JPS62217936A - Apparatus for analyzing electrocardiograph - Google Patents

Apparatus for analyzing electrocardiograph

Info

Publication number
JPS62217936A
JPS62217936A JP61063312A JP6331286A JPS62217936A JP S62217936 A JPS62217936 A JP S62217936A JP 61063312 A JP61063312 A JP 61063312A JP 6331286 A JP6331286 A JP 6331286A JP S62217936 A JPS62217936 A JP S62217936A
Authority
JP
Japan
Prior art keywords
unit
matrix
section
output
body surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61063312A
Other languages
Japanese (ja)
Other versions
JPH0546215B2 (en
Inventor
速水 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61063312A priority Critical patent/JPS62217936A/en
Publication of JPS62217936A publication Critical patent/JPS62217936A/en
Publication of JPH0546215B2 publication Critical patent/JPH0546215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば心臓病の患者に対して、桟表面各部の
電位を計測するだけで心外膜面各部の電位を的確に推定
し、患部及び病因を固定するだめの心電図解析装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for accurately estimating the potential of each part of the epicardial surface, for example, for a heart disease patient, by simply measuring the potential of each part of the crosspiece surface. The present invention relates to an electrocardiogram analysis device for fixing the affected area and the cause of the disease.

〔従来の技術〕[Conventional technology]

従来は、ロジャー シー、バー(Roger C,Ba
rr)らによる1アイ・イー・イー・イー トランザク
ション オン バイオメディカルエンジニアリング、ピ
ー・エム・イー24巻、1番、1977年1月号” (
”IEEE Transactions on Bio
medicalEngineering、vol、BM
E−24、A I 、 January 1977”)
に掲載された論文に示されている様に、心外膜面と体表
面間の電気現象を積分方程式で定式化し、それを心外膜
面及び体表面をおおう三角形網により離散化し、連立−
次方程式を解く事により、心外膜面の電位分布から体表
面の電位分布を求めていた。
Traditionally, Roger C. Ba.
1 IE Transactions on Biomedical Engineering, P.M.E., Volume 24, No. 1, January 1977 issue” (
”IEEE Transactions on Bio
Medical Engineering, vol, BM
E-24, AI, January 1977”)
As shown in the paper published in , the electrical phenomenon between the epicardial surface and the body surface is formulated as an integral equation, and this is discretized by a triangular network covering the epicardial surface and the body surface, and the simultaneous -
By solving the following equation, the potential distribution on the body surface was determined from the potential distribution on the epicardial surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術では、心外膜面の電位分布より体表面の電
位分布を求める事はできるが、臨床上重要な、測定され
た体表面電位から心外膜面の電位分布を求める定式化は
されていない。
In the above-mentioned conventional technology, it is possible to determine the potential distribution on the body surface from the potential distribution on the epicardial surface, but there is no formulation for determining the potential distribution on the epicardial surface from the measured body surface potential, which is clinically important. Not yet.

また、体表面及び心外膜面をおおう離散化のための網は
三角形網に限定されているため、体表面等の複雑な形状
をより正確にとらえる、境界要素法で用いられる曲面要
素、2次要素が用いられていないので、計算の精度が落
ちると考えられる。
In addition, since the discretization network that covers the body surface and epicardial surface is limited to a triangular network, curved surface elements used in the boundary element method, 2, which more accurately capture complex shapes such as the body surface, Since the next element is not used, the accuracy of calculation is considered to be lower.

びその時間変化より、心外膜面各部での電位及びその時
間変化を予測することによシ、6蔵における異常な部分
を同定する事を支援することのできる心電図解析装置を
提供することにある。
An object of the present invention is to provide an electrocardiogram analysis device that can support the identification of abnormal areas in the epicardial membrane by predicting the electric potential at each part of the epicardial surface and its temporal change. .

面の形状及び相対位置に関するデータを入力する形状入
力部と、前記形状入力部から入力されたデータをもとに
体表面及び心外膜面の境界要素メッシュを生成する境界
要素メツシュ生成部と、前記形状入力部及び前記境界要
素メッシュ生成部の出力データをもとに境界要素法の行
列要素計算部と、行列要素計算部の出力をもとに行列の
LU分解を行なうLU分分解色、体表面上の電極で観測
された電位を入力する入力部と、前記行列要素計算部の
出力データと前記入力部の出力データをもとに行列とベ
クトルの乗算を行なう行列乗算部と、前記行列乗算部の
出力と前記LU分分解色出力をもとに前進代入を行なう
前進代入部と、前記前進代入部の出力と前記LU分分解
色出力をもとに後退代入を行なう後退代入部と、前記後
退代入部及び前記形状入力部及び前記境界要素メツジー
生成部の出力をもとに、心外膜面各部での電位の予測値
を含むデータを出力する出力部とから構成される心電図
解析装置が得られる。
a shape input unit that inputs data regarding the shape and relative position of the surface; a boundary element mesh generation unit that generates a boundary element mesh of the body surface and epicardial surface based on the data input from the shape input unit; A matrix element calculation unit based on the boundary element method based on the output data of the shape input unit and the boundary element mesh generation unit, and an LU separation color and body that performs LU decomposition of the matrix based on the output of the matrix element calculation unit. an input section that inputs the potential observed at the electrode on the surface; a matrix multiplication section that performs matrix and vector multiplication based on the output data of the matrix element calculation section and the output data of the input section; and the matrix multiplication section. a forward substitution unit that performs forward substitution based on the output of the forward substitution unit and the LU separation color output; a backward substitution unit that performs backward substitution based on the output of the forward substitution unit and the LU separation color output; An electrocardiogram analysis device comprising a backward substitution section and an output section that outputs data including predicted values of potentials at various parts of the epicardial surface based on the outputs of the shape input section and the boundary element mesh generation section. can get.

〔発明の原理〕[Principle of the invention]

第2図の心外膜面Hと体表面Tに囲まれる体内Bにおい
て誘電率εは一定で、電荷は存在しないと仮定し、心外
膜面Hと体表面Tの形状及び相対位置はわかっているも
のとする。
Assuming that the dielectric constant ε is constant and there is no charge in the body B surrounded by the epicardial surface H and body surface T in Figure 2, the shape and relative position of the epicardial surface H and body surface T are known. It is assumed that

上記の仮定よシ第3図を参照すると、体内での電位ψ(
xyy+z)は3次元ラプラス方程式%式% Greenの公式 でV=ψ、u=ψ とおくと(1) t (2) 、 
(3)より/−9+ (x)δ(x、y)dV(x)但
し、単位法線ベクトルnは体表面Tでは体の外向き、心
外膜面Hでは心臓の内側向きにとる。
Considering the above assumption and referring to Figure 3, the potential ψ(
xyy+z) is a three-dimensional Laplace equation % Formula % If we set V = ψ and u = ψ in Green's formula, (1) t (2) ,
From (3), /-9+ (x) δ (x, y) dV (x) However, the unit normal vector n is taken to be directed outward from the body at the body surface T, and directed toward the inside of the heart at the epicardial surface H.

(3)よシ 従ってyが体表面Tまたは心外膜面H上にあるときは(
5)は (炉y+             (7)となる。但
し でω(支)は点yで体内Bを見込む立体角であり、yy
が体表面T上にあるときは、(7)は(xy〆y) yが心外膜面Hにある場合は (x、I〆y) となる。但しψ7,91□等はそれぞれ体表面T上。
(3) Therefore, when y is on the body surface T or the epicardial surface H, (
5) becomes (furnace y+ (7). However, ω (branch) is the solid angle looking into the body B at point y, and yy
When y is on the body surface T, (7) becomes (xy〆y), and when y is on the epicardial surface H, (x, I〆y). However, ψ7, 91□, etc. are on the body surface T, respectively.

心外膜面Hに各々n個の要素からなるメソシーをはる。A mesothesis each consisting of n elements is placed on the epicardial surface H.

例えば、第4図の様な三角形要素を設け、i要素の代表
点(例えば)重心をyiとし、要素の面積をΔSiとし
、要素の中ではψの値はψ1 となる様な三角形一定要
素を考えると、(9) 、 (10)は近似的に(11
) 、 (12)となる。
For example, a triangular element as shown in Figure 4 is provided, the representative point (for example) of element i is the center of gravity yi, the area of the element is ΔSi, and the value of ψ is ψ1 within the element. Considering, (9) and (10) are approximately (11
), (12).

つまり、体表面T上のyTl(i=1〜n)に対して心
外膜面H上の3’+rt(i=1〜n)に対してとナル
。但しCi”C(7i)+rji=xJ−74+ rj
4 =とおくと、(11) 、 (12)は (i=1〜n )                (
16)(i=1〜n )              
 (17)と表わせる。
In other words, yTl (i=1 to n) on the body surface T is null to 3'+rt (i=1 to n) on the epicardial surface H. However, Ci”C(7i)+rji=xJ-74+rj
4 =, (11) and (12) are (i=1~n) (
16) (i=1~n)
It can be expressed as (17).

ここで ATT = 07’N)  、 BTT = (bAT
)、、、 (nxnの行列)ATT = (a’!’Q
) l BTII = (b”I)(18)IJ   
            IJとおくと(16)、 (
17)は ψ・=”“ψ・+”“q・十″“ψ・+””′q・(1
゜)と表わせ、(19) 、 (20)をまと4めると
(21)を心外膜面のψ□+qHに関して解くと、ここ
で体表面は絶縁境界と考えられるから、つまりqT=0
となるから(22)よりを得る。
where ATT = 07'N), BTT = (bAT
),,, (nxn matrix) ATT = (a'!'Q
) l BTII = (b”I) (18) IJ
Letting IJ (16), (
17) is ψ・=”“ψ・+”“q・10″“ψ・+””′q・(1
゜) and put (19) and (20) together 4. Solving (21) with respect to ψ□ + qH on the epicardial surface, since the body surface is considered to be an insulating boundary, that is, qT = 0
Since, we obtain (22).

従って体表面Tのy、(t=x〜n)に設けた電極ごと
に三角形要素を対応させたメツシュをはれば、体表面y
Tl(i=1〜n)で観測された電位ψT、(l=1〜
n)よシ、(24)を用いて心外膜面Hの各部での電位
ψH1(!=1〜n)を求めることができる。
Therefore, if we create a mesh in which triangular elements correspond to each electrode provided on the body surface T, y, (t=x~n), the body surface y
Potential ψT observed at Tl (i=1~n), (l=1~
n) Using (24), the potential ψH1 (!=1 to n) at each part of the epicardial surface H can be determined.

ここでATT、ATH,AHT、 AHH,BTH,B
HHは(14) 。
Here ATT, ATH, AHT, AHH, BTH, B
HH is (14).

(15)からもわかる様に、体表面Tと心外膜面Hが定
まり、体表面上の電極の位置に再ずくT上のメツシュと
H上のメツシュが定まれば決まる。
As can be seen from (15), the body surface T and the epicardial surface H are determined, and the mesh on T and the mesh on H, which are located at the position of the electrode on the body surface, are determined.

従って例えばクラウド法により、 の様に下三角行列りと上三角行列Uの積に分解しておけ
ば、 より、各時刻で体表面電位 さらに前進代入(L  )、後退代入(U  )を行な
、うことによりその時刻での心外膜面H各部での電位へ
、そして必要ならば、表面Hの法線方向の電界−qHが
n2のオーダーの計算量で求まる。
Therefore, for example, if we use the cloud method to decompose the product of the lower triangular matrix and the upper triangular matrix U as follows, we can further perform forward substitution (L) and backward substitution (U) of the body surface potential at each time. , the electric potential at each part of the epicardial surface H at that time and, if necessary, the electric field -qH in the normal direction to the surface H can be determined with a calculation amount on the order of n2.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロック図である。同
図において、体表、面各部の電極1で測定された電位ψ
Tl l %2 +・・・・・・、ψTnが入力部2で
アナログ/ディジタル変換を受け、n、c、の数値ベク
トルψ1 として行列乗算部4に入力される。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, the potential ψ measured at electrode 1 on the body surface and each part
Tl l %2 + .

行列乗算部4は入力9JTに対して2ncのベクトル を前進代入部5に入力する。前進代入部5はψに対して
前進代入を行いL−1ψを後退代入部6に入力する。後
退代入部6はLfに対して後退代入する。
The matrix multiplication unit 4 inputs a 2nc vector to the forward substitution unit 5 for the input 9JT. The forward substitution unit 5 performs forward substitution for ψ and inputs L-1ψ to the backward substitution unit 6. The backward substitution unit 6 performs backward substitution for Lf.

前処理部8では、求解部3が動作する時前に、体表面、
心外膜面及びそれらの相対位置、また体表面の電極位置
等の情報が形状入力部9よシ境界要素メッシェ生成部1
0に入力される。境界要素メソシュ生成部10では、体
表面の電極位置をもとに、体表面及びそれに対応して心
外膜面のモデル上に境界要素のメツシュを生成し、各要
素の3次元座標等のデータとともに行列要素計算部11
に入力する。行列要素計算部11では、各境界要素j、
i間のベクトルrJi、各要素の外向き単位法線ベクト
ルn1、係数Ctなどをもとに各要素内の数値積分を行
ない、nxnの行列A、A。
In the preprocessing section 8, before the solving section 3 operates, the body surface,
Information such as epicardial surfaces, their relative positions, and electrode positions on the body surface is sent to the shape input section 9 and the boundary element mesh generation section 1.
It is input to 0. The boundary element mesh generation unit 10 generates a mesh of boundary elements on a model of the body surface and the corresponding epicardial surface based on the electrode positions on the body surface, and generates data such as three-dimensional coordinates of each element. In addition, matrix element calculation unit 11
Enter. In the matrix element calculation unit 11, each boundary element j,
Numerical integration within each element is performed based on the vector rJi between i, the outward unit normal vector n1 of each element, the coefficient Ct, etc., and nxn matrices A and A are obtained.

A HT 、 A I(H、BTH、Bt(H等を生成
しく式(14)〜(18)参照)それらの内ATT 、
 A HTを行列乗算部4に入力しく式(24)参照)
 A TH、Al1)(、B TH、B HHをLU禦
郡部12入力する。LU分解部12は例えばりラウド法
によシ行列 をLU分解しく (25)武器f!A)、下三角行列り
を前進代入部5に入力し、上三角行列Uを後退代入部6
に入力する。
A HT , AI (H, BTH, Bt (see formulas (14) to (18) to generate H etc.) Among them, ATT ,
Input AHT to the matrix multiplier 4 (see formula (24))
A TH, Al1) (, B TH, B HH are input to the LU decomposition unit 12. The LU decomposition unit 12 decomposes the A matrix into LU using the Loud method. (25) Weapon f! A), lower triangular matrix is input to the forward substitution unit 5, and the upper triangular matrix U is input to the backward substitution unit 6.
Enter.

出力部7は、形状入力部9及び境界メツシュ生成部10
から入力されたデータをもとに、各時刻の心外膜面各部
での電位を出力表示または記録する。
The output unit 7 includes a shape input unit 9 and a boundary mesh generation unit 10
Based on the data input from , the potential at each part of the epicardial surface at each time is output and displayed or recorded.

〔発明の効果〕〔Effect of the invention〕

以上述べた通り、本発明は体表面各部の電位の観測値だ
けを用いて、簡単な計算により、高速に各時刻での心外
膜面各部での電位を予測する事により、心臓の欠陥部位
を従来の方法より正確且つ簡単に同定するのに役立つ。
As described above, the present invention uses only the observed values of the potentials of various parts of the body surface and uses simple calculations to quickly predict the potentials of each part of the epicardial surface at each time point. It helps to identify the target more accurately and easily than traditional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図である。第
2図、第3図、第4図は本発明の詳細な説明するための
体表面と心外膜面のモデルを示すための図である。 ■・・・・・・体表面の電極、2・・・・・・入力部、
3・・・・・・変換部、4・・・・・・行列乗算部、5
・・・・・・前進代入部、6・・・・・・後退代入部、
7・・・・・・出力部、8・・・・・・前処理部、9・
・・・・・形状入力部、10・・・・・・境界要素メツ
シュ生成部、11・・・・・・行列要素計算部、12・
・・・・・LU分Yij  図 ′)f5z図 ¥J3 回
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2, FIG. 3, and FIG. 4 are diagrams showing models of the body surface and epicardial surface for detailed explanation of the present invention. ■... Electrodes on the body surface, 2... Input section,
3... Conversion section, 4... Matrix multiplication section, 5
...Forward substitution section, 6...Backward substitution section,
7... Output section, 8... Preprocessing section, 9.
... shape input section, 10 ... boundary element mesh generation section, 11 ... matrix element calculation section, 12.
...LU minutes Yij Figure') f5z diagram ¥J3 times

Claims (1)

【特許請求の範囲】[Claims] 体表面の形状、体表面上の電極の位置、心外膜面の形状
及び相対位置に関するデータを入力する形状入力部と、
前記形状入力部から入力されたデータをもとに体表面及
び心外膜面の境界要素メッシュを生成する境界要素メッ
シュ生成部と、前記形状入力部及び前記境界要素メッシ
ュ生成部の出力データをもとに境界要素法の行列要素を
計算する行列要素計算部と、行列要素計算部の出力をも
とに行列のLU分解を行なうLU分解部と、体表面上の
電極で観測された電位を入力する入力部と、前記行列要
素計算部の出力データと前記入力部の出力データをもと
に行列とベクトルの乗算を行なう行列乗算部と、前記行
列乗算部の出力と前記LU分解部の出力をもとに前進代
入を行なう前進代入部と、前記前進代入部の出力と前記
LU分解部の出力をもとに後退代入を行なう後退代入部
と、前記後退代入部及び前記形状入力部及び前記境界要
素メッシュ生成部の出力をもとに、心外膜面各部での電
位の予測値を含むデータを出力する出力部とから構成さ
れる心電図解析装置。
a shape input section for inputting data regarding the shape of the body surface, the position of the electrode on the body surface, the shape and relative position of the epicardial surface;
A boundary element mesh generation unit that generates a boundary element mesh of the body surface and epicardial surface based on data input from the shape input unit, and output data of the shape input unit and the boundary element mesh generation unit. There is a matrix element calculation unit that calculates matrix elements using the boundary element method, an LU decomposition unit that performs LU decomposition of the matrix based on the output of the matrix element calculation unit, and input potentials observed at electrodes on the body surface. a matrix multiplication section that multiplies a matrix and a vector based on the output data of the matrix element calculation section and the output data of the input section; a forward substitution unit that performs forward substitution based on the source; a backward substitution unit that performs backward substitution based on the output of the forward substitution unit and the output of the LU decomposition unit; the backward substitution unit, the shape input unit, and the boundary. An electrocardiogram analysis device comprising an output section that outputs data including predicted values of potentials at various parts of the epicardial surface based on the output of the element mesh generation section.
JP61063312A 1986-03-19 1986-03-19 Apparatus for analyzing electrocardiograph Granted JPS62217936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063312A JPS62217936A (en) 1986-03-19 1986-03-19 Apparatus for analyzing electrocardiograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063312A JPS62217936A (en) 1986-03-19 1986-03-19 Apparatus for analyzing electrocardiograph

Publications (2)

Publication Number Publication Date
JPS62217936A true JPS62217936A (en) 1987-09-25
JPH0546215B2 JPH0546215B2 (en) 1993-07-13

Family

ID=13225637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063312A Granted JPS62217936A (en) 1986-03-19 1986-03-19 Apparatus for analyzing electrocardiograph

Country Status (1)

Country Link
JP (1) JPS62217936A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505352A (en) * 2002-11-07 2006-02-16 ウィシス テクノロジー フォンデーション インコーポレイテッド Method and apparatus for creating an electrical property image of a substantially uniform object including heterogeneous portions
WO2006080349A1 (en) * 2005-01-26 2006-08-03 Japan Science And Technology Agency Modeling device, program, and computer-readable recording medium, and association method
JP2008068084A (en) * 2006-09-06 2008-03-27 Biosense Webster Inc Correlation of cardiac electrical map with body surface measurement
US7907995B2 (en) 2002-03-05 2011-03-15 Dainippon Sumitomo Pharma Co., Ltd. Electrocardiography chart apparatus and method thereof
JP2011530388A (en) * 2008-08-11 2011-12-22 ワシントン・ユニバーシティ System and method for on-site real-time electrocardiographic imaging (ECGI)
JP2014530074A (en) * 2011-10-12 2014-11-17 カーディオインサイト テクノロジーズ インコーポレイテッド Detection zone for spatially related electrical information
US9504427B2 (en) 2011-05-04 2016-11-29 Cardioinsight Technologies, Inc. Signal averaging

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907995B2 (en) 2002-03-05 2011-03-15 Dainippon Sumitomo Pharma Co., Ltd. Electrocardiography chart apparatus and method thereof
US8688205B2 (en) 2002-03-05 2014-04-01 Nihon Kohden Corporation Electrocardiogram chart device and method thereof
US8508530B2 (en) 2002-03-05 2013-08-13 Nihon Kohden Corporation Electrocardiogram chart device and method thereof
JP2006505352A (en) * 2002-11-07 2006-02-16 ウィシス テクノロジー フォンデーション インコーポレイテッド Method and apparatus for creating an electrical property image of a substantially uniform object including heterogeneous portions
US8554491B2 (en) 2005-01-26 2013-10-08 Japan Science And Technology Agency Modeling device, program, computer-readable recording medium, and method of establishing correspondence
US8095321B2 (en) 2005-01-26 2012-01-10 Japan Science And Technology Agency Modeling device, program, computer-readable recording medium, and method of establishing correspondence
JP2006204463A (en) * 2005-01-26 2006-08-10 Japan Science & Technology Agency Modeling device, program, computer readable recording medium, and matching method
WO2006080349A1 (en) * 2005-01-26 2006-08-03 Japan Science And Technology Agency Modeling device, program, and computer-readable recording medium, and association method
JP2008068084A (en) * 2006-09-06 2008-03-27 Biosense Webster Inc Correlation of cardiac electrical map with body surface measurement
JP2011530388A (en) * 2008-08-11 2011-12-22 ワシントン・ユニバーシティ System and method for on-site real-time electrocardiographic imaging (ECGI)
US9980660B2 (en) 2008-08-11 2018-05-29 Washington University In St. Louis Systems and methods for on-site and real-time electrocardiographic imaging (ECGI)
US9504427B2 (en) 2011-05-04 2016-11-29 Cardioinsight Technologies, Inc. Signal averaging
JP2014530074A (en) * 2011-10-12 2014-11-17 カーディオインサイト テクノロジーズ インコーポレイテッド Detection zone for spatially related electrical information
US9549683B2 (en) 2011-10-12 2017-01-24 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US11224374B2 (en) 2011-10-12 2022-01-18 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US11826148B2 (en) 2011-10-12 2023-11-28 Cardioinsight Technologies Inc. Sensing zone for spatially relevant electrical information

Also Published As

Publication number Publication date
JPH0546215B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
Cuppen et al. Model studies with the inversely calculated lsochrones of ventricular depolarization
De Munck A linear discretization of the volume conductor boundary integral equation using analytically integrated elements (electrophysiology application)
CN107273611B (en) Gait planning method of lower limb rehabilitation robot based on lower limb walking characteristics
Krishnamoorthi et al. Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology
Harir et al. Variational iteration method and differential transformation method for solving the SEIR epidemic model
JPS62217936A (en) Apparatus for analyzing electrocardiograph
CN115186488A (en) Time-space modeling method and system for lithium battery temperature field
IL269638B (en) Iterative coherent mapping of cardiac electrophysiological (ep) activation including reentry effects
Raeiatibanadkooki et al. Real time processing and transferring ECG signal by a mobile phone
WO2017132236A1 (en) Simplified instances of virtual physiological systems for internet of things processing
Sovilj et al. Realistic 3D bidomain model of whole heart electrical activity and ECG generation
CN114066986B (en) Three-dimensional coordinate determination method and device, electronic equipment and storage medium
Hu et al. Classification of ECG anomaly with dynamically-biased LSTM for continuous cardiac monitoring
Engelhardt et al. A Concept for Myocardial Current Density Estimation with Magnetoelectric Sensors
Choi et al. Effects of geometrical uncertainties on electrocardiography
Alipour et al. Application of genetic algorithms in fuzzy wavelet neural network for fetal electrocardiogram extraction
McLeod Computer simulation of the hydrodynamics of the cardiovascular system
CN112120703A (en) Fall risk assessment method and device
Sowndarrajan OPTIMAL CONTROL PROBLEM FOR HOST-PATHOGEN MODEL
Stepanov et al. The smart clothing as a basis for safe flight for pilots
Lin et al. FPGA implementation of fractal patterns classifier for multiple cardiac arrhythmias detection
Kaghazchi et al. RECONSTRUCTION OF EPICARDIAL POTENTIAL FROM ELECTROCARDIOGRAPHY SIGNAL USING REGULARIZATION METHODS
Melgarejo-Meseguer et al. A Convex Optimized Estimator of the Laplacian Operator for Bioelectric Simulations
Harir et al. Research Article Variational Iteration Method and Differential Transformation Method for Solving the SEIR Epidemic Model
Wu et al. A new algorithm to compute body surface Laplacians in an inhomogeneous torso volume conductor with arbitrary shape