JPS62227423A - Gas separating membrane - Google Patents

Gas separating membrane

Info

Publication number
JPS62227423A
JPS62227423A JP7132786A JP7132786A JPS62227423A JP S62227423 A JPS62227423 A JP S62227423A JP 7132786 A JP7132786 A JP 7132786A JP 7132786 A JP7132786 A JP 7132786A JP S62227423 A JPS62227423 A JP S62227423A
Authority
JP
Japan
Prior art keywords
membrane
component
polyisocyanate
formula
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7132786A
Other languages
Japanese (ja)
Other versions
JPH0696106B2 (en
Inventor
Kenko Yamada
山田 建孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7132786A priority Critical patent/JPH0696106B2/en
Publication of JPS62227423A publication Critical patent/JPS62227423A/en
Publication of JPH0696106B2 publication Critical patent/JPH0696106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a gas separating membrane of high selectivity and permeability by using a copolymer mainly consisting of amine component having siloxane structure and polyisocyanate component. CONSTITUTION:Amine component and polyisocyanate shown in Formula I and Formula II are reacted. In said process, amine component shown in Formula II should be less than 45mol% of the whole. Provided component shown in Formula II is too much, permeation speed is increased and selectivity is lowered, and membrane properties can be controlled by adding quantity of component. As polyisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate or the like is used. 10ppm-10wt% of diamine component solution is coated on a porous substrate, and then 10ppm-10wt% of polyisocyanate component solution is contacted to manufacture a separating membrane.

Description

【発明の詳細な説明】 本発明は、・気体−合物に対し、選択透過性を有する分
離膜に関し、特&C空気から酸ネ菖化空気を優るのに4
した分lll11膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separation membrane having selective permeability for gas-compounds, and which has a separation membrane that has a permeability of 4.
Regarding the minute lll11 membrane.

空気中には、#L素が約21チの濃度で存在するが、酸
素濃度が高められた空気が供給されれば、ボイラーや自
動車エンジン等での燃焼効率アップや低品位燃料の燃焼
利用あるいは呼吸器系疾患者の呼吸用空気として有用で
ある。
The #L element exists in the air at a concentration of about 21 g, but if air with increased oxygen concentration is supplied, it can be used to improve combustion efficiency in boilers and automobile engines, use low-grade fuels, etc. It is useful as breathing air for people with respiratory disorders.

空気中の酸素を分屋する++M便な方法として、膜分離
法がある。しかし、膜分離法では、一段の分離で空気中
の酸素と窒素を完全に分離することは難しく、実際に実
施されているのは、改素の(農産ft高めたいわゆる酸
素富化空気の製造であり、現在実用化されているものの
中で、膜を一回通すことで得られる高い酸素濃度は約4
0チである。そして約40優の酸素富化空気は呼吸用空
気などに使われる。
A convenient method for separating oxygen from the air is the membrane separation method. However, with the membrane separation method, it is difficult to completely separate oxygen and nitrogen from the air in one stage of separation, and what is actually being carried out is the production of so-called oxygen-enriched air with increased agricultural production. Among those currently in practical use, the high oxygen concentration that can be obtained by passing through the membrane once is approximately 4
It is 0chi. The approximately 40% oxygen-enriched air is used for breathing air, etc.

膜分幡法で比較的扁い酸素濃度の富化空気を優るために
は、膜の特性として、は素と窒素の分離性のよいものを
選ばねばならないが、一般に分1箪性のよいものは酸素
の透過性は小さくなる傾向があり、それ故、実際にはt
1N索と窒素の分、1性と酸素の透過性のバランスのと
れた膜素材を選択する必要がある。また、一方、膜を透
過する酸素の透過速度は膜厚に反比例するので透過速度
を大きくするには極薄の厚さに製膜できることも憲要で
ある。
In order to use the membrane separation method to outperform enriched air with a relatively low oxygen concentration, it is necessary to select a membrane that has good separation properties between hydrogen and nitrogen, but in general, membranes that have good separation properties are used. tends to have a lower oxygen permeability, so in reality t
It is necessary to select a membrane material that has a well-balanced permeability for 1N cords, nitrogen, monomers, and oxygen. On the other hand, since the rate of oxygen permeation through a membrane is inversely proportional to the thickness of the membrane, it is also essential to be able to form a membrane with an extremely thin thickness in order to increase the rate of permeation.

このような観点から分離性がよく、酸素の透過性も比較
的大きい膜素材として、例えば、ポリメチルペンテンや
ポリ2.6−シメチルフエニレンエーテルが選択され、
その極薄膜製膜も種々提案されている(例えば、特開昭
57−71605号や%開昭51−89564号各公報
参昭)。
From this point of view, for example, polymethylpentene and poly2,6-dimethylphenylene ether are selected as membrane materials that have good separation properties and relatively high oxygen permeability.
Various proposals have been made to form ultra-thin films (for example, see Japanese Patent Laid-Open Nos. 57-71605 and % 51-89564).

しかし、これらはいづれも膜の形状が平膜状のものであ
り、モジュール容積当りの膜面積が大さくできる中空糸
膜にを1極していない。
However, all of these membranes have a flat membrane shape, and are not limited to hollow fiber membranes that can increase the membrane area per module volume.

本発明者はさきに平膜状でもまた中空糸膜状でも容易に
極F4膜が製膜可能な膜素材反び製膜法を提案した(特
開昭58−193701号反び特開昭58−19370
3号公報参照)。
The present inventor has previously proposed a method for fabricating membrane materials that can easily produce ultra-F4 membranes in the form of flat membranes or hollow fiber membranes (Japanese Unexamined Patent Publication No. 58-193701). -19370
(See Publication No. 3).

かかる分4膜は、膜構造中におけるジメチルシロキサン
含*tK:工り、酸素/窒素の選択性の大きいものから
小さいものへと櫨々かえることができるが、fR素の透
過速度もそれに従い、小さいものから大きいものへとか
わっていく。
In such a membrane, the dimethylsiloxane content in the membrane structure can be changed from high to low oxygen/nitrogen selectivity, and the permeation rate of the fR element also changes accordingly. It changes from small to large.

か(の如<、膜の特性を擁々かえることができることを
ヱ公知であるが、比較的高濃度の酸素富化空気を効率的
な速度で得ること、即ち、酸素/窒素の分離特性を高(
維持し、かつ、酸素の透過性も高いという、更に高度の
バランスという点からみるとそれに適した膜素材は少な
い、Jそこで、界面重合での極薄m製膜が可能で、酸素
/窒素の分離特性と、酸素の透過性のバランスのとれた
分4膜を得るべく鋭意検討した結果本発明に到達したも
のである◎ すなわち、本発明は、下記式(下記式(I)で表わされ
る化合物と下記式(If)で表わされる化合物0H30
H1 (n諺1.2又は3) H3 IH3 ・・・・・・・・・(Ml との混合物であって、式(Ilで表わされる化合物が全
体の45モルチ以下であるアミン成分とポリイソシアネ
ート成分から主として形成された気体分層膜である。
Although it is well known that the properties of membranes can be varied, it is possible to obtain relatively high concentrations of oxygen-enriched air at an efficient rate, i.e., to improve the oxygen/nitrogen separation properties. High (
There are few membrane materials that are suitable for achieving a higher balance between high oxygen permeability and high oxygen permeability. The present invention was arrived at as a result of intensive studies to obtain a membrane with well-balanced separation characteristics and oxygen permeability. and a compound 0H30 represented by the following formula (If)
H1 (n Proverbs 1.2 or 3) H3 IH3 (Ml) A mixture of an amine component and a polyisocyanate in which the compound represented by the formula (Il) accounts for 45 mol or less of the total It is a gas separation membrane mainly formed from components.

約40チという嘆分4法では比較的高濃度の酸素濃度で
ある酸素富化空気を、空気から1段の分離で慢ようとす
るとき要求される膜の分離特性、すなわち、酸素と音素
の透過係数の比で表わされる選択性は2.5以上あれば
よいが、しかし、これは理想状態で分離が進行する場合
であり、実際には膜の両側に分離の駆動力と1!1II
In)せる圧力の!’P圧力の比により、あるいは膜表
面に発生する濃度分極により分離は悪くなる。
In the fourth method, which is approximately 40 cm, the separation characteristics of the membrane required when attempting to separate oxygen-enriched air with a relatively high oxygen concentration from air in one stage, that is, the separation of oxygen and phoneme. The selectivity expressed as the ratio of permeability coefficients should be 2.5 or more, but this is the case when separation proceeds under ideal conditions, and in reality there is a driving force of 1!1II on both sides of the membrane.
In) of pressure to let! 'Separation deteriorates due to the ratio of P pressures or concentration polarization generated on the membrane surface.

そのため、理想状態より為い選択性の膜が必要である。Therefore, a membrane that is more selective than the ideal state is required.

現在、膜による空気の分離においては分離にかかるエネ
ルギー(実際は圧力を発生させるためのポンプの駆動電
力費)を小さくするため、膜の透過側を減圧にすること
が多く、その場合の減圧度は、ポンプの11@力等から
150−200i″))?にすることが多い。かかる操
作条件において約40チの酸素富化空気を鵠ようとする
と膜の選択性は少なくとも3.5、好ましくは3.7以
上必要である。そして、このような選択性をもち、かつ
、tR素の透過性の大きいものが必要であり、実用的に
は、I!I!2素透過係数が少なくとも 5 X 10
 ” cc(STP) ’(m/7”SeC” cmH
g 。
Currently, when separating air using membranes, in order to reduce the energy required for separation (actually, the cost of driving the pump to generate pressure), the pressure is often reduced on the permeate side of the membrane, and the degree of pressure reduction in this case is , the selectivity of the membrane is at least 3.5, preferably 150-200 i'')? due to the 11 @ power of the pump, etc. Under such operating conditions, when attempting to draw about 40 g of oxygen-enriched air, the selectivity of the membrane is at least 3.5, preferably 3.7 or more.A material with such selectivity and high tR elemental permeability is required, and practically, the I!I!2 elemental permeability coefficient is at least 5X. 10
"cc(STP)'(m/7"SeC" cmH
g.

好ましくは 7 X 10 ” cc (8TP ) 
・ex/に1−set、・cmHg以上が必要である。
Preferably 7 X 10” cc (8TP)
・1-set for ex/, ・cmHg or more is required.

そして、かかる膜素材は、それを4iVcs膜できるこ
とが憲要であり、薄膜にした場合の分離膜の厚さは0.
2μm以下、好ましくは0.1μm以下が好適に用いら
れる。
The essential point of this membrane material is that it can be made into a 4iVcs membrane, and when made into a thin membrane, the thickness of the separation membrane is 0.
A thickness of 2 μm or less, preferably 0.1 μm or less is suitably used.

かかる分111膜を形成させるために用いられるアミン
成分は少くとも2種の化合物の混合物であり、その一方
の成分であるアミン化合物(アミン成分(1)と称す)
は下記式(下記式(I)で表わされるものである。ここ
でnは1.2又は3を表わす。
The amine component used to form such a 111 film is a mixture of at least two types of compounds, one of which is an amine compound (referred to as amine component (1)).
is represented by the following formula (formula (I) below. Here, n represents 1.2 or 3.

nが大きいアミン化合物を用いる程、透過性は大きくな
るが選択性が低下する。
The larger n is used, the higher the permeability but the lower the selectivity.

かかるジアミンとポリイソシアネートとからだけでも分
lIIImが形成でき、用いろポリイソシアネートの8
1[類をデ化さ−ぜることにより形成される膜の性能を
変化させることができるが、一般にこれらは酸素/窒素
の選択性は高いが、域素の透過性の低いものしか得られ
ない。
Part IIIm can be formed from such a diamine and polyisocyanate alone, and 8 of the polyisocyanate used can be formed.
It is possible to change the performance of the membrane formed by converting 1 [2], but in general, these have high selectivity for oxygen/nitrogen but only low permeability for elements. do not have.

そこで、酸素の透過性をあげるため、共重合成分として
下記式(下記式(I)で表わされるジアミン(アミン成
分([)と称す。)。
Therefore, in order to increase oxygen permeability, a diamine (referred to as amine component ([)) represented by the following formula (formula (I) below) is used as a copolymerization component.

OH1 ■ H2N−0H20)12−NH−(OH2入5i(O−
8i 0H3)3・・・(11直 OH2 を加えるのが本発明の骨子である。
OH1 ■ H2N-0H20)12-NH-(5i (O-
The gist of the present invention is to add 8i 0H3)3...(11 straight OH2).

これを加えることにより透過速度を増大することができ
る。すなわち、アミン成分(Illを増すにつれ、酸素
透過速度は増していり5.一方、選択性は低下していく
が、その添加曖により膜特性を容易に制御することがで
き、酸素/窒素の選択性と酸素の透過性の最適のバラン
スをとることが簡単である。
By adding this, the permeation rate can be increased. In other words, as the amine component (Ill) increases, the oxygen permeation rate increases5.On the other hand, the selectivity decreases, but the membrane properties can be easily controlled by changing the addition of the amine component (Ill), and the oxygen/nitrogen selection It is easy to find the optimal balance between performance and oxygen permeability.

アミン成分(Illの量は、アミン成分(I)の種類及
び使用するポリインシアネートの種類、そして、要求す
る膜の特性によってきまるが、通常、全アミン成分の4
5モルチ以下、好ましくは40モルチ以下であり、゛ま
だ、全アミン成分の5モルチ以上、好ましくは10モル
1以上である。
The amount of the amine component (Ill) depends on the type of amine component (I), the type of polyinsyanate used, and the required film properties, but it is usually 4% of the total amine component.
5 moles or less, preferably 40 moles or less, but still 5 moles or more, preferably 10 moles or more of the total amine component.

本発明に用いられるポリイソシアネート成分は、分子中
に少くとも2個のインシアネート基を存するものである
。例えば、芳香族系ポリイソシアネートとしては、下記
式(In で表わされる化合物、下記式債) で表わされる化合物及び下記式iVl で表わされる化合物が挙げられ、具体的には、4.4′
−ジフェニルメタンジイソシアネート、4.4′−ジフ
ェニルニーデルジイソシアネート、3.4′−ジフェニ
ルエーテルジインシアネート、トルイレンジイソシアネ
ート、フェニレンジイソシアネートが挙げられる。また
、脂環族ポリインシアネートとしては、インホロンジイ
ソシアネート、シクロヘキシルジイソシアネートが挙げ
られ、脂肪族ポリイソシアネートとしてはへキサメチレ
ンジイソシアネート、テトラメチレンジインシアネート
が翳げられる。
The polyisocyanate component used in the present invention has at least two incyanate groups in the molecule. For example, examples of the aromatic polyisocyanate include a compound represented by the following formula (compound represented by In, the following formula bond) and a compound represented by the following formula iVl, specifically, 4.4'
-diphenylmethane diisocyanate, 4,4'-diphenyl needle diisocyanate, 3,4'-diphenyl ether diisocyanate, toluylene diisocyanate, and phenylene diisocyanate. Further, examples of the alicyclic polyisocyanate include inphorone diisocyanate and cyclohexyl diisocyanate, and examples of the aliphatic polyisocyanate include hexamethylene diisocyanate and tetramethylene diisocyanate.

これらの中でも、ジアミン成分との反応性が高いカ香族
ポリイソシアネート就中、芳香族ジインシアネートが好
ましく、更には式(蜀で表わされる化合物、特に4.4
′−ジフェニルメタンンインシアネート、4.4′−ジ
フェニルエーテルジイソシア不−ト反び3.4′−ジフ
ェニルエーテルジイソシアネートが透過特性のバランス
が良いので好ましい。
Among these, aromatic polyisocyanates having high reactivity with diamine components are preferred, and aromatic diincyanates are preferred, and compounds represented by the formula (Shu), especially 4.4
'-Diphenylmethane incyanate, 4,4'-diphenyl ether diisocyanate, and 3,4'-diphenyl ether diisocyanate are preferred because of their well-balanced transmission properties.

しかして、本願発明の籍に好ましい構成としては、下記
式(VIl&び(2) ・・・・・・・・・・・・・・・(■)−N−(IH2
0H2−N−0−N−Iも−N−0−・・・・曲・(■
)0H1 ((1M)十(■))が0.45以下である重せ体から
主としてなる分lll1sがあげられる。
Therefore, as a preferable configuration for the subject of the present invention, the following formula (VIl&(2)...(■)-N-(IH2
0H2-N-0-N-I mo-N-0-...song (■
) 0H1 ((1M) 10 (■)) is 0.45 or less.

本発明の膜は前記ジアミン成分とポリインシアネート成
分とを溶媒中で重合させポリマー溶液とし、ついで、ガ
ラス板などの平らな板上にキャスティングして脱溶媒す
ることや、多孔質支持体上に塗布して脱溶媒することで
も得られるが、不発明の膜の組成の特徴・工、多孔f支
持体上で、重合と薄膜製膜とを同時におこなわしめろこ
とができることである。
The membrane of the present invention can be produced by polymerizing the diamine component and polyincyanate component in a solvent to form a polymer solution, and then casting it onto a flat plate such as a glass plate to remove the solvent, or by coating it on a porous support. Although it can also be obtained by removing the solvent by removing the solvent, the unique feature of the composition of the uninvented membrane is that polymerization and thin film formation can be carried out simultaneously on the porous support.

1−なわち、 (1)  多孔質支持体上に、−まず、ジアミン成分の
静e、を諮布し、ついで、ポリインシアネート成分ft
貧有し、かつ、上記溶液と界面を形成しうる溶液を塗布
・依触せしめ、しかして、多孔1【え持体上に分III
Ii膜を形成せしめる、か、(2)  上記2mの溶液
の塗布順序を逆にして支持体上に分噛腺な形成させるこ
とである。
1- That is, (1) On the porous support, - firstly, the diamine component ft is applied, and then the polyincyanate component ft is applied.
A solution having a small amount of water and capable of forming an interface with the above solution is applied and brought into contact with the solution, and then the porous 1
(2) Reverse the order of application of the above 2 m solution to form a layer Ii film on the support.

そのaジアミン成分#4躾は、当該ジアミン成分をエタ
ノール、インプロピルアルコール、メチルセロンルク、
ジオキサン、エチレンクリフール、ジエチレングリコー
ル、グリセリン、トリエチレングリフールの如ぎ溶媒あ
るいはこれらの2鑵以上の混合溶媒の如きに溶解せしめ
ればd易に、−A懐可能である。ジアミン成分の4度は
1 (j ppmへ10 wt %、好ましく番工fo
uppm〜5 wt% である。
The diamine component #4 is the diamine component that is mixed with ethanol, inpropyl alcohol, methyl seronluc,
-A can be easily obtained by dissolving it in a solvent such as dioxane, ethylene glycol, diethylene glycol, glycerin, or triethylene glycol, or a mixed solvent of two or more of these. The 4 degree of diamine component is 1 (j ppm to 10 wt %, preferably
uppm to 5 wt%.

一方、ポリイソシアネート成分溶液は、当該化合物n−
ヘキサン、n−へブタン、n−オクタン、シクロヘキサ
ン、n−デカン、n−テトラデカン、ヘキナデセン、ベ
ンゼン、トルエン、中シレン、四塩化炭素又はトリフp
ロトリクロc1−f−チレンの如き#IA4或いはこれ
らの2種以上の混合溶媒にfri解せしめて調整する、
その濃度は1 (l ppm〜10 ftチ、好ましく
は50 ppm〜5 wtチ である。
On the other hand, the polyisocyanate component solution contains the compound n-
Hexane, n-hebutane, n-octane, cyclohexane, n-decane, n-tetradecane, hequinadecene, benzene, toluene, medium silane, carbon tetrachloride or truffle p
Prepared by dissolving in #IA4 such as Rotriclo C1-f-tyrene or a mixed solvent of two or more of these,
Its concentration is between 1 ppm and 10 ft, preferably between 50 ppm and 5 wt.

各化合物の溶媒の選定は、双方の化合物が界面に応を生
起する必要があるので、その反応に適した界面形成性の
ある組合せでなされるべきである。但し、お互いに少々
相互#j解性があったとしても、現実的に界面が形成さ
れて界面反応が達成されるなら、そのような組合せでも
差しつかえない。
Since it is necessary for both compounds to cause a reaction at the interface, the selection of solvents for each compound should be made in a combination that has an interface-forming property suitable for the reaction. However, even if there is some degree of mutual compatibility between the two, such a combination is acceptable as long as an interface is actually formed and an interfacial reaction is achieved.

多孔質支持体は選択性透4J膜を丸持して強度的r′c
補強しつるものであれば特に限定されない。
The porous support supports the selectively permeable 4J membrane and provides strong r'c
There is no particular limitation as long as it is something that can be reinforced and hung.

かかる支持体の基材として、ガラスズ多孔材、焼結金4
 sセラミックスなどの:11(磯祠科やセルロースエ
ステル、ポリスチレン、ビニルブチラール、ポリスルホ
ン、ポリ塩化ビニル、ポリエステル、ポリアクリロニト
リル+14リアミド等の存憧ポリマーがあげらnる。
As a base material for such a support, glass porous material, sintered gold 4
s Ceramics, etc.: 11 (includes popular polymers such as Isogashina, cellulose ester, polystyrene, vinyl butyral, polysulfone, polyvinyl chloride, polyester, polyacrylonitrile + 14 lyamide, etc.).

中でもボリア、ルホン膜は、本発明の基材として特にす
ぐれた性能をぼするものであり、ポリアクリロニトリル
や:!f香族ボリアξドもまた有効である。ポリスルホ
ン多孔′i基材の製造法は、米国塩水局レポート(03
W  a、eport)4359にも記載されている。
Among them, boria and sulfone films exhibit particularly excellent performance as the base material of the present invention, and polyacrylonitrile and:! The f-aromatic boria ξ-do is also valid. The manufacturing method of the polysulfone porous 'i base material is described in the U.S. Salt Water Bureau report (03
It is also described in W a, eport) 4359.

かかるjE、祠を工表面の孔の大きさが一般に約50〜
1(J(300A、好ましく(工100〜1(IIJU
Aの間にあるものが好゛ましいが、これらに@られるも
のではなく、/&終の膜の用途などに応じて、表面の孔
の大きさは50A〜I U 11θOAの間で変化しう
ろ。これらの基1才は対称格造でも非対称力“9造でも
使用できるが、望ましくは非2を部構造のものが良いっ これらの基材はJISP8117の装f賀にエリ測定さ
れた透気度が20〜3000秒、より好ましくは50〜
1000抄のものが用いられる。透気度が20秒以下の
ものは、それを用いC得られる複合膜に欠陥が生じやす
(、選択性が低下しやすい。また3000抄以上のもの
は、それを用いて得られた複合膜の透気度が低いものと
なる。
In general, the size of the pores on the surface of the shrine is approximately 50~
1(J(300A, preferably(Eng.100-1(IIJU)
Those between A and A are preferable, but the surface pore size varies between 50A and IU11θOA depending on the purpose of the final membrane. Uro. These substrates can be used in either symmetrical structure or asymmetrical structure, but it is preferable to use a non-two-part structure. is 20 to 3000 seconds, more preferably 50 to
A paper of 1000 pieces is used. If the air permeability is less than 20 seconds, the composite membrane obtained using it is likely to have defects (the selectivity tends to decrease). The air permeability will be low.

また、基材は、その孔の大きさが最大孔径として1μm
以下、好ましくは0.5μm以下であるのが好ましい。
In addition, the size of the pores of the base material is 1 μm as the maximum pore diameter.
Hereinafter, it is preferably 0.5 μm or less.

また、支持体の形状は目的とする分4pAの形状に応じ
て植々のものでありうるが、具体的には平板状、チュー
ブ状、中空糸状のものが挙げられる。支持体の厚さは限
定されないが通常10μm〜10R1好ましくは504
m〜10 U 0μmである。
The shape of the support may vary depending on the desired shape of 4 pA, and specific examples include flat plate, tube, and hollow fiber shapes. The thickness of the support is not limited, but is usually 10μm to 10R1, preferably 504μm.
m~10U 0μm.

支持体への各溶液の塗布方法は、多孔質の支持体の形状
及び使用する溶媒の種類により種々変化し5るが、代表
的な方法として浸漬法、−−/l/ フーfインク法、
ウィックコーチインク法及びスプレーコーティング法等
が挙げられる。
The method of applying each solution to the support varies depending on the shape of the porous support and the type of solvent used, but typical methods include the dipping method, the --/l/fuf ink method,
Examples include a wick coach ink method and a spray coating method.

膜の形成方法としては、例えば、多孔性の当該支持体が
平膜状の場合には支持体を一方の溶液に′&償し、溶液
からとりだして液切りの後、該溶液と界面を形成し得る
他方の溶液に浸漬し支持体上で2種の溶液間の界間を形
成させ、界面反応による膜を形成させるのも一つの方法
である。浸漬はパッチ法でも連続法でも可岨である、1
支持体が中空糸条の場合、平膜状の場合と同様に、反応
溶液中に反応溶液が中空糸の内側に入らないように順次
浸漬し、中空糸支持体の外側にWな形成させることもで
きるし、中空糸支持体の内側に順次反応液を流して膜を
形成させることもできる。この中空糸内面に1漢を形成
する方法は製膜した後、機械的111度が小さい極薄膜
を手に触れることなく取り仮えるので、膜の取仮い上は
非才に有利である。
For example, when the porous support is in the form of a flat film, the method for forming the film is to dip the support into one solution, take it out of the solution, drain the liquid, and then form an interface with the solution. One method is to form an interface between the two solutions on the support by immersing it in the other solution where the support is available, thereby forming a film through an interfacial reaction. Immersion can be done by patch method or continuous method.1
When the support is a hollow fiber, as in the case of a flat membrane, it is immersed in the reaction solution in order so that the reaction solution does not enter the inside of the hollow fiber to form a W on the outside of the hollow fiber support. Alternatively, a membrane can be formed by sequentially flowing the reaction solution inside the hollow fiber support. This method of forming a single layer on the inner surface of the hollow fibers is advantageous in terms of membrane handling, since an extremely thin membrane with a small mechanical angle of 111 degrees can be handled without touching the membrane after it has been formed.

製膜後、未反応の化合物あるいは溶媒を低沸魚皮び/又
は低粘度のπ機溶媒又は水で洗浄することもできる。ま
た、反応を完結するために加熱処理をおこなうこともで
きる。その温JXは支持体や膜の変形をおこさない温度
でおこなわれ、通常50〜200℃の範囲であり、時間
は1〜120分が良好である。
After film formation, unreacted compounds or solvents can be washed with low-boiling fish skin/or low-viscosity π solvent or water. Moreover, heat treatment can also be performed to complete the reaction. The temperature JX is carried out at a temperature that does not cause deformation of the support or membrane, usually in the range of 50 to 200°C, and preferably for a time of 1 to 120 minutes.

か(して焙られた膜の性能は、膜本来の性能として前述
の通り、I’ll素/望素の選択性として少なくとも3
.5、好ましくは3.7以上、酵素透過係数として少な
くとも5 X 10  cc(aTP)・儂/ (y/
l−濃” cml(g 1好ましくは7 X I U 
” cc(STP) ・cpr/ crIt−sec 
・cmHg以上であ、b。
The performance of the roasted membrane is as described above as the inherent performance of the membrane, and the selectivity of I'll element/desired element is at least 3.
.. 5, preferably 3.7 or more, with an enzyme permeability coefficient of at least 5
l-concentrated cml (g 1 preferably 7 X IU
” cc(STP) ・cpr/ crIt-sec
・More than cmHg, b.

分4膜として実用にあたっての膜厚i10.2μm11
以下、好ましくはU、1μm以下が好適に用いられろ〇 本発明の膜は、その浸れた選択性及び透過性を利用して
各種のガスの分層に用いることができる。
Film thickness i10.2μm11 for practical use as a 4-layer membrane
Hereinafter, preferably U, 1 μm or less is used. The membrane of the present invention can be used for layer separation of various gases by utilizing its excellent selectivity and permeability.

I侍に空気の分離においては比較的高い17J度の#1
.素゛gv化空気を得ることができ、呼吸器疾弘者の治
療器として、また、燃焼 やエンジン等の燃焼効率の向
上のための装置に使用し得、また他の工業用途としては
水素と一酸化戻素の分離天然ガス中からのヘリウムの濃
縮、排ガス中から二に化イオウあるいは二酸化炭素の分
離を効率よくおこなうことができる。
I Samurai has a relatively high 17J degree #1 in air separation
.. It can be used as a treatment device for people with respiratory illnesses, in devices to improve the combustion efficiency of combustion engines, etc., and for other industrial applications, such as hydrogen and hydrogen. Separation of backbone monoxide It is possible to efficiently concentrate helium from natural gas and to separate sulfur dioxide or carbon dioxide from exhaust gas.

また、本発明の膜は、エタノール水系の分4などをおこ
なうパーベーパレーション用膜としても使うことができ
る・・ 以下、実施例をあげて本発明を記述するが、本発明はこ
れに限定されるものではない。
Furthermore, the membrane of the present invention can also be used as a pervaporation membrane for dividing an ethanol aqueous system. It's not something you can do.

実施例中「部」はIL量部を表わす。In the examples, "part" represents the amount of IL.

実施例1 ポリエチレンテレフクレー)’A不dl布(目付m18
UII/+11′)  の上に、ポリスルホン(ude
1350(1) 15部係、N−メチルピロリドン85
S%よりなる溶液を300μmの厚さでキャスティング
して、直ちにポリスルホン層を室温の水府干にてゲル化
させることにより、不織布補甑多孔注ポリスルホン膜を
得た。
Example 1 Polyethylene terefu clay)'A non-dl cloth (basis weight m18
Polysulfone (ude
1350 (1) Section 15, N-methylpyrrolidone 85
A solution consisting of S% was cast to a thickness of 300 μm, and the polysulfone layer was immediately gelled in a water bath at room temperature to obtain a nonwoven polysulfone membrane with porous injection.

別に、ビス(3−7ミノプロビル)へキサメチル) I
Jシロキサン(式(1+の化合物テn −2)70 モ
ル%BLヒ3− (2−7ミノエチルア、/プロピル)
トルス(トリメチルシロキシ)7ラン30モルチよりな
るアミン成分(1,1部なエチレングリコール99.9
部に溶解した浴液を調製し前記不織布補強ポルスルホン
支持膜を10分間浸漬した。引きあげて後、ゴムローラ
ーにて液切りし、4.4’−ジフェニルメタンジイソシ
アネー)U、υ5 wt4 のへキサデセン溶液に3分
11j浸漬して反応させた。
Separately, bis(3-7minoprovir)hexamethyl) I
J siloxane (compound of formula (1+ -2) 70 mol% BL-hy3- (2-7 minoethyl,/propyl)
Amine component consisting of 30 moles of torus (trimethylsiloxy) (1,1 part ethylene glycol 99.9
A bath solution was prepared in which the nonwoven fabric-reinforced porsulfone support membrane was immersed for 10 minutes. After pulling it up, the liquid was drained using a rubber roller, and it was immersed in a hexadecene solution of 4,4'-diphenylmethane diisocyanate (U, υ5 wt4) for 3 minutes and reacted.

その仮、水中に授償し、水洗したのち風乾することで複
合膜を得た。
A composite membrane was obtained by immersing it in water, rinsing it with water, and then air-drying it.

この膜の性能をガス〃シマトゲラフイーによる気体透過
率測定装置により、薄膜側に純酸素、純窒素を送り、透
過側をヘリウムで砕中しながら等工法で測定した。
The performance of this membrane was measured using a gas permeability measuring device using gas shimatogelahui, using the method of sending pure oxygen and pure nitrogen to the thin membrane side and crushing the permeated side with helium.

結果な表−1に示した。The results are shown in Table 1.

実施912〜3反び比較少11〜3 いづねもアミン成分としては表−1の組成で(+、1 
wt%の二+レングリフール溶液を、インシアネート成
分は表−1の化合物でu、Q5 wtチのヘキサデマン
唇液を用い、実施例1と同様の方法で製=X シ、性能
を求めた。
Implementation 912-3 Comparison 11-3 Izunemo amine component had the composition shown in Table 1 (+, 1
A wt% solution of 2+ lene glycol was prepared in the same manner as in Example 1, using a compound shown in Table 1 as the incyanate component, and Q5 wt hexademane lip fluid, and its performance was determined.

結果を衣−1に示した。The results are shown in Cloth-1.

実施例4 ポリスルホン(udel 3500 ) 20 its
、 N−メチルピロリドン57部、塩化リチウム3部お
工び2−メトキシエタノール20jf5よりなる溶液を
水を芯よとして環状スリットエリ吐出させ、水中に侵a
して凝固することで得られる外径900μm1内径60
0μn1のポリスルホン中空糸支持体をポリカーボネー
トmのパイプにつめ向44部を像着剤で固め中空糸膜モ
ジュールを得た。
Example 4 Polysulfone (udel 3500) 20 its
A solution consisting of 57 parts of N-methylpyrrolidone, 3 parts of lithium chloride, and 20jf5 of 2-methoxyethanol was discharged through an annular slit using water as the core, and the solution was allowed to penetrate into the water.
Outer diameter 900 μm 1 inner diameter 60
A hollow fiber membrane module was obtained by solidifying 44 parts of the polysulfone hollow fiber support having a diameter of 0 .mu.n1 on a polycarbonate pipe with an image binder.

別にビス(3−7ミノプロビル)へ千サメチルトリシロ
キサン75モル’%&び3−(2−7ミノエチルアミノ
プロビル)トリス(トリメチルシロキシ)シラン25モ
ルチからなるアミン成分を0.1 wt%の濃度でエチ
レングリコールm液に溶解し、前記中空系支持体の内側
に導入し液切りののち、4.4′−ジフェニルエーテル
ジイソシアネートの25υppmのオクタデセン溶液を
同じく内側に送液した。3分+tl送額ののち、ヘキサ
ン溶液を内懐1に流して洗浄し、更に流水中で1回水洗
したのち充分風乾させて中空糸複合膜な得た。
Separately, an amine component consisting of 75 mol% of 1,000-samethyltrisiloxane and 25 mol% of 3-(2-7minoethylaminoprobyl)tris(trimethylsiloxy)silane was added to bis(3-7minoprovil) by 0.1 wt%. The solution was dissolved in ethylene glycol m solution at a concentration of , introduced into the inside of the hollow support, and after the liquid was drained, a 25 υppm octadecene solution of 4,4'-diphenyl ether diisocyanate was also sent inside. After transferring for 3 minutes + tl, a hexane solution was poured into the inner pocket 1 for washing, and the inner pocket 1 was washed once, and then thoroughly air-dried to obtain a hollow fiber composite membrane.

この朕の透過性能な平膜と同様に等圧にて測定L ?、
: トcろ、酸素透4速度(KO2)は24X]0’c
c /7−sec ・cmHg 、選択1% (KO2
7KN2) 3.8であった。
Like our flat membrane with permeability, measured at equal pressure L? ,
: Toc, the oxygen permeability (KO2) is 24X]0'c
c/7-sec ・cmHg, selection 1% (KO2
7KN2) was 3.8.

Claims (1)

【特許請求の範囲】 1 下記式( I )で表わされる化合物と下記式(II)
で表わされる化合物 ▲数式、化学式、表等があります▼・・・・・・( I
) (n=1、2又は3) ▲数式、化学式、表等があります▼ ・・・・・・(II) との混合物であつて、式(II)で表わされる化合物が全
体の45モル%以下であるアミン成分とポリイソシアネ
ート成分から主として形成された気体分離膜。 2 ポリイソシアネート成分が、4、4′−ジフェニル
メタンジイソシアネート、4、4″−ジフェニルエーテ
ルジイソシアネートおよび3、4′−ジフェニルエーテ
ルジイソシアネートから選ばれたものであることを特徴
とする特許請求の範囲第1項記載の気体分層膜。
[Claims] 1. A compound represented by the following formula (I) and the following formula (II)
Compounds represented by ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・( I
) (n=1, 2 or 3) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ・・・・・・(II) A mixture with the compound represented by formula (II) accounting for 45 mol% of the total A gas separation membrane mainly formed from the following amine components and polyisocyanate components. 2. The polyisocyanate component according to claim 1, wherein the polyisocyanate component is selected from 4,4'-diphenylmethane diisocyanate, 4,4''-diphenyl ether diisocyanate and 3,4'-diphenyl ether diisocyanate. Gas separation membrane.
JP7132786A 1986-03-31 1986-03-31 Gas separation membrane Expired - Lifetime JPH0696106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7132786A JPH0696106B2 (en) 1986-03-31 1986-03-31 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7132786A JPH0696106B2 (en) 1986-03-31 1986-03-31 Gas separation membrane

Publications (2)

Publication Number Publication Date
JPS62227423A true JPS62227423A (en) 1987-10-06
JPH0696106B2 JPH0696106B2 (en) 1994-11-30

Family

ID=13457343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7132786A Expired - Lifetime JPH0696106B2 (en) 1986-03-31 1986-03-31 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPH0696106B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863496A (en) * 1988-04-13 1989-09-05 E. I. Du Pont De Nemours And Co. Reactive posttreatment for gas separation membranes
US8865249B2 (en) 2002-05-22 2014-10-21 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9549693B2 (en) 2002-05-22 2017-01-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10376143B2 (en) 2003-07-25 2019-08-13 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863496A (en) * 1988-04-13 1989-09-05 E. I. Du Pont De Nemours And Co. Reactive posttreatment for gas separation membranes
US9931067B2 (en) 1997-03-04 2018-04-03 Dexcom, Inc. Device and method for determining analyte levels
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
US10154807B2 (en) 2002-05-22 2018-12-18 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9179869B2 (en) 2002-05-22 2015-11-10 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US11020026B2 (en) 2002-05-22 2021-06-01 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9549693B2 (en) 2002-05-22 2017-01-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US10052051B2 (en) 2002-05-22 2018-08-21 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8865249B2 (en) 2002-05-22 2014-10-21 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9801574B2 (en) 2002-05-22 2017-10-31 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US10376143B2 (en) 2003-07-25 2019-08-13 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10610140B2 (en) 2003-07-25 2020-04-07 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9993186B2 (en) 2003-07-25 2018-06-12 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9597027B2 (en) 2003-07-25 2017-03-21 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9173606B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9572523B2 (en) 2008-03-28 2017-02-21 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9566026B2 (en) 2008-03-28 2017-02-14 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10143410B2 (en) 2008-03-28 2018-12-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9549699B2 (en) 2008-03-28 2017-01-24 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11147483B2 (en) 2008-03-28 2021-10-19 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10561352B2 (en) 2008-09-19 2020-02-18 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028683B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028684B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US11918354B2 (en) 2008-09-19 2024-03-05 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors

Also Published As

Publication number Publication date
JPH0696106B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JPS62227423A (en) Gas separating membrane
JPS59209609A (en) Permselective membrane
JPS59209610A (en) Permselective membrane
JPH07114937B2 (en) Separation membrane
JPS59209608A (en) Permselective membrane
JPS6274406A (en) Separating membrane
JPS5959221A (en) Prearation of composite perrmeable membrane for separating gas
JPH0230292B2 (en)
JPS643134B2 (en)
JPH0260370B2 (en)
JPH0824830B2 (en) Separation membrane
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
KR100322235B1 (en) Fabrication of high permeable reverse osmosis membranes
JPS5855005A (en) Separating membrane for gas
JPH022608B2 (en)
JPH0322206B2 (en)
JPS6274405A (en) Separating membrane
JPH0224577B2 (en)
WO2019044196A1 (en) Separation membrane, separation membrane module, separation device, separation membrane formation composition, production method for composite membrane for separation, and cellulose compound
JPH051050B2 (en)
JPH07114943B2 (en) Method for producing hollow composite membrane for gas separation
JPH0378128B2 (en)
JPS6230524A (en) Permselective membrane
JPS614507A (en) Separation membrane and its manufacture
JPS58193703A (en) Manufacture of composite membrane having selective permeability for gas separation