and it is possible to perform digital signal processing with a lower number of bits than the number of bits required for AD conversion or DA conversion when performing digital signal processing on the luminance signal over the entire band. The number of bits required for the AD conversion circuit 16 or DA conversion circuit 17 can be kept to a low number of bits that has little impact on product costs in terms of manufacturing costs of digital ICs and the like.

さらにまた、ノイズ成分が高域に集中しているこ、I−
G )f: k%t −J−h、 L:t’  / l
 フlrF *jj ’)h −’II−r、−11,
N フI、 京次のビット数でもって輝度信号を全帯域
でディジタル信号処理した場合とほとんど変わらない効
果を上げることができ、これにより品質を落とすことな
くしかも安価にノイズ低減を図ることができる。
Furthermore, the fact that the noise components are concentrated in the high range, I-
G) f: k%t - J-h, L: t'/l
flrF *jj')h -'II-r, -11,
It is possible to achieve almost the same effect as when digital signal processing is performed on the luminance signal over the entire band with a bit count of 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0000 bits, and it is possible to reduce noise at a low cost without degrading the quality. .

また、ノイズ低減処理回路13を、輝度信号の高域成分
をAD変換するAD変換回路16と、このAD変換回路
I6の出力をフィールド単位で記憶するフィールドメモ
リ回路20aと、このフィールドメモリ回路20aの出
力をもとにフィールド相関を利用して輝度信号に含まれ
るノイズを検出するノイズ検出回路19と、このノイズ
検出回路19が検出したノイズを輝度信号から減算する
減算器18とから構成したことにより、フィールド相関
を利用して輝度信号中のノイズ成分をより的確に抽出除
去することができ、従来のライン相関利用のノイズ低減
処理とは比較にならないSN改善効果をあげることがで
きる。
Further, the noise reduction processing circuit 13 includes an AD conversion circuit 16 that AD converts the high frequency component of the luminance signal, a field memory circuit 20a that stores the output of this AD conversion circuit I6 in field units, and a field memory circuit 20a that stores the output of this AD conversion circuit I6 in units of fields. By being composed of a noise detection circuit 19 that detects noise included in a luminance signal based on the output using field correlation, and a subtracter 18 that subtracts the noise detected by this noise detection circuit 19 from the luminance signal. , it is possible to more accurately extract and remove noise components in a luminance signal using field correlation, and it is possible to achieve an SN improvement effect that is incomparable to conventional noise reduction processing using line correlation.

なお、上記実施例において、ノイズ低減処理は、信号再
生系に限らず、信号記録系においても可能であり、その
場合、ノイズ低減処理回路13は、プリエンファシス回
路の11a段に設けるとよい。
Note that in the above embodiment, the noise reduction processing is possible not only in the signal reproduction system but also in the signal recording system, and in that case, the noise reduction processing circuit 13 is preferably provided in the stage 11a of the pre-emphasis circuit.

[発明の効果] 以上説明したように、この発明は、輝度信号の高域成分
を分離し、この高域成分についてのみディジタル信号処
理によるノイズ低減処理を施す構成としたから、輝度信
号又は色信号を全帯域にわたってディジタル信号処理す
る場合のAD変換又はDΔ変換に必要なビット数よりも
、低次のビット数でディジタル信号処理が可能であり、
ノイズ低減処理回路内のディジタル信号処理に必要なA
D変換回路又はDA変換回路のビット数を、ディジタル
IC等の製造単価からみて、製品コストへの跳ね返りが
少ない低次のビット数に押さえることが可能であり、さ
らにまたノイズ成分が高域に集中していることを考慮す
れば、ノイズ低減効果についても、高次のビット数でも
って輝度信号を全帯域でディジタル信号処理した場合と
ほとんど変わらない効果を得ることができ、これにより
品質を落とすことなくしかも安価にノイズ低減を図るこ
とができる等の優れた効果を奏する。
[Effects of the Invention] As explained above, the present invention separates the high-frequency component of a luminance signal and performs noise reduction processing using digital signal processing only on this high-frequency component. Digital signal processing is possible with a lower number of bits than the number of bits required for AD conversion or DΔ conversion when performing digital signal processing over the entire band,
A required for digital signal processing in the noise reduction processing circuit
Considering the unit manufacturing cost of digital ICs, it is possible to keep the number of bits of the D conversion circuit or DA conversion circuit to a low-order bit number that has little impact on the product cost, and furthermore, noise components are concentrated in the high frequency range. Taking this into consideration, the noise reduction effect can be almost the same as when the luminance signal is digitally processed over the entire band using a high number of bits, and this reduces the quality. This provides excellent effects such as being able to reduce noise at a low cost.

また、この発明は、ノイズ低減処理回路を、輝度信号の
高域成分をAD変換するAD変換回路と、このAD変換
回路の出力をフィールド単位で記憶するフィールドメモ
リ回路と、このフィールドメモリ回路の出力をもとにフ
ィールド相関を利用して輝度信号に含まれるノイズを検
出するノイズ検出回路と、このノイズ検出回路が検出し
たノイズを輝度信号から減算する減算器とから構成する
ことにより、フィールド相関を利用して輝度信号中のノ
イズ成分をより的確に抽出除去することができ、従来の
ライン相関利用のノイズ低減処理とは比較にならないS
N改善効果をあげることが可能である等の効果を奏する
Further, the present invention includes a noise reduction processing circuit that includes an AD conversion circuit that performs AD conversion on high-frequency components of a luminance signal, a field memory circuit that stores the output of this AD conversion circuit in field units, and an output of this field memory circuit. A noise detection circuit that detects noise contained in a luminance signal using field correlation based on Using this method, noise components in the luminance signal can be extracted and removed more accurately, and S is incomparable to conventional noise reduction processing using line correlation.
This has effects such as being able to improve N.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の磁気記録再生装置の一実施例を示
す回路構成図、第2図は、従来の磁気記録再生装置の一
例を示す回路構成図である。 11、 、 、磁気記録再生装置、13.、、ノイズイ
[E ?(1hfL  n fil 蕗   I  A
         X blン扉?h riil シ!
X    IFζ3.低域が波回路、+6.、、AD変
換回路。 +7.、、I)A変換回路、20a、、、フィールドメ
モリ回路、24.、、加算器。
FIG. 1 is a circuit diagram showing an embodiment of a magnetic recording/reproducing apparatus of the present invention, and FIG. 2 is a circuit diagram showing an example of a conventional magnetic recording/reproducing apparatus. 11. , Magnetic recording and reproducing device, 13. ,, Noisy [E? (1hfLnfil Fuki IA
X bln door? h ril shi!
XIFζ3. Low range is wave circuit, +6. ,, AD conversion circuit. +7. , ,I) A conversion circuit, 20a, ,field memory circuit, 24. ,,Adder.

Claims (2)

【特許請求の範囲】[Claims] (1)映像信号を構成する輝度信号と色信号のうち、色
信号を除いた輝度信号について高域成分とそれ以外の低
域成分に分離するろ波手段と、このろ波手段により分離
した輝度信号の高域成分を、ディジタル信号に変換し、
ノイズを低減するノイズ低減処理を施したのちアナログ
信号に変換するノイズ低減処理回路と、このノイズ低減
処理回路の出力に前記ろ波手段により分離した輝度信号
の低域成分及び色信号を加算する加算器とを設けてなる
磁気記録再生装置。
(1) A filtering means that separates the luminance signal excluding the color signal from among the luminance signal and color signal constituting the video signal into high-frequency components and other low-frequency components, and the luminance separated by the filtering means. Converts the high frequency components of the signal into a digital signal,
a noise reduction processing circuit that performs noise reduction processing to reduce noise and then converts it into an analog signal; and an addition that adds the low-frequency components and color signals of the luminance signal separated by the filtering means to the output of this noise reduction processing circuit. A magnetic recording/reproducing device comprising a container.
(2)前記ノイズ低減回路は、輝度信号の高域成分をA
D変換するAD変換回路と、このAD変換回路の出力を
フィールド単位で記憶するフィールドメモリ回路と、こ
のフィールドメモリ回路の出力をもとにフィールド相関
を利用して輝度信号に含まれるノイズを検出するノイズ
検出回路と、このノイズ検出回路が検出したノイズを輝
度信号から減算する減算器とから構成したことを特徴と
する特許請求の範囲第1項記載の磁気記録再生装置。
(2) The noise reduction circuit converts the high-frequency components of the luminance signal into A
An AD conversion circuit that performs D conversion, a field memory circuit that stores the output of this AD conversion circuit in field units, and a field correlation based on the output of this field memory circuit to detect noise contained in the luminance signal. 2. The magnetic recording and reproducing apparatus according to claim 1, comprising a noise detection circuit and a subtracter for subtracting the noise detected by the noise detection circuit from the luminance signal.
JP61073343A 1986-03-31 1986-03-31 Magnetic recording and reproducing device Pending JPS62234495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61073343A JPS62234495A (en) 1986-03-31 1986-03-31 Magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61073343A JPS62234495A (en) 1986-03-31 1986-03-31 Magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS62234495A true JPS62234495A (en) 1987-10-14

Family

ID=13515416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61073343A Pending JPS62234495A (en) 1986-03-31 1986-03-31 Magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS62234495A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128677A (en) * 1987-11-13 1989-05-22 Nippon Hoso Kyokai <Nhk> Motion correcting type contour correcting device
JPH01273487A (en) * 1988-04-26 1989-11-01 Shimadzu Corp Digital x-ray device
JPH0750844A (en) * 1993-08-06 1995-02-21 Sony Corp Signal processing unit
US6993195B2 (en) * 1999-01-15 2006-01-31 Koninklijke Philips Electronics N.V. Coding and noise filtering an image sequence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127623A (en) * 1978-03-27 1979-10-03 Nec Corp S/n improving device for television video signal
JPS56122213A (en) * 1980-02-29 1981-09-25 Olympus Optical Co Ltd Noise suppressor
JPS6070884A (en) * 1983-09-28 1985-04-22 Hitachi Ltd Edge noise suppression circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127623A (en) * 1978-03-27 1979-10-03 Nec Corp S/n improving device for television video signal
JPS56122213A (en) * 1980-02-29 1981-09-25 Olympus Optical Co Ltd Noise suppressor
JPS6070884A (en) * 1983-09-28 1985-04-22 Hitachi Ltd Edge noise suppression circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128677A (en) * 1987-11-13 1989-05-22 Nippon Hoso Kyokai <Nhk> Motion correcting type contour correcting device
JPH01273487A (en) * 1988-04-26 1989-11-01 Shimadzu Corp Digital x-ray device
JPH0750844A (en) * 1993-08-06 1995-02-21 Sony Corp Signal processing unit
US6993195B2 (en) * 1999-01-15 2006-01-31 Koninklijke Philips Electronics N.V. Coding and noise filtering an image sequence

Similar Documents

Publication Publication Date Title
JPH0154915B2 (en)
JPS62234495A (en) Magnetic recording and reproducing device
JPH0760566B2 (en) FM recording / reproducing system noise reduction circuit
JPH05103231A (en) Noise reduction circuit
JP2608200B2 (en) Luminance signal recording circuit and method for maintaining compatibility during reproduction between different video systems
JPH05161112A (en) Adaptive de-emphasis and re-emphasis of high frequency in video signal utilizing recorded control signal
JPH0419884Y2 (en)
JPS6347030B2 (en)
JP2969628B2 (en) Video signal transmission device
JP2607554B2 (en) Noise reduction circuit for television signal
JP3251825B2 (en) Noise canceller circuit
JP2586484B2 (en) Imaging device
JPH05316464A (en) Digital signal processing circuit
JPS62196987A (en) Video signal processing circuit
JPH0323779A (en) Filter circuit
JPH0799863B2 (en) Noise reduction circuit
JPS61134197A (en) Luminance signal reproducing circuit
JPS62125779A (en) Video signal processor
JPH0326178A (en) Signal processing circuit
JPH05292455A (en) Video signal recording and reproducing device
JPS60169285A (en) Luminance fm signal reproducing circuit
JPH04262689A (en) Nonlinear signal processor
JPH09200699A (en) Fm signal processing circuit
JPH04343589A (en) Video signal processing circuit
JPH01191587A (en) Video signal recording and reproducing device