JPS62203526A - Radio power transmitter - Google Patents

Radio power transmitter

Info

Publication number
JPS62203526A
JPS62203526A JP61044799A JP4479986A JPS62203526A JP S62203526 A JPS62203526 A JP S62203526A JP 61044799 A JP61044799 A JP 61044799A JP 4479986 A JP4479986 A JP 4479986A JP S62203526 A JPS62203526 A JP S62203526A
Authority
JP
Japan
Prior art keywords
power
coil
power transmission
gap
transmitting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61044799A
Other languages
Japanese (ja)
Other versions
JPH0559660B2 (en
Inventor
秀一 砂原
加藤 由人
大角 喜朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61044799A priority Critical patent/JPS62203526A/en
Publication of JPS62203526A publication Critical patent/JPS62203526A/en
Publication of JPH0559660B2 publication Critical patent/JPH0559660B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、無線で、2つの電気回路間に電力の伝送を可
能とする無線電力伝送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wireless power transmission device that enables wireless power transmission between two electric circuits.

[従来技術] 従来より可動部分への電力の伝送は有線にて実施をして
いる。このため可動部分の繰り返し稼動による断線等の
トラブルが多発していた。また、ブラシを用いて電気的
に接続する技術も提案されてはいるが、ブラシの接触抵
抗が経年変化をしたり、接触面を常に清潔にする等の保
守に大きな労力を要する。
[Prior Art] Conventionally, power is transmitted to moving parts using wires. For this reason, troubles such as wire breakage due to repeated operation of moving parts frequently occur. Furthermore, although a technique for electrical connection using a brush has been proposed, the contact resistance of the brush changes over time, and maintenance such as constantly cleaning the contact surface requires a great deal of effort.

そこで近年では非接触にて電力を伝送する技術が開発さ
れるに至っており、磁気結合している非接触の1組のコ
イルを用い、磁力を電力伝送媒体として利用した装置が
提案されている(特開昭58−115945号公報)。
Therefore, in recent years, technology for transmitting power without contact has been developed, and a device has been proposed that uses a pair of magnetically coupled non-contact coils and uses magnetic force as a power transmission medium ( (Japanese Unexamined Patent Publication No. 58-115945).

[発明が解決しようとする問題点コ 従来の電力伝送装置は、送電コイルと受電コイルとの空
隙が変動しない部分に設【プられていた。
[Problems to be Solved by the Invention] Conventional power transmission devices are installed in a portion where the air gap between the power transmitting coil and the power receiving coil does not change.

この装置を第10図に示す工業用のターンテーブルIT
に用いた場合には、以下に示す問題が生じる。上記工業
用ターンテーブルITは、第1センサ詳S1と第2セン
リ一群S2とを有するテーブル下と、このテーブルTを
180度回動する駆動部Bとから構成され、上記の第1
センサ群S1には、第1受電コイルCP1が接続され、
上記の第2センサ群S2には、第2受電コイルCP2が
接続されている。そして、テーブルTの位置に応じて上
記の第1受電コイルCP1、又は、第2受電コイルCP
2の一方に電力を供給する送電コイルDCか設【プられ
ている。したがって、上記ターンテーブルITでは、テ
ーブルTが180度回動じて、交互に第1受電コイルC
P1、又は、第2受電コイルCP2が送電コイルDCと
定常送電空隙になる。そのためテーブルTが回動される
毎に両コイルの間隙が変動する。該間隙が変動すること
で、後述するように間隙が広くなった場合に送電コイル
DCのインピーダンスか小さくなる。その結果、送電コ
イルDCのインピーダンスが小さくなった場合に、この
コイルDCに流れる電流が増加する。
This device is used as an industrial turntable IT as shown in Fig. 10.
When used for this purpose, the following problems occur. The industrial turntable IT is composed of a table bottom having a first sensor detail S1 and a second sensor group S2, and a drive section B that rotates this table T by 180 degrees.
A first power receiving coil CP1 is connected to the sensor group S1,
A second power receiving coil CP2 is connected to the second sensor group S2. Then, depending on the position of the table T, the first power receiving coil CP1 or the second power receiving coil CP
A power transmission coil DC is installed to supply power to one of the two. Therefore, in the turntable IT, the table T rotates 180 degrees to alternately turn the first power receiving coil C
P1 or the second power receiving coil CP2 forms a steady power transmission gap with the power transmitting coil DC. Therefore, the gap between the two coils changes every time the table T is rotated. By varying the gap, the impedance of the power transmission coil DC becomes smaller when the gap becomes wider, as will be described later. As a result, when the impedance of the power transmission coil DC becomes small, the current flowing through the coil DC increases.

この電流か増/JDすることで、この電流を断続してい
るスイッチング手段等の容量、および、放熱量が大きく
なる問題が発生する。
When this current is increased/JD, a problem arises in that the capacity of the switching means etc. that intermittent this current and the amount of heat dissipated increase.

[問題点を解決するための手段] 上記問題点を解決するための手段として、本発明では、 送電コイルの一端に接続され、該送電コイルに流れる電
流を送電周波数で断続するスイッチング手段と、 上記送電コイルと可変される空隙を介して送受電を行な
う受電コイルと、 を備えた無線電力伝送装置において、 ざらに、 上記送電コイルと受電コイルとの空隙が定常時に送受電
を行なう定常送電空隙の場合に、上記送電コイルとの間
で、上記送電周波数に並列共振する静電容量の共振コン
デンサを、上記スイッチング手段に並列接続することを
特徴とする無線電力伝送装置を要旨とする構成を採る。
[Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides: a switching means connected to one end of a power transmission coil, which switches on and off the current flowing through the power transmission coil at a power transmission frequency; In a wireless power transmission device equipped with a power transmitting coil and a receiving coil that transmits and receives power through a variable air gap, the air gap between the power transmitting coil and the power receiving coil is roughly defined as a steady power transmission gap that performs power transmission and reception when the gap between the power transmitting coil and the power receiving coil is steady. In this case, a configuration is adopted in which a wireless power transmission device is characterized in that a resonant capacitor having a capacitance that resonates in parallel at the power transmission frequency is connected in parallel to the switching means between the power transmission coil and the power transmission coil.

上記スイッチング手段には、例えば半導体スイッチング
素子が用いられる。
For example, a semiconductor switching element is used as the switching means.

上記送電周波数に並列共振する静電容量の共振コンデン
サとは、例えば送信コイルから受信コイルに伝送される
電力の発振周波数に、送信コイルとの間で並列共振させ
るために設けるコンデンサでおる。
The electrostatic capacitance resonance capacitor that resonates in parallel with the power transmission frequency is, for example, a capacitor that is provided to resonate in parallel with the transmitting coil at the oscillation frequency of the power transmitted from the transmitting coil to the receiving coil.

[作用] 本発明は、第2図に示す電力伝送に用いるカプラのイン
ピーダンスが空隙の変化にともなって変動することに着
目してなされたものである。まず第2図を用いて、着目
点である空隙の変化で変動するインピーダンスの状態を
示す。第2図では、Aは鉄心長Ω1、断面積S1、透磁
率μmの鉄心「aにN1回巻かれている送電コイル、B
は鉄心長Ω2、断面積S2、透磁率μ2の鉄心FbにN
2回巻かれている受電コイル、Cは電圧Vの電源でおる
。第2図中の点線は磁束Φの状態を示す。
[Function] The present invention was made by focusing on the fact that the impedance of the coupler used for power transmission shown in FIG. 2 changes as the air gap changes. First, using FIG. 2, we show the state of impedance that changes with changes in the air gap, which is the point of interest. In Figure 2, A is a power transmission coil wound N1 times around an iron core "a" with core length Ω1, cross-sectional area S1, and magnetic permeability μm, and B
is N for core Fb with core length Ω2, cross-sectional area S2, and magnetic permeability μ2.
The receiving coil C, which is wound twice, is powered by a voltage V power source. The dotted line in FIG. 2 indicates the state of the magnetic flux Φ.

上記第2図では、磁束のは、 Φ=N111/((Ω1/μm51) −F  (Q 2 / μ232>  + 2(d/ 
μ0 33   )   )の式にて示される。<11
は送電コイルAに流れる電流、μOは空隙の透磁率、S
3は空隙の断面積)そして、第2図においてカプラの間
隔が広くなった場合、つまりdが大きくなった場合には
、上記磁束Φの算出式における分母の磁束抵抗か大きく
なるため磁束のが大幅に減少する。したがって、インダ
クタンスLは L=dΦ/di の式にて示されることから、カプラの間隔が広くなった
場合にはΦが減少するのでインダクタンスしが減少する
。したがって、該送電コイルAに交流電源を加えた場合
には、インピーダンスはインダクタンスしに比例するの
で、カプラの間隔が大きくなった場合には、送電コイル
Aのインピーダンスが低下する。その結果、送電コイル
に流れる電流が増大する。
In Figure 2 above, the magnetic flux is Φ=N111/((Ω1/μm51) −F (Q 2 / μ232> + 2(d/
It is expressed by the formula μ0 33 )). <11
is the current flowing through the power transmission coil A, μO is the magnetic permeability of the air gap, and S
3 is the cross-sectional area of the air gap) In Fig. 2, when the spacing between the couplers becomes wider, that is, when d becomes larger, the magnetic flux resistance in the denominator in the above formula for calculating the magnetic flux Φ increases, so the magnetic flux increases. significantly reduced. Therefore, since the inductance L is expressed by the formula L=dΦ/di, when the distance between the couplers becomes wider, Φ decreases, and therefore the inductance decreases. Therefore, when an AC power source is applied to the power transmitting coil A, impedance is proportional to inductance, so when the distance between the couplers increases, the impedance of the power transmitting coil A decreases. As a result, the current flowing through the power transmission coil increases.

次に、本発明を第3図に示す回路に用いた場合の作用を
示す。第3図では、送電コイルを楠える送電カプラa1
受電コイルを備える受電カプラb、および、ブロッキン
グ発振回路Cから構成される無線電力伝送装置か示され
ている。ブロッキング発振回路Cでは、N1回巻かれた
送電コイルaCの一端に1〜ランジスタctのコレクタ
CCが接続され、該トランジスタctのベースcb〜エ
ミッタce間には入力抵抗R2、N1回巻かれている発
振コイルaO1および、発振コンデンサC1が挿入され
、一方、該発振コンデンサC1とともに発振周波数を調
整するための発振抵抗R1が上記送電コイルaCの(I
!!端aθと発振コンデンサC1の一端ac1に挿入さ
れている。
Next, the effect when the present invention is applied to the circuit shown in FIG. 3 will be described. In Figure 3, the power transmission coupler a1 that connects the power transmission coil
A wireless power transmission device is shown that includes a power receiving coupler b including a power receiving coil and a blocking oscillation circuit C. In the blocking oscillation circuit C, the collectors CC of transistors 1 to ct are connected to one end of the power transmitting coil aC, which is wound N1 times, and the input resistor R2 is wound N1 times between the base cb and emitter ce of the transistors ct. An oscillation coil aO1 and an oscillation capacitor C1 are inserted, and an oscillation resistor R1 for adjusting the oscillation frequency together with the oscillation capacitor C1 is connected to the (I) of the power transmission coil aC.
! ! It is inserted between the end aθ and one end ac1 of the oscillation capacitor C1.

上記の第3図の受電カプラbを除いた回路を第4図に示
す。従来は、第3図に承り送電カプラaと受電カプラb
との距離(ギャップ)が3mrn以下程以下室められて
いた。そして、この距離の場合に、両カプラ間に電力の
送受が行なわれていた。
FIG. 4 shows a circuit excluding the power receiving coupler b shown in FIG. 3 above. Conventionally, the power transmitting coupler a and the power receiving coupler b were connected as shown in Figure 3.
The distance (gap) between the two was approximately 3 mrn or less. At this distance, power was transmitted and received between the couplers.

本発明では、上記両カプラ間のギャップを定められたギ
ャップ、たとえばQ、5mm以上離した場合に、トラン
ジスタctに流れる送電電流Iが第5図に承りように増
大することを防止する。第5図では、縦軸に送電電流1
(A>、横軸にカプラ間ギャップd (mm)が示され
ている。この第5図では、カブラ間ギVツブが大きくな
るにしだがつて送電電流が大きくなっている。
In the present invention, when the gap between the two couplers is set apart by a predetermined gap, for example Q, 5 mm or more, the power transmission current I flowing through the transistor ct is prevented from increasing as shown in FIG. In Figure 5, the vertical axis shows the transmission current 1
(A>, the horizontal axis shows the inter-coupler gap d (mm). In FIG. 5, the transmission current increases as the inter-coupler gap increases.

次に、第5図で示す送電電流の増加を防止するために、
本発明では第6図に示すように共振コンデン゛すC2が
トランジスタctのコレクターエミッタ間に挿入される
。この共振コンデンサC2が挿入された第6図の回路で
は、カプラ間ギψツブが1.0(mm>の場合に、発振
回路Cのブロッキング発振周波数で、共振コンデンサC
2と送電コイルaCとの間で並列共振が発生する。なお
、一般的共振条件は、共(辰周波数がf、コイルのイン
ダクタンスがし、コンデンサのキャパシタンスがCの場
合には、 f=1/27rl で示される。上記の送電電流I特性を第7図に示す、第
7図では、送電電流Iがカプラ間ギャップd=1 (m
n>をピークにしてQ(mrn)から1(mm)まで増
加後、1 (mm)から2(mm>まで減少して、以後
一定になる特性が示されている。したがって、共振コン
デンサC2を挿入することで、カプラ間ギャップdが大
きい場合に増加する電流を、減少できる。
Next, in order to prevent the increase in power transmission current shown in Figure 5,
In the present invention, as shown in FIG. 6, a resonant capacitor C2 is inserted between the collector and emitter of the transistor ct. In the circuit shown in FIG. 6 in which this resonant capacitor C2 is inserted, when the gear ψ between the couplers is 1.0 (mm>), at the blocking oscillation frequency of the oscillation circuit C, the resonant capacitor C
Parallel resonance occurs between the power transmitting coil aC and the power transmitting coil aC. In addition, the general resonance condition is expressed as f = 1/27rl when the frequency is f, the inductance of the coil is , and the capacitance of the capacitor is C. The above transmission current I characteristic is shown in Figure 7. In Fig. 7 shown in Figure 7, the transmission current I is the gap between the couplers d=1 (m
The characteristic is shown that Q(mrn) peaks at n>, increases from Q(mrn) to 1(mm), then decreases from 1(mm) to 2(mm>, and then remains constant. Therefore, the resonant capacitor C2 is By inserting it, it is possible to reduce the current that increases when the inter-coupler gap d is large.

[実施例] 以下に本発明の一実施例を図面にもとづいて説明する。[Example] An embodiment of the present invention will be described below based on the drawings.

第1図は本実施例の無線電力伝送装置の構成図、第8図
は実施例に用いるカプラの断面図、第9図は本実施例を
産業用ターンテーブルに応用した例の構成図ある。
FIG. 1 is a block diagram of a wireless power transmission device of this embodiment, FIG. 8 is a sectional view of a coupler used in the embodiment, and FIG. 9 is a block diagram of an example in which this embodiment is applied to an industrial turntable.

本実施例の無線電力伝送装置1は、送電コイルA、受電
コイルB、電源C、スイッチング手段D、共振コンデン
サE、受電電源供給手段F、センサ群G、信号送信手段
H1および、信号受信手段Iから構成されている。
The wireless power transmission device 1 of this embodiment includes a power transmitting coil A, a power receiving coil B, a power source C, a switching means D, a resonant capacitor E, a power receiving power supply means F, a sensor group G, a signal transmitting means H1, and a signal receiving means I. It consists of

上記送電コイルAには、電源Cから供給されスイッチン
グ手段りにて断続される電力が流れる。
Electric power supplied from the power supply C and intermittent by the switching means flows through the power transmission coil A.

上記受電コイルBでは、上記送電コイルAと空隙を介し
た磁気的結合にて送電コイル八から送られてくる電力の
受電が行なわれる。
The power receiving coil B receives the power sent from the power transmitting coil 8 through magnetic coupling with the power transmitting coil A through an air gap.

上記電源Cには、電源供給用バッテリ40Cが備えられ
ていて、上記送電コイルAに電力を供給すると、ともに
、上記信号受信手段Iに5(V)の電力を供給するレギ
ュレータ41Cが備えられている。
The power supply C is equipped with a power supply battery 40C, and when it supplies power to the power transmission coil A, it is also equipped with a regulator 41C that supplies 5 (V) of power to the signal reception means I. There is.

上記スイッチング手段りでは、電源Cから送電コイルA
を介して送られてくる電力の断続が行なわれる。上記の
断続は、トランジスタ45D、発振コイル46D1発撮
コンデンサ47D、発振抵抗48D、および、入力抵抗
49Dから構成されるブロッキング発振回路で行なわれ
る。このブロッキング発振回路では、発振周波数fO1
たとえば10(KH2>の繰り返し周波数で発振か行な
われる。
In the above switching means, from the power supply C to the power transmission coil A
The power sent through the terminal is switched on and off. The above-described switching is performed by a blocking oscillation circuit composed of a transistor 45D, an oscillation coil 46D, an oscillation capacitor 47D, an oscillation resistor 48D, and an input resistor 49D. In this blocking oscillation circuit, the oscillation frequency fO1
For example, oscillation is performed at a repetition frequency of 10 (KH2>).

上記共振コンデンサ゛Eは上記トランジスタ45Dのコ
レクタ45Dcとエミツタ45De間に挿入されている
。この共振コンデン+JEは、上記送電コイルAと受電
コイルBとのギキ?ツブが1.0(mrn)の場合に、
上記送電コイルAとの間で、上記ブロッキング発振回路
の発振周波数rOで共振が行なわれるように、静電容量
が設定されている。
The resonant capacitor E is inserted between the collector 45Dc and emitter 45De of the transistor 45D. Is this resonant capacitor + JE the connection between the above power transmitting coil A and power receiving coil B? When the whelk is 1.0 (mrn),
The capacitance is set so that resonance occurs with the power transmission coil A at the oscillation frequency rO of the blocking oscillation circuit.

上記受電電源供給手段Fでは、上記受電コイルBか受り
た電力を直流電源化する。すなわち、この手段Fでは、
受電コイルBからの交流電力をダイオード50F、平滑
コンデンサ51Fにて、整流平滑した後、安定化1〜ラ
ンジスタ52F、抵抗53F、および、ツェナーダイオ
ード54Fからなる電圧安定化回路にて直流安定化電圧
が得られ、ざらに、この直流安定化電圧から5■の電圧
がレギュレータ55Fで作られている。
The receiving power supply means F converts the power received by the receiving coil B into a DC power source. That is, in this means F,
After rectifying and smoothing the AC power from the power receiving coil B with a diode 50F and a smoothing capacitor 51F, a DC stabilized voltage is generated in a voltage stabilization circuit consisting of stabilization 1 to transistor 52F, resistor 53F, and Zener diode 54F. Roughly 5 cm of voltage is generated from this DC stabilized voltage by the regulator 55F.

上記ロンリ詳Gには、上記受電電源供給手段Fがら電力
を受(プて動作する各種センサが含まれていて、このセ
ンリ鼾Gの各種センυにて検出されたデータが出力端子
57Gに出力されている。
The above-mentioned sensor G includes various sensors that operate by receiving electric power from the power receiving power supply means F, and the data detected by the various sensors υ of this sensor G is output to the output terminal 57G. has been done.

上記信号送信手段1−1では、上記センザ群Gにて検出
されたデータを上記受電コイルB、発振コイル46Dを
介して上記信号受信手段Iに送る動作が11なわれる。
The signal transmitting means 1-1 performs an operation 11 of transmitting data detected by the sensor group G to the signal receiving means I via the power receiving coil B and the oscillating coil 46D.

まずこCではパラレル−シリアル変換装置60 )−1
にてパラレル入力端子60 HDから入力したデータを
ハイレベルとローレベルからなる直列信号SS化してシ
リアル出力端子SOに出力する。そして、この直列信号
SSにもとづいて1If2送発振回路H1−1の発振4
 M HZを断続する動作か行なわれる。この1設送波
発振回路H)−1には、送信コイル61[」、発振コイ
ル62 H、トランジスタ63 H1可変抵抗64H1
発振コンデンサ65H,a5よび発振抵抗66Hからな
るブロツギング発振回路が構成されている。この1殻送
波光娠回路トIHでは、上記パラレル−シリアル変換装
置60)−1のシリアル端子SOがローレベルの場合に
発1辰が停止する。上記直列信@SSにて断続された搬
送直列信号SSHは、結合コンデンサ68H1および、
受電コイルB、発振コイル4.6 Dを介して信号受信
手段■に送信される。
First of all, in this C, the parallel-serial converter 60)-1
The data input from the parallel input terminal 60 HD is converted into a serial signal SS consisting of high level and low level and output to the serial output terminal SO. Based on this serial signal SS, the 1If2 transmission oscillation circuit H1-1 oscillates 4
An operation of intermittent MHZ is performed. This single transmission wave oscillation circuit H)-1 includes a transmitting coil 61['', an oscillating coil 62H, a transistor 63H1, a variable resistor 64H1
A blogging oscillation circuit is constituted by oscillation capacitors 65H, a5 and oscillation resistor 66H. In this one-shell wave transmitting optical circuit IH, when the serial terminal SO of the parallel-to-serial converter 60)-1 is at a low level, one transmission is stopped. The carrier series signal SSH interrupted by the series signal @SS is connected to the coupling capacitor 68H1 and
The signal is transmitted to the signal receiving means (2) via the power receiving coil B and the oscillating coil 4.6D.

上記信号受信手段■では、上記信号送信手段ト1から送
られてくる搬送直列信号S S l−(の復調、および
、パラレル信号化が行なわれる。まず、この信号受信手
段1では、結合コンデンナ70■、および、結合トラン
ス711を介して送られてぎた1設送直列信号SSHを
平滑コンデンサ721、および、復調ダイオード73I
にで直列信号SSにする。次いで、シリアル−パラレル
変換装置75Iのシリアル入力端子81に直列信号SS
が加えられ、直列信号SSがパラレル信号に変換される
The signal receiving means 1 demodulates the carrier serial signal S S l- (transmitted from the signal transmitting means 1) and converts it into a parallel signal. First, in the signal receiving means 1, the coupling condenser 70 ②, and the one-piece transmission series signal SSH sent via the coupling transformer 711 to the smoothing capacitor 721 and the demodulation diode 73I.
Convert to serial signal SS. Next, the serial signal SS is input to the serial input terminal 81 of the serial-parallel converter 75I.
is added to convert the serial signal SS into a parallel signal.

この変゛換されたパラレル信号がパラレル信号出力端子
751pから出力される。このパラレル信号出力端子7
5Ipでは、対応する上記パラレル−シリアル変換装置
60Hのパラレル信号入力端子60Hpの入力状態が出
力される。例えば、パラレル信号入力端子60Hf)の
1番端子60Hplがローレベルの場合には、このパラ
レル信号出力端子751pの1番端子75Ip1がハイ
レベルになる。
This converted parallel signal is output from the parallel signal output terminal 751p. This parallel signal output terminal 7
At 5Ip, the input state of the parallel signal input terminal 60Hp of the corresponding parallel-to-serial converter 60H is output. For example, when the first terminal 60Hpl of the parallel signal input terminal 60Hf is at a low level, the first terminal 75Ip1 of the parallel signal output terminal 751p becomes a high level.

以上第1図に示したように、空隙を介して電力伝送を行
ない、かつ、センサ?!’l: Gからの検出データを
受信する本実施例の無線電力伝送装置1において、通常
の空隙の場合に、送電コイルAとの間で、スイッチング
手段りの発振周波数fOで並列共振を行なう共振コンデ
ンサEを挿入することで、空隙が広くなってしスイッチ
ング手段りに流れる電流が増大しなくなる。したかって
、流れる電流か小さくなるので、スイッチング手段りの
電流容量が小さくでき、かつ、敢熱但が小さくなるので
、放熱器か小ざくできる。
As shown in Figure 1 above, power is transmitted through the air gap, and the sensor? ! 'l: In the wireless power transmission device 1 of this embodiment that receives detection data from By inserting the capacitor E, the air gap becomes wider and the current flowing through the switching means does not increase. Therefore, since the current flowing is smaller, the current capacity of the switching means can be reduced, and the heat sink is also smaller, so the heat sink can be made smaller.

次に、第1図の送電コイルA、受電コイルB、発振コイ
ル460等を備えるカプラの断面図を第8図に示す。
Next, FIG. 8 shows a cross-sectional view of a coupler including the power transmitting coil A, power receiving coil B, oscillating coil 460, etc. shown in FIG. 1.

第8図は、円筒形状の2つのカプラ10.20か、ぞれ
ぞれ同心軸上に対向して配設されている図を表わしてお
り、図より明らかなにうに、2′つのカプラ10.20
はそれぞれ同一の構j聞である。
FIG. 8 shows two cylindrical couplers 10, 20, each disposed facing each other on a concentric axis. .20
have the same structure.

すなわら、カプラ10.20の固定側ホルダー11.2
1の対向する而にはフエライ1〜コア12.22が挿着
されている。このフエライ1へコア12.22には環状
の溝が形成されており、その溝には送電コイルへ、受電
コイルB、および、発振コイル46Dが同芯軸状に嵌入
されている。これらの送電コイルA、発振コイル46D
の端子、および、受電コイルBの端子はまとめてリード
線16.26よりカプラ10.20から引き出されてお
り、外部機器との接続を容易としている。そして、2つ
のカプラ10.20は極めて接近して設置されている場
合、例えばギVツブが3 (mm)以下の場合には、発
振コイル46D、送電コイルへ、および、受電コイルB
に電流を通じると図中の点線で表わすような磁路が構成
され、2つのカプラ10.20は強い磁気結合を示すこ
ととなる。したがって、極めて接近している場合に、こ
のカプラ10.20のいずれかのコイルに励磁用の電流
を通じれば、他方のコイルには該励磁電流に比例した磁
界か発生して電力や信号の無線による授受が容易に実行
できるのである。
That is, fixed side holder 11.2 of coupler 10.20
Ferries 1 to cores 12 and 22 are inserted into the opposite sides of the cores 1 and 1, respectively. An annular groove is formed in the core 12, 22 of the flywheel 1, and a power transmitting coil, a power receiving coil B, and an oscillating coil 46D are fitted into the groove in a coaxial manner. These power transmission coil A, oscillation coil 46D
The terminals of the power receiving coil B and the terminals of the power receiving coil B are collectively pulled out from the coupler 10.20 through the lead wire 16.26 to facilitate connection with external equipment. When the two couplers 10.20 are installed very close to each other, for example, when the diameter is less than 3 (mm), the oscillating coil 46D, the power transmitting coil, and the power receiving coil B
When a current is passed through, a magnetic path as shown by the dotted line in the figure is formed, and the two couplers 10 and 20 exhibit strong magnetic coupling. Therefore, if an excitation current is passed through one of the coils of the coupler 10.20 when they are very close to each other, a magnetic field proportional to the excitation current is generated in the other coil, which transmits power and signals wirelessly. This makes it easy to send and receive information.

次に、本実施例を産業用ターンテーブルに応用した例を
第9図に示す。
Next, FIG. 9 shows an example in which this embodiment is applied to an industrial turntable.

この産業用ターンテーブルは、被加工物100を載U替
側からドリル105等で加工を行なう加工側へテーブル
110を駆動部120で180度回動して交互に搬送す
るものである。ぞして、このテーブル110上に被加工
物100が定められた位置に戎せられたかを判断するた
めの位置センサ°130に電力を送り、かつ、該位置セ
ンサ130からの検出信号を受信り′ろために本実施例
の無線電力伝送装置1が用いられる。上記テーブル11
0の下面には、回動中心軸TCに対称に受電コイルBが
備えられている受電側カプラ20が2ケ所設けられてい
る。この両カプラ20は、各々受電電源供給手段F等を
含む受電側ユニット1bに接続されている。この受電側
ユニツlへ1bは、位置センサ130に接続されていて
、テーブル110上の載U替側にある被加工物100の
位置をカプラ20、および、載せ替側に備えられた送電
側カプラ10を介して送電側ユニット1aに送っている
。したがって、本実施例が応用された産業用ターンテー
ブルでは、テーブル110の載せ替側にある被加工物1
00の位置が非接触で検出されている。
This industrial turntable rotates the table 110 by 180 degrees using a drive unit 120 to alternately transport workpieces 100 from the U-loading side to the processing side where processing is performed using a drill 105 or the like. Then, power is sent to the position sensor 130 for determining whether the workpiece 100 is placed on the table 110 at a predetermined position, and a detection signal from the position sensor 130 is received. The wireless power transmission device 1 of this embodiment is used for this purpose. Above table 11
Two power receiving side couplers 20 each having a power receiving coil B are provided on the lower surface of the power receiving coil B symmetrically with respect to the rotation center axis TC. Both couplers 20 are each connected to a power receiving unit 1b including power receiving power supply means F and the like. The power receiving unit 1b is connected to a position sensor 130, and detects the position of the workpiece 100 on the transfer side on the table 110 using the coupler 20 and the power transmitting coupler provided on the transfer side. 10 to the power transmission side unit 1a. Therefore, in the industrial turntable to which this embodiment is applied, the workpiece 1 on the transfer side of the table 110 is
The position of 00 is detected without contact.

[発明の効果] 以上実施例を挙げて詳述したように本発明の無線電力伝
送装置では、送電コイルと受電コイルとが定常送電空隙
の場合に、上記送電コイルとの間で、上記送電周波数に
並列共振する静電容量の共振コンデンサを、上記スイッ
チング手段に並列接続している。したがって、上記送電
コイルと受電コイルとの空隙が定常送電空隙より広くな
った場合に、スイッチング手段に流れる電流が少なくな
る。その結果、送電コイルと受電コイルとの空隙が可変
する装置で、スイッチング手段の電流容量の増加が防止
され、かつ、スイッチング手段から放熱される熱量の増
加が防止される。よってスイッチング手段、たとえば、
1〜ランジスタの小容量化が図れ、かつ、放熱器の小型
化が図れる。
[Effects of the Invention] As described above in detail with reference to the embodiments, in the wireless power transmission device of the present invention, when the power transmission coil and the power reception coil are in a steady power transmission gap, the power transmission frequency is set between the power transmission coil and the power reception coil. A resonant capacitor having a capacitance that resonates in parallel with is connected in parallel to the switching means. Therefore, when the gap between the power transmitting coil and the power receiving coil becomes wider than the steady power transmitting gap, the current flowing through the switching means decreases. As a result, in a device in which the gap between the power transmitting coil and the power receiving coil is variable, an increase in the current capacity of the switching means is prevented, and an increase in the amount of heat dissipated from the switching means is also prevented. Therefore, the switching means, e.g.
1 - The capacity of the transistor can be reduced, and the radiator can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図および第3
図は本発明の詳細な説明するための説明図、第4図は従
来列の構成図、第5図は従来例の動作特性を示すグラフ
、第6図は本発明の構成を示す構成図、第7図は本発明
の動作特性を示すグラフ、第8図は本発明の実施例に用
いるカプラの断面(74成図、第9図は実施例を応用す
る装置の構成図、第10図は従来例の説明図である。 A・・・送電=1イル B・・・受電コイル C・・・電源 D・・・スイッチング手段 E・・・共振コンデンサ F・・・受電電源供給手段 G・・・センサ群 1−1・・・信号送信手段 ■・・・信号受信手段
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 and FIG.
4 is a diagram illustrating a detailed explanation of the present invention, FIG. 4 is a configuration diagram of a conventional column, FIG. 5 is a graph showing operating characteristics of the conventional example, and FIG. 6 is a configuration diagram illustrating the configuration of the present invention. FIG. 7 is a graph showing the operating characteristics of the present invention, FIG. 8 is a cross-sectional view of a coupler used in an embodiment of the present invention (74 diagram), FIG. 9 is a configuration diagram of a device to which the embodiment is applied, and FIG. It is an explanatory diagram of a conventional example. A... Power transmission = 1 Il B... Power receiving coil C... Power source D... Switching means E... Resonant capacitor F... Power receiving power supply means G...・Sensor group 1-1...Signal transmitting means ■...Signal receiving means

Claims (1)

【特許請求の範囲】 送電コイルの一端に接続され、該送電コイルに流れる電
流を送電周波数で断続するスイッチング手段と、 上記送電コイルと可変される空隙を介して送受電を行な
う受電コイルと、 を備えた無線電力伝送装置において、 さらに、 上記送電コイルと受電コイルとの空隙が定常時に送受電
を行なう定常送電空隙の場合に、上記送電コイルとの間
で、上記送電周波数に並列共振する静電容量の共振コン
デンサを、上記スイッチング手段に並列接続することを
特徴とする無線電力伝送装置。
[Scope of Claims] A switching means connected to one end of a power transmitting coil and for intermittent current flowing through the power transmitting coil at a power transmission frequency; and a power receiving coil for transmitting and receiving power through a variable air gap with the power transmitting coil. In the wireless power transmission device equipped with the above, further, when the gap between the power transmitting coil and the power receiving coil is a steady power transmission gap in which power is transmitted and received in a steady state, an electrostatic charge that resonates in parallel to the power transmission frequency between the power transmitting coil and the power receiving coil is provided. A wireless power transmission device characterized in that a capacitance resonant capacitor is connected in parallel to the switching means.
JP61044799A 1986-02-28 1986-02-28 Radio power transmitter Granted JPS62203526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044799A JPS62203526A (en) 1986-02-28 1986-02-28 Radio power transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044799A JPS62203526A (en) 1986-02-28 1986-02-28 Radio power transmitter

Publications (2)

Publication Number Publication Date
JPS62203526A true JPS62203526A (en) 1987-09-08
JPH0559660B2 JPH0559660B2 (en) 1993-08-31

Family

ID=12701470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044799A Granted JPS62203526A (en) 1986-02-28 1986-02-28 Radio power transmitter

Country Status (1)

Country Link
JP (1) JPS62203526A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027838A (en) * 1988-03-18 1990-01-11 American Teleph & Telegr Co <Att> Power transmitter
JPH0363043U (en) * 1989-10-18 1991-06-20
KR100888465B1 (en) 2001-03-02 2009-03-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings, and combination of a rechargeable appliance and a stand
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2019198181A (en) * 2018-05-10 2019-11-14 Nittoku株式会社 Rotary table type manufacturing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454859B (en) 2006-03-30 2014-10-01 尼康股份有限公司 Mobile device, exposure device and exposure method, and component manufacturing method
JP6472731B2 (en) 2015-08-26 2019-02-20 株式会社東芝 Load modulation circuit and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112929U (en) * 1974-07-17 1976-01-30
JPS61271806A (en) * 1985-05-27 1986-12-02 Nippon Denzai Kogyo Kenkyusho:Kk Power transmission control apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112929U (en) * 1974-07-17 1976-01-30
JPS61271806A (en) * 1985-05-27 1986-12-02 Nippon Denzai Kogyo Kenkyusho:Kk Power transmission control apparatus

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027838A (en) * 1988-03-18 1990-01-11 American Teleph & Telegr Co <Att> Power transmitter
JPH0363043U (en) * 1989-10-18 1991-06-20
KR100888465B1 (en) 2001-03-02 2009-03-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings, and combination of a rechargeable appliance and a stand
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2019198181A (en) * 2018-05-10 2019-11-14 Nittoku株式会社 Rotary table type manufacturing apparatus

Also Published As

Publication number Publication date
JPH0559660B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JPS62203526A (en) Radio power transmitter
JP3692541B2 (en) Power transmission device and power transmission method
TWI460919B (en) Rf-coupled digital isolator
CN104218686B (en) Wireless power transfer method, wireless power transmitter and wireless charging system
KR101708312B1 (en) Wireless power transfer and receive method, apparatus and system
CN106602733B (en) Magnetic coupling resonance electric energy transmitting end, receiving end and system with multiple parallel resonance circuits
KR101667725B1 (en) Wireless power transmitter and method for controlling the same
US20170288736A1 (en) Near-field communication (nfc) system and method for high performance nfc and wireless power transfer with small antennas
CN105308829B (en) Power transmitting device, contactless power supply system and control method
US6922324B1 (en) Remote powering of electrostatic chucks
US20130214612A1 (en) Wireless power transmitter, wireless power receiver, and power transmission method of wireless power transmitting system
US10153809B2 (en) Near-field communication (NFC) reader optimized for high performance NFC and wireless power transfer with small antennas
US20170288735A1 (en) Near-field communication (nfc) tags optimized for high performance nfc and wireless power reception with small antennas
KR20170031094A (en) Wireless power transfer method, apparatus and system
JPH0669275B2 (en) Power transmission device
US20090230938A1 (en) Electric Power Conversion Apparatus
KR20140073416A (en) Method and apparatus for transceiving wireless power
KR102261860B1 (en) Multi-level power compatible wireless power receiving apparatus
US20230292029A1 (en) On-Ear Charging For Wireless Hearables
US10425049B2 (en) Wireless electric power transmitter
KR20060031526A (en) Wireless charging pad and battery pack enabled bi-directional charge
JPH08214405A (en) Non-contact transmission device
JPH09182304A (en) Non-contact charger
US20230275458A1 (en) On-Ear Charging For Wireless Hearables
US10277061B1 (en) Wireless device