JPS62200224A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS62200224A
JPS62200224A JP4267786A JP4267786A JPS62200224A JP S62200224 A JPS62200224 A JP S62200224A JP 4267786 A JP4267786 A JP 4267786A JP 4267786 A JP4267786 A JP 4267786A JP S62200224 A JPS62200224 A JP S62200224A
Authority
JP
Japan
Prior art keywords
light
diffracted
grating
diffracted light
light beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267786A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4267786A priority Critical patent/JPS62200224A/en
Publication of JPS62200224A publication Critical patent/JPS62200224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To facilitate the detection of the number of interference fringes and enable the rotational condition of a rotating object to be inspected to be accurately measured by obtaining high contrast interference fringes by superposing two diffracted light beams of +n-th and -n-th orders on each other in a plurality of the diffracted light beams from a grating. CONSTITUTION:The light beam irradiated from a laser 1 is changed to a parallel light beam by a collimator lens 2 to be projected upon a beam splitter 3 and then upon a position M1 on one 4 of the radial diffraction gratings on a disk connected to a rotating object to be measured. Two diffracted light beams of +n-th and -n-th orders in the transmitted and diffracted light beams incident upon and diffracted by the radial grating 4 are reflected by optical means 5 and 5', respectively, and are returned in the same light path as in advance to be projected again upon approximately the same position as the one M1 on the radial grating 4. The diffracted light beams of the +n-th and -n-th orders which are diffracted again by the radial grating 4 are projected upon the beam splitter 3 and the two diffracted light beams wherein an n-th diffraction is conducted two times are superposed on each other to be led to light receiving means 6 and the intensity of interference fringes is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に円周上に
例えば透光部と反射部の格子模様の回折格子を複数個、
周期的に該んだ放射格子を回転物体に取付け、該放射格
子に例えばレーザーからの光束を照射し、該放射格子か
らの回折光を利用して、放射格子若しくは回転物体の回
転速度や回転速度の変動量等の回転状態な光電的に検出
するロータリーエンコーダーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rotary encoder, in particular a rotary encoder having a plurality of diffraction gratings in a lattice pattern, for example, a transparent part and a reflective part, on the circumference.
A periodic radiation grating is attached to a rotating object, and the radiation grating is irradiated with a beam of light from a laser, for example, and the diffracted light from the radiation grating is used to determine the rotational speed or speed of the radiation grating or the rotating object. This invention relates to a rotary encoder that photoelectrically detects the rotational state such as the amount of variation in .

(従来の技術) 従来よりフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるいはNC工作機械さ
らにはVTRのキャプステンモーターや回転ドラム等の
回転機構の回転速度や回転速度の変動量を検出する為の
手段として光電的なロータリーエンコーダーが利用され
てきている。
(Prior art) Conventionally, it has been used to measure the rotational speed and the amount of variation in rotational speed of computer equipment such as floppy desk drives, office equipment such as printers, NC machine tools, and rotating mechanisms such as VTR capsten motors and rotating drums. A photoelectric rotary encoder has been used as a means for detection.

光電的なロータリーエンコーダーは例えば第6図に示す
ように回転軸30に連絡した円板35の周囲に透光部と
遮光部を等間隔に設けた、所謂メインスケール31とこ
れに対応してメインスケールと等しい間隔で透光部と遮
光部とを設けた所謂固定のインデックススケール32と
の双方のスケールを投光手段33と受光手段34で挟ん
で対向配置した所謂インデックススケール方式の構成を
採フている。
For example, as shown in FIG. 6, a photoelectric rotary encoder has a so-called main scale 31 in which light-transmitting parts and light-shielding parts are provided at equal intervals around a disk 35 connected to a rotating shaft 30, and a corresponding main scale 31. A so-called fixed index scale 32 is provided with a light-transmitting part and a light-shielding part at equal intervals to the scale, and a so-called index scale system configuration is adopted in which both scales are placed facing each other with the light emitting means 33 and the light receiving means 34 sandwiching them. ing.

この方法はメインスケールの回転に伴って双方のスケー
ルの透光部と遮光部の間隔に同期した信号が得られ、こ
の信号を周波数解析して回転軸の回転速度の変動を検出
している。この為、双方のスケールの透光部と遮光部と
のスケール間隔を細かくすればする程、検出粒度を高め
ることができる。しかしながらスケール間隔を細かくす
ると回折光の影響で受光手段からの出力信号のS/N比
が低下し、検出粒度が低下してしまう欠点があった。こ
の為メインスケールの透光部と遮光部の格子の総本数を
固定させ、透光部と遮光部の間隔を回折光の影響を受け
ない程度まで拡大しようとするとメインスケールの円板
の直径が増大し更に厚さも増大し装置全体が大型化し、
この結果被検回転物体への負荷が大きくなってくる等の
欠点があった。
In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. Therefore, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection particle size can be. However, when the scale interval is made smaller, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in the detected particle size. For this reason, if you fix the total number of gratings in the light-transmitting part and light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. As the thickness increases, the entire device becomes larger.
As a result, there are drawbacks such as an increase in the load on the rotating object to be tested.

(発明が解決しようとする問題点) 本発明は被検回転物体の負荷が小さく、装置全体の小型
化が容易で、しかも回転状態を高精度に検出することの
できるロータリーエンコーダーの提供を特徴とする 特に放射格子からの複数の回折光のうち+n次と−n次
の2つの回折光を重ね合わせ、干渉縞のコントラストの
向上を図ることにより高精度の測定を可能にしたロータ
リーエンコーダーの提供を目的とする。
(Problems to be Solved by the Invention) The present invention is characterized by providing a rotary encoder that has a small load on a rotating object to be inspected, can easily downsize the entire device, and can detect the rotational state with high precision. In particular, we aim to provide a rotary encoder that enables high-precision measurement by superimposing two diffracted lights, +n-order and -n-order out of multiple diffracted lights from a radiation grating, to improve the contrast of interference fringes. purpose.

(問題点を解決するための手段) 可干渉性の光束を回転物体に連結した円板上の放射格子
上に入射させ、面記放射格子からの+n次と−n次の回
折光を重ね合わせ、そして受光手段に導光し、該受光手
段からの出力信号を利用して前記回転物体の回転状態を
求めたことである。
(Means for solving the problem) A coherent light beam is made incident on a radiation grating on a disk connected to a rotating object, and the +nth and -nth order diffracted lights from the surface radiation grating are superimposed. Then, the light was guided to a light receiving means, and the rotational state of the rotating object was determined using the output signal from the light receiving means.

この他、本発明の特徴は実施例において記載されている
Other features of the invention are described in the Examples.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。(Example) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.

本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束としビームスプリッタ−
3に入射させ被測定回転物体と連結した円板上の放射状
の回折格子が設けられている放射格子4の位置M1に入
射させている。そして放射格子4に入射し回折した透過
回折光のうち+n次と−n次の2つの回折光を光学手段
5゜5′により反射させ、同一光路を逆行させ放射格子
4上の略同−位置M1に再入射させている。そして放射
格子4により再回折された+n次と−n次の回折光をビ
ームスプリッタ−3に入射させている。そしてビームス
プリッタ−3で反射した+n次と−n次の2つの回折光
、即ちn次の回折を2回行った2つの回折光束を重ね合
わせて受光手段6に導光している。そして受光手段6に
より該受光手段6面上に形成される干渉縞の強度を検出
している。
In this embodiment, the light beam emitted from the laser 1 is converted into a parallel light beam by the collimator lens 2, and the beam splitter
3 and is made incident on a position M1 of a radiation grating 4, which is provided with a radial diffraction grating on a disk connected to a rotating object to be measured. Then, of the transmitted diffracted light that is incident on the radiation grating 4 and diffracted, two diffracted lights of the +n order and -n order are reflected by the optical means 5° 5', and are caused to travel backward along the same optical path to approximately the same position on the radiation grating 4. It is re-injected into M1. The +n-order and -n-order diffracted lights re-diffracted by the radiation grating 4 are made incident on the beam splitter 3. Then, the two diffracted lights of the +nth order and the -nth order reflected by the beam splitter 3, that is, the two diffracted light beams that have undergone nth order diffraction twice, are superimposed and guided to the light receiving means 6. The intensity of interference fringes formed on the surface of the light receiving means 6 is detected by the light receiving means 6.

第2図は第1図で示した光学手段5,5′の一実施例の
説明図である。
FIG. 2 is an explanatory diagram of one embodiment of the optical means 5, 5' shown in FIG.

同図においては反射鏡40を集光レンズ41の略焦点面
上に配置し、集光レンズ41に平行に入射してきた特定
次数の回折光のみをマスク42の開口部43を通過させ
反射鏡40で反射させた後、元の光路を逆戻りするよう
にしている。そして、その他の次数の回折光をマスク4
2により遮光している。反射手段としては、この龍笛2
図に示す機能と同一のものであれば、例えばキャッツア
イ光学系や平面鏡等どのような構成のものでも良い。こ
のような光学系を用いれば例えばレーザーの発振波長が
変化し、回折角が多少変化しても略同じ光路で戻すこと
ができる特徴がある。
In the figure, a reflecting mirror 40 is arranged approximately on the focal plane of a condensing lens 41, and only the diffracted light of a specific order that is incident parallel to the condensing lens 41 passes through an opening 43 of a mask 42, and the reflecting mirror 40 After reflecting the light, the light travels back along its original path. Then, the diffracted light of other orders is masked 4.
2 to block light. As a reflection means, this Ryuteki 2
Any configuration, such as a cat's eye optical system or a plane mirror, may be used as long as it has the same function as shown in the figure. If such an optical system is used, for example, even if the oscillation wavelength of the laser changes and the diffraction angle changes somewhat, the light can be returned along substantially the same optical path.

又、キャッツアイ光学系に、屈折率分布型レンズ、例え
ば日本板硝子社製のセルフォックマイクロレンズ(商品
名)等を適用し、その両端平面な点に着目して片面に反
射膜を設けることにより、構成が簡便で且つ又生産性に
富む光学素子として本発明に有効に適用することができ
る。
In addition, by applying a refractive index gradient lens, such as Selfoc Micro Lens (trade name) manufactured by Nippon Sheet Glass Co., Ltd., to the cat's eye optical system and providing a reflective film on one side, focusing on the fact that both ends of the lens are flat. , it can be effectively applied to the present invention as an optical element having a simple structure and high productivity.

本実施例において被測定回転物体が放射格子4の1ピッ
チ分だけ回転するとn次の回折光の位相は2nπだけ変
化する。本実施例では放射格子4で再回折させているの
で合計4niだけ位相が変化する。これにより全体とし
て受光手段からは4n個の正弦波形が得られる。本実施
例ではこの□ときの正弦波形を検出することにより回転
量を測定している。
In this embodiment, when the rotating object to be measured rotates by one pitch of the radiation grating 4, the phase of the n-th order diffracted light changes by 2nπ. In this embodiment, the radiation grating 4 re-diffracts the light, so the phase changes by a total of 4ni. As a result, 4n sine waveforms are obtained from the light receiving means as a whole. In this embodiment, the amount of rotation is measured by detecting the sine waveform at this □ time.

例えば回折格子のピッチが3.2μm、回折光として1
次及び−1次を利用したとすれば回転物体がどツチの3
.2μm分だけ回転したとき受光素子からは4個の正弦
波形が得られる。即ち正弦波形1個当りの分解能として
回折格子の1ピツチの%の3・2八=0.8μmが得ら
れる。
For example, if the pitch of the diffraction grating is 3.2 μm, the diffracted light is 1
If we use the next and -1st orders, the rotating object will be
.. When rotated by 2 μm, four sine waveforms are obtained from the light receiving element. That is, the resolution per sine waveform is 0.8 μm, which is 3.28% of 1 pitch of the diffraction grating.

本実施例では放射格子4からの複数の回折光のうち同次
数の回折光、例えば+9次と−0次の2つの回折光を重
ね合わせることにより干渉縞のコントラスト(ビジビリ
ティ)の向上を図り、受光手段による干渉縞の縞数な検
出する際の検出精度の向上を図っている。
In this embodiment, the contrast (visibility) of the interference fringes is improved by superimposing the diffracted lights of the same order among the plurality of diffracted lights from the radiation grating 4, for example, two diffracted lights of +9th order and -0th order, The aim is to improve the detection accuracy when detecting the number of interference fringes by the light receiving means.

即ち、干渉させる2光束の強度を各々I++工、とした
とき干渉縞のコントラストVはV=2E丁丁了了/(I
I+I2) となる。従って1.=I2のときV=1となりコントラ
スト■が最も良くなる。
That is, when the intensities of the two light beams to be interfered with are each I++, the contrast V of the interference fringes is V=2E dingding completed/(I
I+I2). Therefore 1. When V=I2, V=1 and the contrast ■ becomes the best.

本実施例ではI、 −I2を満足する2つの回折光束を
用いることにより干渉縞の検出精度の向上を図っている
In this embodiment, the detection accuracy of interference fringes is improved by using two diffracted light beams that satisfy I and -I2.

第3図は第1図に示す放射格子4を例えば振幅分割型の
回折格子で構成したときの格子ピッチに関する説明図で
ある。同図においては光束の通過領域なd、格子ピッチ
をPで表わしている。
FIG. 3 is an explanatory diagram regarding the grating pitch when the radiation grating 4 shown in FIG. 1 is constituted by, for example, an amplitude division type diffraction grating. In the figure, d represents the light beam passage area, and P represents the grating pitch.

第4図は第3図に示す回折格子の通過領域の長さdと格
子ピッチPとの比d/Pを種々変えたときの回折光の強
度分布を横軸に次数、縦軸に強度をとったときの説明図
である。同図において例えば’/P=0.5とし1次と
−1次の回折光を用いた場合、0次光の強度が点41、
+1次光の強度が点42で表わされる’/P=0.5で
示す曲線上の点の強度となる様子を示している。
Figure 4 shows the intensity distribution of diffracted light when the ratio d/P between the length d of the passage area of the diffraction grating shown in Figure 3 and the grating pitch P is varied, with the horizontal axis representing the order and the vertical axis representing the intensity. It is an explanatory diagram when taken. In the figure, for example, when '/P=0.5 and first-order and -1st-order diffracted lights are used, the intensity of the 0th-order light is at point 41,
The figure shows how the intensity of the +1st-order light becomes the intensity at a point on the curve represented by a point 42, '/P=0.5.

本実施例では第4図に示すようにd/、を適切に定め、
このとき得られる+9次と−n次、例えば1次と−1次
若しくは2次と一2次の2つの回折光を用いることによ
り良好なるコントラストの干渉縞を得ている。
In this example, as shown in FIG. 4, d/ is appropriately determined,
By using the two diffracted lights of +9th order and -nth order obtained at this time, for example, 1st order and -1st order, or 2nd order and 12th order, interference fringes with good contrast are obtained.

第5図は本発明の他の実施例の光学系の概略図である。FIG. 5 is a schematic diagram of an optical system according to another embodiment of the present invention.

本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束とし偏光ビームスプリッ
タ51に入射させ、略等光量の反射光束と透過光束の2
つの直線偏光の光束に分割している。このうち反射した
光束は属波長板52を経て、円偏光とし、2つの反射面
を有するプリズム53を経て、プリズムより成る光学部
材54に入射させている。そして光学部材5を介して被
測定回転物体と連結した円板上の放射状の回折格子が設
けられている放射格子4の位置Mlに入射させている。
In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2 and is incident on the polarizing beam splitter 51, and the reflected light beam and the transmitted light beam are divided into substantially equal amounts of reflected light beam and transmitted light beam.
It is split into two linearly polarized beams. The reflected light beam passes through a wavelength plate 52, becomes circularly polarized light, passes through a prism 53 having two reflecting surfaces, and enters an optical member 54 made of a prism. The light beam is then made incident on a position Ml of the radiation grating 4, which is provided with a radial diffraction grating on a disc connected to the rotating object to be measured via the optical member 5.

このときプリズム53から放射格子4に対し垂直に射出
してきた光束を第5図(B)に示すように光学部材54
の形状を特定することにより、放射格子4による+9次
の回折光が放射格子4に対し略垂直に射出するように放
射格子4に入射させている。そして放射格子4に入射し
回折した透過回折光のうち+9次の回折光を光学手段5
により反射させ、同一光路を逆行させ放射格子4上の略
同−位置M1に再入射させている。そして放射格子4に
より再回折された+9次の回折光をイ波長板52を介し
て入射したときと90”偏光方位の異なる直線偏光とし
偏光ビームスプリッタ−51に入射させている。本実施
例では偏光ビームスプリッタ−51から光学手段5に至
る+9次の回折光の往復光路を同一としている。
At this time, the light flux emitted perpendicularly to the radiation grating 4 from the prism 53 is transmitted to the optical member 54 as shown in FIG. 5(B).
By specifying the shape of the radiation grating 4, the +9th order diffracted light by the radiation grating 4 is made to enter the radiation grating 4 so as to be emitted substantially perpendicularly to the radiation grating 4. Of the transmitted diffracted light incident on the radiation grating 4 and diffracted, +9th order diffracted light is transmitted to the optical means 5.
The light beam is reflected by the light beam, travels the same optical path backwards, and enters the radiation grating 4 at substantially the same position M1. Then, the +9th-order diffracted light re-diffracted by the radiation grating 4 is converted into linearly polarized light with a polarization direction 90" different from that when it is incident through the wavelength plate 52, and is made incident on the polarizing beam splitter 51. In this embodiment, The round trip optical path of the +9th order diffracted light from the polarizing beam splitter 51 to the optical means 5 is made the same.

一方、偏光ビームスプリッタ−51で分割された2つの
光束のうち透過した光束は%波長板55を介゛し円偏光
とし、2つの反射面を有するプリズム56を経て、プリ
ズムより成る光学部材57に入射させている。そして光
学部材57を介して円板上の放射格子4上の位置M1と
回転軸50に対して略点対称の位置M2に入射させてい
る。このときプリズム17から放射格子4に対し垂直に
射出してきた光束を前述の反射光束の場合と同様に光学
部材57の形状を特定することにより、放射格子4によ
る=n次の回折光が放射格子4に対し垂直に射出するよ
うに放射格子4に入射させている。そして放射格子4に
入射し回折した透過回折光のうち−n次の回折光を前述
の光学手段5と同様の光学手段5′により同一光路を逆
行させて、放射格子4の略同−位置M2に再入射させて
いる。そして放射格子4より再回折された−0次の回折
光を昼波長板55を介し入射したときとは90°偏光方
位の異なる直線傷光とし偏光ビームスプリッタ−51に
入射させている。
On the other hand, the transmitted light beam out of the two light beams split by the polarizing beam splitter 51 becomes circularly polarized light through the % wavelength plate 55, passes through a prism 56 having two reflective surfaces, and enters an optical member 57 made of a prism. It is incident. The light is then made incident through the optical member 57 at a position M1 on the radiation grating 4 on the disc and a position M2 which is approximately symmetrical with respect to the rotation axis 50. At this time, by specifying the shape of the optical member 57 for the light beam emitted perpendicularly to the radiation grating 4 from the prism 17 in the same way as in the case of the reflected light beam described above, the = nth order diffracted light by the radiation grating 4 is reflected by the radiation grating 4. The radiation is made incident on the radiation grating 4 so as to be emitted perpendicularly to the radiation grating 4. Of the transmitted diffracted light incident on the radiation grating 4 and diffracted, the −n-order diffracted light is caused to travel backward along the same optical path by an optical means 5' similar to the optical means 5 described above, so that the radiation grating 4 is at approximately the same position M2. It is re-injected into the Then, the −0th order diffracted light re-diffracted by the radiation grating 4 is made into a linear scratched light whose polarization direction is different by 90 degrees from that when it is incident through the daylight wavelength plate 55, and is made incident on the polarizing beam splitter 51.

このとき、透過光束も前述の反射光束と同様に偏光ビー
ムスプリッタ−51から光学手段5′に至る−0次の回
折光の往復光路を同一としている。
At this time, the transmitted light beam also has the same round-trip optical path of the -0th order diffracted light from the polarizing beam splitter 51 to the optical means 5', similar to the above-mentioned reflected light beam.

そして光学手段5を介し入射してきた+n次の回折光と
重なり合わせた後、%波長板58を介し円偏光とし、光
分割器59で2つの光束に分割し、各々の光束を互いの
偏光方位を45°傾けて配置した偏光板60.61を介
し双方の光束に90°の位相差を付けた直線偏光として
各々の受光手段62.63に入射させている。そして受
光手段62.63により形成された2光束の干渉縞の強
度を検出している。
After overlapping with the +n-order diffracted light incident through the optical means 5, it is made into circularly polarized light through the % wavelength plate 58, and split into two light beams by the light splitter 59. Both light beams are made incident on each light receiving means 62, 63 as linearly polarized light with a phase difference of 90 degrees via polarizing plates 60, 61 arranged at an angle of 45 degrees. Then, the intensity of the interference fringes of the two beams formed by the light receiving means 62 and 63 is detected.

本実施例では光分割器59により光束を2分割し各々の
光束間に90°の位相差をつけることにより回転物体の
回転方向も判別出来るようにしている。
In this embodiment, the light beam is divided into two by a light splitter 59, and a phase difference of 90° is created between each beam, so that the direction of rotation of the rotating object can also be determined.

尚、回転量のみを測定するのであれば光分割器59、偏
光板60.81及び一方の受光手段は不要である。
Note that if only the amount of rotation is to be measured, the light splitter 59, the polarizing plate 60, 81, and one of the light receiving means are unnecessary.

本実施例では光学部材54.57を用いて光束を放射格
子4に入射させる際、放射格子4からの特定次数の回折
光が放射格子4に対して略垂直に射出するようにして装
置全体の簡素化及び組立精度の向上を図っている。
In this embodiment, when the optical members 54 and 57 are used to make the light beam incident on the radiation grating 4, the diffracted light of a specific order from the radiation grating 4 is emitted approximately perpendicularly to the radiation grating 4. Efforts are being made to simplify and improve assembly accuracy.

更に本実施例では回転中心に対して略点対称の2つの位
置Ml 、M2からの回折光を利用することにより回転
物体の回転中心と放射格子の中心との偏心による測定誤
差を軽減させている。
Furthermore, in this embodiment, measurement errors due to eccentricity between the rotation center of the rotating object and the center of the radiation grating are reduced by using the diffracted lights from two positions Ml and M2 that are approximately symmetrical with respect to the rotation center. .

尚、本実施例に於る構成は略点対称な2点からの回折光
を利用しているわけであるが、略点対称に限らず複数の
位置からの回折光を用いることにより略同等の効果を得
ることが出来る。例えば、互いに120°の角度を成す
3点からの回折光を利用したり、近接しない任意の2点
からの回折光を利用するのも有効である。
Although the configuration in this example uses diffracted light from two points that are approximately point symmetrical, it is possible to obtain approximately the same diffraction light by using diffracted light from multiple positions, not limited to approximately point symmetrical. You can get the effect. For example, it is also effective to use diffracted light from three points that are at an angle of 120 degrees to each other, or to use diffracted light from arbitrary two points that are not close to each other.

尚、一方の光束の回転軸中心寄りの光束要素と略点対称
な位置に入射させた他方の光束の回転軸中心寄りの光束
要素とを互いに重なり合わせ、同様に回転中心の外側寄
りの光束要素同志を重ね合わせれば、放射格子の外側と
内側のピッチの違いより生じる波面収差の影響を除去す
ることができつので好ましい。
Note that by overlapping the luminous flux elements of one luminous flux closer to the rotation axis center and the luminous flux elements of the other luminous flux incident at a substantially point-symmetrical position closer to the rotation axis center, the luminous flux elements located outside the rotation center are similarly It is preferable to overlap these elements because it is possible to eliminate the influence of wavefront aberration caused by the difference in pitch between the outer and inner sides of the radiation grating.

本実施例では偏光ビームスプリッタ−51から光学手段
5,5′に至る+n次と−n次の回折光の往復の光路を
同一とすることにより、偏光ビームスプリッタ−51に
おける2つの回折光束の重なり具合を容易にし、装置全
体の組立精度を向上させている。
In this embodiment, by making the round trip optical paths of the +n-th and -n-th order diffracted lights from the polarizing beam splitter 51 to the optical means 5, 5' the same, the two diffracted light beams in the polarizing beam splitter 51 overlap. This simplifies the process and improves the assembly accuracy of the entire device.

以上は本発明をロータリーエンコーダーに適用した場合
について示したが本発明の技術的思想はそのままリニア
エンコーダーにも良好に適用することができる。
Although the present invention has been applied to a rotary encoder above, the technical idea of the present invention can also be successfully applied to a linear encoder.

尚、本発明において使用する回折格子は、透光部と遮光
部から成る所謂振幅型の回折格子、互いに異なる屈折率
を有する部分から成る位相型の回折格子である。特に位
相型の回折格子は、例えば透明円盤の円周上に凹凸のレ
リーフパターンを形成することにより作成出来、エンボ
ス、スタンパ等のプロセスにより量産が可能である。
The diffraction grating used in the present invention is a so-called amplitude type diffraction grating consisting of a light transmitting part and a light shielding part, and a phase type diffraction grating consisting of parts having mutually different refractive indexes. In particular, phase-type diffraction gratings can be created, for example, by forming an uneven relief pattern on the circumference of a transparent disk, and can be mass-produced by processes such as embossing and stamping.

(発明の効果) 本発明によれば放射格子からの複数の回折光のうち+n
次と−0次の2つの回折光を重ね合わせることにより、
コントラストの良い干渉縞を得て、干渉縞の縞数の検出
を容易とし、被検回転物体の回転状態を高精度に測定す
ることのでき、しかも装置全体の小型化を図ったロータ
リーエンコーダーを達成することができる。
(Effects of the Invention) According to the present invention, among the plurality of diffracted lights from the radiation grating, +n
By superimposing the two diffracted lights of order and −0 order,
Achieved a rotary encoder that can obtain interference fringes with good contrast, make it easy to detect the number of interference fringes, and measure the rotational state of a rotating object with high precision, while reducing the overall size of the device. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光学系の概略図、第2図、
第3図は各々第1図の一部分の説明図、第4図は第3図
に示す回折格子を用いたときの各次数の回折光の強度分
布の説明図、第5図(八)。 (B)は各々本発明の他の実施例の光学系の概略図、第
6図は従来の光電的ロータリーエンコーダーの説明図で
ある。図中1はレーザー、2はコリメーターレンズ、3
はビームスプリッタ−151は偏光ビームスプリッタ−
152,55,58は各々%波長板、4は放射格子、5
,5′は各々光学手段、60. fitは各々偏光板、
6. [i2.63は各々受光手段である。 第  1  図 第  2  図 第 5 図(A)    第 5 図(8)第  6 
 羽
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, FIG.
3 is an explanatory diagram of a part of FIG. 1, FIG. 4 is an explanatory diagram of the intensity distribution of diffracted light of each order when the diffraction grating shown in FIG. 3 is used, and FIG. 5 (8). (B) is a schematic diagram of an optical system according to another embodiment of the present invention, and FIG. 6 is an explanatory diagram of a conventional photoelectric rotary encoder. In the figure, 1 is the laser, 2 is the collimator lens, and 3
is a beam splitter - 151 is a polarizing beam splitter
152, 55, 58 are each % wave plates, 4 is a radiation grating, 5
, 5' are optical means, 60. fit is a polarizing plate,
6. [i2.63 are each light receiving means. Figure 1 Figure 2 Figure 5 (A) Figure 5 (8) Figure 6
wing

Claims (1)

【特許請求の範囲】[Claims] 可干渉性の光束を回転物体に連結した円板上の放射格子
上に入射させ、前記放射格子からの+n次と−n次の回
折光を重ね合わせ、そして受光手段に導光し、該受光手
段からの出力信号を利用して前記回転物体の回転状態を
求めたことを特徴とするロータリーエンコーダー。
A coherent light beam is made incident on a radiation grating on a disk connected to a rotating object, the +n-th order and -n-th order diffracted light from the radiation grating are superimposed, and the light is guided to a light receiving means, and the light is received by the light receiving means. A rotary encoder characterized in that the rotational state of the rotating object is determined using an output signal from the means.
JP4267786A 1986-02-27 1986-02-27 Rotary encoder Pending JPS62200224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267786A JPS62200224A (en) 1986-02-27 1986-02-27 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267786A JPS62200224A (en) 1986-02-27 1986-02-27 Rotary encoder

Publications (1)

Publication Number Publication Date
JPS62200224A true JPS62200224A (en) 1987-09-03

Family

ID=12642660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267786A Pending JPS62200224A (en) 1986-02-27 1986-02-27 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS62200224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133078A (en) * 1988-11-10 1990-05-22 Canon Inc Rotation detector for vibration wave motor
US5442172A (en) * 1994-05-27 1995-08-15 International Business Machines Corporation Wavefront reconstruction optics for use in a disk drive position measurement system
US5671052A (en) * 1994-03-15 1997-09-23 Olympus Optical Co., Ltd. Optical encoder
US5909333A (en) * 1994-05-27 1999-06-01 International Business Machines Corporation Servo-writing system for use in a data recording disk drive
US6914234B2 (en) 2001-12-28 2005-07-05 Fuji Xerox Co., Ltd. Optical encoder and scale for encoder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209B2 (en) * 1981-08-06 1984-12-24 工業技術院長 Casting method of polycrystalline silicon ingot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209B2 (en) * 1981-08-06 1984-12-24 工業技術院長 Casting method of polycrystalline silicon ingot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133078A (en) * 1988-11-10 1990-05-22 Canon Inc Rotation detector for vibration wave motor
US5671052A (en) * 1994-03-15 1997-09-23 Olympus Optical Co., Ltd. Optical encoder
US5442172A (en) * 1994-05-27 1995-08-15 International Business Machines Corporation Wavefront reconstruction optics for use in a disk drive position measurement system
US5909333A (en) * 1994-05-27 1999-06-01 International Business Machines Corporation Servo-writing system for use in a data recording disk drive
US6914234B2 (en) 2001-12-28 2005-07-05 Fuji Xerox Co., Ltd. Optical encoder and scale for encoder

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPS626119A (en) Rotary encoder
JPS62200224A (en) Rotary encoder
JPS62200225A (en) Rotary encoder
JPS62200226A (en) Rotary encoder
JPH0781883B2 (en) encoder
JPH0462003B2 (en)
JPS62200222A (en) Rotary encoder
JPS62163919A (en) Rotary encoder
JPH0462004B2 (en)
JPH07119623B2 (en) Displacement measuring device
JPH0462002B2 (en)
JPH045142B2 (en)
JPH0466294B2 (en)
JPS62200221A (en) Rotary encoder
JPH07117426B2 (en) Optical encoder
JPS62163918A (en) Rotary encoder
JPH0466293B2 (en)
JPS62204126A (en) Encoder
JPS62200223A (en) Encoder
JPS62201313A (en) Rotary encoder
JPS62200220A (en) Rotary encoder
JPS62163920A (en) Rotary encoder
JPS62204127A (en) Encoder
JPH03115809A (en) Encoder