JPS62231921A - Laser beam processing optical device - Google Patents

Laser beam processing optical device

Info

Publication number
JPS62231921A
JPS62231921A JP61075860A JP7586086A JPS62231921A JP S62231921 A JPS62231921 A JP S62231921A JP 61075860 A JP61075860 A JP 61075860A JP 7586086 A JP7586086 A JP 7586086A JP S62231921 A JPS62231921 A JP S62231921A
Authority
JP
Japan
Prior art keywords
optical path
optical
condenser lens
lens
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61075860A
Other languages
Japanese (ja)
Inventor
Satoshi Horikoshi
堀越 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61075860A priority Critical patent/JPS62231921A/en
Publication of JPS62231921A publication Critical patent/JPS62231921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To realize higher accuracy and lower cost by a ftheta lens system by installing a condenser lens in the optical path between a laser beam source and a beam positioner and controlling the position of the condenser lens in the optical-axis direction so that the length of the optical path between the condenser lens and an irradiated position is constant without reference to the irradiated position. CONSTITUTION:The arithmetic circuit 13a in an arithmetic and driving part 7 computes the quantity DELTAL of variation in optical path length L from specifying signals of irradiated positions (x) and (y) supplied from a control part 6 and outputs a control signal for a voice coil type linear motor 4 from a driving circuit 13b. The voice coil type linear motor 4 moves the condenser lens 3 forth by DELTAL in the optical-axis direction to cancel an increase or decrease in optical path length due to deflection. Thus, the position of the condenser lens 3 in the optical-axis direction is so controlled that the optical path lens L is constant and almost equal to the focal length of the condenser lens without reference to the angle of invariably constant without reference to the irradiated positions no a workpiece and uniform and high-accuracy processing a enabled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザトリミングやレーザマーキング装置な
どとして利用されるレーザ加工光学装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser processing optical device used as a laser trimming or laser marking device.

従来の技術 レーザトリミングやレーザマーキング装置などとして利
用されるレーザ加工光学装置では、レーザ光源と非加工
物との間にビームポジショナと称される偏向器が設置さ
れ、非加工物上の照射位置を指定する照射位置指定信号
に基づき偏向による走査が行われる。そのようなビーム
ポジショナとしては、ガルバノメータ型のものが汎用さ
れている。
Conventional technology In laser processing optical equipment used as laser trimming or laser marking equipment, a deflector called a beam positioner is installed between the laser light source and the non-workpiece to determine the irradiation position on the non-workpiece. Scanning is performed by deflection based on the designated irradiation position designation signal. A galvanometer type beam positioner is commonly used as such a beam positioner.

このような加工光学装置では、通常、ビームポジショナ
と非加工物との間に収束レンズが配置される。このよう
な収束レンズとしては、偏向に伴って入射位置や角度が
変化する光線について一様なスポット径を確保しつつ直
線走査を実現するために、fθレンズと称される強い樽
型歪曲収差を有する特殊なレンズが使用される。
In such a processing optical device, a converging lens is usually placed between the beam positioner and the object to be processed. In order to achieve linear scanning while ensuring a uniform spot diameter for light rays whose incident position and angle change due to deflection, such converging lenses have a strong barrel distortion called an f-theta lens. A special lens is used.

発明が解決しようとする問題点 上記従来のレーザ加工光学装置で使用される特殊なfθ
レンズは、ビームポジショナの後段に設置されているた
め広範囲の偏向ビームを収束させるための大きな有効口
径が必要となり、また一様スポット径と直線走査を実現
するためにその構造が極めて複雑で、高価となる。また
、fθレンズに特有の歪みが生じ、走査周辺部では直線
走査からのずれが生ずるという問題もある。
Problems to be Solved by the Invention The special fθ used in the above conventional laser processing optical device
Since the lens is installed after the beam positioner, it requires a large effective aperture to converge the deflected beam over a wide range, and its structure is extremely complex and expensive in order to achieve a uniform spot diameter and linear scanning. becomes. Further, there is a problem in that distortion peculiar to the fθ lens occurs, and deviation from linear scanning occurs in the peripheral area of scanning.

発明の構成 問題点を解決するための手段 上記従来技術の問題点を解決する本発明のレーザ加工光
学装置は、レーザ光源とビームポジショナ間の光路内に
設置される収束レンズと、この収束レンズを光軸方向に
変位させる駆動部と、照射位置指定信号に基づきビーム
ポジショナを制御すると共に、この指定照射位置と前記
収束レンズとの間の光路長が一定値となるように前記駆
動装置を制御する制御部とを備え、複雑・高価なfθレ
ンズを使用することなく高精度の加工を可能とするよに
構成されている。
Structure of the Invention Means for Solving the Problems The laser processing optical device of the present invention which solves the problems of the prior art described above includes a convergent lens installed in the optical path between the laser light source and the beam positioner, and a convergent lens that is installed in the optical path between the laser light source and the beam positioner. A drive unit for displacing in the optical axis direction and a beam positioner are controlled based on an irradiation position designation signal, and the drive device is controlled so that the optical path length between the designated irradiation position and the converging lens is a constant value. The control unit is configured to enable high-precision processing without using a complicated and expensive fθ lens.

以下、本発明の作用を実施例と共に詳細に説明する。Hereinafter, the operation of the present invention will be explained in detail together with examples.

実施例 第1図は、本発明の一実施例のレーザ加工光学装置の構
成を示すブロック図であり、lはNd:YAGlz−f
ヘッド、2はビームエキスパンダ、3は収束レンズ、4
はボイスコイル型リニアモータ、5はガルバノメータ型
のビームポジショナ、6は制御部、7は演算・駆動部で
ある。ガルバノメータ型のビームポジショナ5は、演算
部7から出力される偏向角指定信号ex、eyを受ける
X軸、Y軸ガルバノメータ8a、9aと、これら各ガル
バノメータによって回転されるX軸、Y軸偏向ミラー8
b、9bを備えている。
Embodiment FIG. 1 is a block diagram showing the configuration of a laser processing optical device according to an embodiment of the present invention, where l is Nd:YAGlz-f.
Head, 2 is a beam expander, 3 is a converging lens, 4
5 is a voice coil type linear motor, 5 is a galvanometer type beam positioner, 6 is a control section, and 7 is a calculation/drive section. The galvanometer type beam positioner 5 includes X-axis and Y-axis galvanometers 8a and 9a that receive deflection angle designation signals ex and ey outputted from the calculation unit 7, and an X-axis and Y-axis deflection mirror 8 that is rotated by these galvanometers.
b, 9b.

演算・駆動部7は、第2図に示すように、制御部6から
受けたレーザ発振光の被加工物平面内における照射位置
(x、  y)の指定信号をX軸、Y軸偏向ミラーBb
、gbの回転角(θX、θy)に変換する演算回路11
a、12bと、これら演算結果に基づきX軸、Y軸ガル
バノメータ8a。
As shown in FIG. 2, the calculation/driving unit 7 transmits a signal specifying the irradiation position (x, y) of the laser oscillation light in the workpiece plane received from the control unit 6 to the X-axis and Y-axis deflection mirror Bb.
, gb into rotation angles (θX, θy)
a, 12b, and an X-axis and Y-axis galvanometer 8a based on these calculation results.

9aを駆動する駆動回路11b、Bbを備えている。更
に、演算・駆動部7は、制御部6から受けた上記照射位
置(x、y)の指定信号から、収束レンズ3と被加工物
上の照射位置との光路長の変化量を算出する演算回路1
3aと、この演算結果に基づきボイスコイル型リニアモ
ータ3を駆動するりニアモータ駆動回路13bとを備え
ている。
The drive circuit 9a includes drive circuits 11b and Bb that drive the drive circuit 9a. Further, the calculation/driving unit 7 performs a calculation to calculate the amount of change in the optical path length between the converging lens 3 and the irradiation position on the workpiece from the designation signal of the irradiation position (x, y) received from the control unit 6. circuit 1
3a, and a linear motor drive circuit 13b that drives the voice coil type linear motor 3 based on the calculation result.

制御部6で制御されるNd : YAGレーザヘッド1
から出射されたレーザビームは、ビームエキスパンダ2
で拡大され、収束レンズ3で収束されつつX軸、Y軸偏
向ミラー8a、3bの回転角に応じた偏向を受で被加工
物S上に照射され、加工が行われる。
Nd controlled by control unit 6: YAG laser head 1
The laser beam emitted from the beam expander 2
The beam is magnified by the converging lens 3, and deflected according to the rotation angles of the X-axis and Y-axis deflection mirrors 8a and 3b, while being irradiated onto the workpiece S to perform processing.

ここで、X軸偏向ミラー8bの回転角をθx1Y軸偏向
ミラー9bの回転角をθy、収束レンズ3とX軸偏向ミ
ラー8bの最短距離をLl、X軸偏向ミラー8bとY軸
偏向ミラー9bの最短距離をり、 、Y軸偏向ミラー9
bと被加工物Sとの最短距離をり、とすれば、レーザビ
ームの被加工物平面内における照射値1t(x、y)は
、X=(Lx +L3 ) tan θX    −(
1)y=L3tan  θy         ・ ・
 ・ (2)となる。
Here, the rotation angle of the X-axis deflection mirror 8b is θx1, the rotation angle of the Y-axis deflection mirror 9b is θy, the shortest distance between the converging lens 3 and the X-axis deflection mirror 8b is Ll, and the rotation angle of the X-axis deflection mirror 8b and the Y-axis deflection mirror 9b is Take the shortest distance, , Y-axis deflection mirror 9
If the shortest distance between b and workpiece S is denoted by
1) y=L3tan θy ・ ・
・(2) becomes.

ガルバノメータの回転角は、実用的には100程度以下
であるから、3次程度の多項展開近似によって1万分の
1程度の近似誤差に留めることができる。そこで、演算
・演算駆動部7の演算回路11aと12aにおいて、制
御部6から供給される照射位置(x、  y)の指定信
号から、θx  =tan  −’  (x/(Lx 
 +L3  )  )’4 (X/(L、+L、  )
) −N/3)(x/ (t、z +L3 ))”・・・ 
(3) θy =jan −’ (y/ L3 )” (y/L
x )−(1/3>  (y/L3 ) 3・・・ (
4) という3次の多項展開近似式を用いてX、Y方向の偏向
角(θX、θy)の指定信号が作成され、これが駆動回
路11b、12bを経て回転角指定信号(θx、ay)
としてX軸、Y軸ガルバノメータ3a、9aのそれぞれ
に供給される。
Since the rotation angle of the galvanometer is practically about 100 or less, the approximation error can be kept to about 1/10,000 by approximating a polynomial expansion of about 3rd order. Therefore, in the arithmetic circuits 11a and 12a of the arithmetic/arithmetic drive section 7, from the designation signal of the irradiation position (x, y) supplied from the control section 6, θx = tan -' (x/(Lx
+L3 ) )'4 (X/(L, +L, )
) −N/3)(x/ (t, z +L3))”...
(3) θy = jan −' (y/L3)” (y/L
x ) - (1/3> (y/L3) 3... (
4) A designation signal for the deflection angle (θX, θy) in the X and Y directions is created using the third-order polynomial expansion approximation formula, and this is transmitted through the drive circuits 11b and 12b to the rotation angle designation signal (θx, ay).
The signal is supplied to the X-axis and Y-axis galvanometers 3a and 9a, respectively.

また、ビームポジショナの前段に収束レンズが設置され
るこのレーザ加工光学系では、収束レンズの位置を固定
しておくとビームの偏向角に依存してこの収束レンズと
照射位置との間の光路長が変化し、照射位置によってビ
ーム径が変化する。
In addition, in this laser processing optical system where a converging lens is installed before the beam positioner, if the position of the converging lens is fixed, the optical path length between the converging lens and the irradiation position will depend on the beam deflection angle. changes, and the beam diameter changes depending on the irradiation position.

そこで、上記光路長を偏向角によらず一定の値に保つた
めに、収束レンズ3の位置を偏向角に応じて光軸方向に
変化させる。
Therefore, in order to maintain the optical path length at a constant value regardless of the deflection angle, the position of the converging lens 3 is changed in the optical axis direction according to the deflection angle.

X軸、Y軸偏向ミラー8b、9bの回転角をそれぞれθ
x5  θyとすれば、収束レンズ3から照射位置まで
の光路長りは、 L=L。
The rotation angles of the X-axis and Y-axis deflection mirrors 8b and 9b are respectively θ
If x5 θy, the optical path length from the converging lens 3 to the irradiation position is L=L.

+ (Lx /cos θX) +Ls /cos (tan −’ tan” llx
 + tan” fly )/Lz)t #L + +Lz  (1+(1/2)  (x/ CLt +L
3 ) ) ’ )+Li  (1+(1/2)  (
(x/ (L、+L3))”+  (y/Li )” 
 )”  )・ ・ ・ (5) となる。
+ (Lx /cos θX) +Ls /cos (tan -'tan"llx
+ tan” fly )/Lz)t #L + +Lz (1+(1/2) (x/ CLt +L
3 ) ) ' )+Li (1+(1/2) (
(x/ (L, +L3))”+ (y/Li)”
)”)・・・・(5)

この光路長りが、偏向角によらず収束レンズ3の焦点距
離にほぼ等しい一定値となるように、収束レンズ3の光
軸方向の位置を制御すれば被加工物上の照射位置によら
ずビーム径が常に一定となり、均一で高精度の加工が可
能となる。
If the position of the converging lens 3 in the optical axis direction is controlled so that this optical path length becomes a constant value that is approximately equal to the focal length of the converging lens 3 regardless of the deflection angle, it will not depend on the irradiation position on the workpiece. The beam diameter is always constant, allowing uniform and highly accurate processing.

偏向に伴う収束レンズ3から被加工物までの光路長りの
変化量ΔL (x、  y)は、ΔL (x、  y) =(1/2)  (Lt  (X/ (Lx +l、、
 ) ) ’ +L 5((x/(Lx +L、l))
” + (y/L!”)”)・・・ (6) となる。
The amount of change ΔL (x, y) in the optical path length from the converging lens 3 to the workpiece due to deflection is ΔL (x, y) = (1/2) (Lt (X/ (Lx + l, ,
) ) ' +L 5 ((x/(Lx +L, l))
"+ (y/L!")")... (6)

演算・駆動部7内の演算回路13aは、制御部6から供
給される照射位置(x、y)の指定信号から(6)式に
従って、光路長りの変化量ΔLを算定し、駆動回路13
bからボイスコイル型リニアモータ4に対する制御信号
を出力する。この制御信号を受けたボイスコイル型リニ
アモータ4は、収束レンズ3を光軸方向にΔLだけ前進
させることにより偏向に伴う光路長の伸張を相殺する。
The calculation circuit 13a in the calculation/drive unit 7 calculates the amount of change ΔL in the optical path length from the specified signal of the irradiation position (x, y) supplied from the control unit 6 according to equation (6), and calculates the amount of change ΔL in the optical path length.
A control signal for the voice coil type linear motor 4 is output from b. Upon receiving this control signal, the voice coil type linear motor 4 moves the converging lens 3 forward by ΔL in the optical axis direction, thereby canceling out the expansion of the optical path length due to the deflection.

以上、ボイスコイル型リニアモータを用いて収束レンズ
を光軸方向に移動させる構成を例示したが、所要移動長
の範囲に応じて、圧電素子や磁歪素子など他の適宜な直
線駆動機構を使用することもできる。
The configuration above uses a voice coil type linear motor to move the converging lens in the optical axis direction, but other suitable linear drive mechanisms such as piezoelectric elements or magnetostrictive elements may be used depending on the range of required movement length. You can also do that.

また、ビームポジショナとしてガルバノメータ型の偏向
器を用いる構成を例示したが、回転多面鏡等信の適宜な
偏向器を使用することもできる。
Further, although a configuration using a galvanometer type deflector as the beam positioner has been exemplified, it is also possible to use an appropriate deflector such as a rotating polygon mirror.

さらに、指定照射位置と回転角度との非直線の関係を3
次の展開式で近似する構成を例示したが、所要精度に応
じて、さらに高次の展開式を用いてもよいし、あるいは
、ROMなの係数器を用いて非直線の関係や光路長の補
正を行ってもよい。
Furthermore, the non-linear relationship between the designated irradiation position and the rotation angle is
Although we have exemplified a configuration that approximates using the following expansion formula, depending on the required accuracy, a higher-order expansion formula may be used, or a ROM coefficient unit may be used to correct non-linear relationships and optical path length. You may do so.

また、レーザ光源としてNd:YAGレーザヘッドを使
用する構成を例示したが、炭酸ガスレーザなど他の適宜
なレーザ光源を用いるレーザ加工装置に対しても本発明
を適用できる。
Furthermore, although a configuration in which an Nd:YAG laser head is used as a laser light source has been illustrated, the present invention can also be applied to a laser processing apparatus that uses other appropriate laser light sources such as a carbon dioxide laser.

発明の効果 以上詳細に説明したように、本発明のレーザ加工光学装
置は、レーザ光源とビームポジショナとの間の光路内に
収束レンズを設置すると共に、この収束レンズと照射位
置との間の光路長が照射位置によらず一定となるように
この収束レンズの位置を光軸方向に制御する構成である
から、照射位置の変化に伴うビーム径の変動を有効に防
止して高精度の加工を可能にしつつ複雑・高価なfθレ
ンズを不要とし、装置全体の低廉化を実現することがで
きる。
Effects of the Invention As explained in detail above, the laser processing optical device of the present invention includes a converging lens installed in the optical path between the laser light source and the beam positioner, and a converging lens installed in the optical path between the converging lens and the irradiation position. The position of this converging lens is controlled in the optical axis direction so that the length remains constant regardless of the irradiation position, so fluctuations in the beam diameter due to changes in the irradiation position are effectively prevented and high-precision processing is achieved. This makes it possible to eliminate the need for a complicated and expensive f-theta lens, making it possible to reduce the cost of the entire device.

また、本発明の制御手法が全て電気的に行われるので、
所定の歪曲収差を特殊なレンズの組合わせとレンズの加
工という光学的手法によって実現するfθレンズの方式
に比べ、−iの高精度化と低廉化が可能になる。
In addition, since the control method of the present invention is entirely performed electrically,
Compared to the fθ lens system, in which a predetermined distortion aberration is achieved by optical techniques such as a combination of special lenses and lens processing, it is possible to achieve higher precision of -i and lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のレーザ加工光学装置の構成
を示すブロック図、第2図は第1図の演算・駆動部7の
構成を例示するブロック図である。 1・・Nd:YAGレーザヘッド、2・・ビームエキス
パンダ、3・・収束レンズ、4・・ボイスコイル型リニ
アモータ、5・・ガルバノメータ型ビームポジショナ、
6・・制御部、7・・演算・駆動部、8b・・X軸偏向
ミラー、9b・・Y軸偏向ミラー、lla・・X軸演算
回路、12a・・Y軸演算回路、13a・・光路長変化
量演算回路。
FIG. 1 is a block diagram illustrating the configuration of a laser processing optical device according to an embodiment of the present invention, and FIG. 2 is a block diagram illustrating the configuration of the calculation/drive section 7 in FIG. 1. 1. Nd:YAG laser head, 2. Beam expander, 3. Converging lens, 4. Voice coil type linear motor, 5. Galvanometer type beam positioner,
6...Control unit, 7...Calculation/drive unit, 8b...X-axis deflection mirror, 9b...Y-axis deflection mirror, lla...X-axis arithmetic circuit, 12a...Y-axis arithmetic circuit, 13a...light path Long change amount calculation circuit.

Claims (1)

【特許請求の範囲】 レーザ光源と、このレーザ光源から出射されたレーザビ
ームを加工位置に位置決めするビームポジショナとを備
えたレーザ加工光学装置において、レーザ光源とビーム
ポジショナとの間の光路内に設置される収束レンズと、 この収束レンズを光軸方向に変位させる駆動部と、 照射位置指定信号に基づきビームポジショナを制御する
と共に、この指定照射位置と前記収束レンズ間の光路長
が一定値となるように前記駆動装置を制御する制御部と
を備えたことを特徴とするレーザ加工光学装置。
[Claims] A laser processing optical device including a laser light source and a beam positioner that positions a laser beam emitted from the laser light source to a processing position, which is installed in an optical path between the laser light source and the beam positioner. a convergent lens that is irradiated, a drive unit that displaces the convergent lens in the optical axis direction, a beam positioner that controls a beam positioner based on an irradiation position designation signal, and an optical path length between the designated irradiation position and the convergence lens that is a constant value. What is claimed is: 1. A laser processing optical device comprising: a controller for controlling the driving device;
JP61075860A 1986-04-02 1986-04-02 Laser beam processing optical device Pending JPS62231921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61075860A JPS62231921A (en) 1986-04-02 1986-04-02 Laser beam processing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61075860A JPS62231921A (en) 1986-04-02 1986-04-02 Laser beam processing optical device

Publications (1)

Publication Number Publication Date
JPS62231921A true JPS62231921A (en) 1987-10-12

Family

ID=13588415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61075860A Pending JPS62231921A (en) 1986-04-02 1986-04-02 Laser beam processing optical device

Country Status (1)

Country Link
JP (1) JPS62231921A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174173A (en) * 1988-12-26 1990-07-05 Sanyo Electric Co Ltd Working of film
JP2003290961A (en) * 2002-03-28 2003-10-14 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2008026379A (en) * 2006-07-18 2008-02-07 Omron Corp Optical scanner
US7402772B2 (en) 2002-08-30 2008-07-22 Sumitomo Heavy Industries, Ltd. Laser processing method and processing device
WO2009041055A1 (en) * 2007-09-26 2009-04-02 Panasonic Corporation Beam scan type display device, its display method, program, and integrated circuit
WO2024002577A1 (en) * 2022-06-29 2024-01-04 Trumpf Laser Gmbh Method for correcting optical path length measurement errors of a measuring scanner on a laser processing optical unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865410A (en) * 1982-09-13 1983-04-19 Hitachi Ltd Optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865410A (en) * 1982-09-13 1983-04-19 Hitachi Ltd Optical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174173A (en) * 1988-12-26 1990-07-05 Sanyo Electric Co Ltd Working of film
JP2003290961A (en) * 2002-03-28 2003-10-14 Sumitomo Heavy Ind Ltd Laser beam machining device
US7402772B2 (en) 2002-08-30 2008-07-22 Sumitomo Heavy Industries, Ltd. Laser processing method and processing device
JP2008026379A (en) * 2006-07-18 2008-02-07 Omron Corp Optical scanner
WO2009041055A1 (en) * 2007-09-26 2009-04-02 Panasonic Corporation Beam scan type display device, its display method, program, and integrated circuit
US8403490B2 (en) 2007-09-26 2013-03-26 Panasonic Corporation Beam scanning-type display device, method, program and integrated circuit
JP5216761B2 (en) * 2007-09-26 2013-06-19 パナソニック株式会社 Beam scanning display device
WO2024002577A1 (en) * 2022-06-29 2024-01-04 Trumpf Laser Gmbh Method for correcting optical path length measurement errors of a measuring scanner on a laser processing optical unit

Similar Documents

Publication Publication Date Title
US6706999B1 (en) Laser beam tertiary positioner apparatus and method
US6875951B2 (en) Laser machining device
CA1260072A (en) Arrangement for correcting the position of a laser beam guided by an articulated optical system
US11648629B2 (en) Laser processing apparatus, laser processing method, and correction data generation method
US6531680B2 (en) Cube corner laser beam retroreflector apparatus for a laser equipped machine tool
US11612954B2 (en) Laser-beam material machining
EP0813696A1 (en) Laser scanning system with reflective optics
JPS5946622A (en) Optical aligning system
KR20110028587A (en) Eliminating head-to-head offsets along common chuck travel direction in multi-head laser machining systems
KR20200140213A (en) Apparatus for automatically correcting the position of laser scanning system
EP0869384A1 (en) Mirror angle detector and detection method
JPS62231921A (en) Laser beam processing optical device
JP3162458B2 (en) Automatic alignment adjustment device
JPS5857108A (en) Optical scanning system
CN112484657A (en) Laser processing device, laser processing method, and correction data generation method
JP3198830B2 (en) Laser processing machine
JPH031117B2 (en)
TW202235192A (en) Laser machining device
US20030222143A1 (en) Precision laser scan head
Hofmann et al. Highly dynamic positioning of individual laser beams in a multi-beam system for laser surface processing
JP2001147399A (en) Laser beam machining device and adjusting method therefor
KR101482784B1 (en) Method and apparatus for high speed laser processing
Hafez et al. Fast-steering two-axis tilt mirror for laser pointing and scanning
JPH05228673A (en) Laser beam machine
JP2790106B2 (en) Positioning control circuit