JPS62197759A - Activation detector for air/fuel ratio detector - Google Patents

Activation detector for air/fuel ratio detector

Info

Publication number
JPS62197759A
JPS62197759A JP61039826A JP3982686A JPS62197759A JP S62197759 A JPS62197759 A JP S62197759A JP 61039826 A JP61039826 A JP 61039826A JP 3982686 A JP3982686 A JP 3982686A JP S62197759 A JPS62197759 A JP S62197759A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
activation
ratio sensor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61039826A
Other languages
Japanese (ja)
Inventor
Tetsumasa Yamada
哲正 山田
Nobuhiro Hayakawa
暢博 早川
Kazunori Yokota
横田 和憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61039826A priority Critical patent/JPS62197759A/en
Publication of JPS62197759A publication Critical patent/JPS62197759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable highly accurate detection of activation of a sensor quickly and accurately, by directly measuring an internal resistance at a detection element section. CONSTITUTION:An activation detecting circuit 20 is equipped with a constant current circuit 21 for supplying a fixed current to an oxygen pump element 4 of a sensor S from a porous electrode 3 side and a voltage detecting circuit 22 for detecting voltages generated in porous electrodes 2 and 3 at both ends of the element 4. It is also provided with an activation discriminating circuit 23 or the like which detects the activation of the sensor S and outputs an activation detection signal. The circuit 20 supplies a fixed current from the electrode 2 side which is directly contacting an ambient measuring gas of the element 4 with the circuit 21 and detects voltages currently generated between the electrodes 2 and 3 of the element 4 to measure an internal resistance of the element 4. Then, the circuit 23 determines whether the resulting measured value, namely, the voltage between the electrodes 2 and 3 is below a set voltage E0 to find that the element is activating with the internal resistance of the element 4 below a specified value thereby enabling accurate detection.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関等、各種燃焼機器の排気中の酸素濃度
に基づき、当該燃焼機器に供給された燃料混合気の空燃
比を検出する空燃比センサの活性化検出装置に閏lるも
のである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is an air-fuel system that detects the air-fuel ratio of a fuel mixture supplied to various combustion equipment, such as an internal combustion engine, based on the oxygen concentration in the exhaust gas of the combustion equipment. This is related to a fuel ratio sensor activation detection device.

[従来の技術] 従来より、排気中の酸素m度から内燃機関等に供給され
る燃料混合気の空燃比を検出する空燃比センリとして、
酸素イオン伝導性の固体電解質両面に多孔質電極を積層
してなる検出素子部を備えた空燃比センサがある。
[Prior Art] Conventionally, air-fuel ratio sensors have been used to detect the air-fuel ratio of a fuel mixture supplied to an internal combustion engine, etc. from the degree of oxygen in exhaust gas.
There is an air-fuel ratio sensor that includes a detection element formed by laminating porous electrodes on both sides of an oxygen ion conductive solid electrolyte.

つまり例えば、測定ガスとなる排気中に、上記の如く形
成された検出素子部を間隙を介して対向配設し、一方の
検出素子部を酸素濃淡電池素子、他方の検出素子部を酸
素ポンプ素子として動作させ、l!素淵淡電池素子の両
電極間に生ずる電圧、あるいは酸素ポンプ素子に流れる
電流から、排気中の酸素濃度を検出するよう構成された
空燃比センサ(特開昭59−178354) 、あるい
は上記の如く構成された検出素子部の一方の多孔質電極
側に排気の拡散が制限されたガス拡散制限室を形成する
とハに、該ガス拡散制限室内にチタニア等の遷移金属酸
化物からなる酸素センサを配設し、該酸素センサの検出
特性に応じてト紀検出素子部に流れる電流を制御するこ
とでその電流値から排気中のM素淵度を検出するよう構
成された空燃比センサ等がそれである。
In other words, for example, the detection element parts formed as described above are arranged opposite to each other with a gap in the exhaust gas that is the measurement gas, and one detection element part is used as an oxygen concentration battery element, and the other detection element part is used as an oxygen pump element. Run it as l! An air-fuel ratio sensor configured to detect the oxygen concentration in the exhaust gas from the voltage generated between the two electrodes of the Sobuchi light battery element or the current flowing through the oxygen pump element (Japanese Patent Application Laid-Open No. 178354/1983), or as described above. When a gas diffusion restriction chamber in which the diffusion of exhaust gas is restricted is formed on one porous electrode side of the configured detection element section, an oxygen sensor made of a transition metal oxide such as titania is disposed within the gas diffusion restriction chamber. An example of this is an air-fuel ratio sensor, etc., which is configured to detect the M depth in the exhaust gas from the current value by controlling the current flowing through the oxygen detection element section according to the detection characteristics of the oxygen sensor. .

ところでこの欅の空燃比センサにおいて、空燃比を良好
に検出するためには上記各検出素子が所定温度以上とな
り活性化している必要がある。このため従来よりこの種
の空燃比センサにおいては、その活性化を検出するため
の活性化検出装置を設け、これによってセンサの活性化
を確認した後、空燃比の検出を行なうようにすることが
考えられている。
By the way, in this keyaki air-fuel ratio sensor, in order to detect the air-fuel ratio satisfactorily, each of the above-mentioned detection elements needs to be at a predetermined temperature or higher and activated. For this reason, conventionally, this type of air-fuel ratio sensor has been equipped with an activation detection device to detect activation, and after confirming activation of the sensor, the air-fuel ratio can be detected. It is considered.

[発明が解決しようとする問題点] しかし従来の活性化検出装置においては、空燃比センサ
に設けられたヒ・−夕の通電時間や、ヒータ電浦等によ
ってセンサの発熱状態を確認することで空燃比センサの
活性化を判断するようされ又いることから、空燃比セン
リの活性化を直接検知することができず、空燃比センサ
が活性化しているにしかかわらず空燃比が検出できない
といつj。
[Problems to be Solved by the Invention] However, in the conventional activation detection device, it is not possible to check the heating state of the sensor by checking the energization time of the heater installed in the air-fuel ratio sensor, the heater electric pole, etc. Since the activation of the air-fuel ratio sensor is determined by the air-fuel ratio sensor, activation of the air-fuel ratio sensor cannot be directly detected, and if the air-fuel ratio cannot be detected even if the air-fuel ratio sensor is activated, .

問題があった。There was a problem.

つまり例えば空燃比センサの作動停止後、貞ぐにその作
動を再開したような場合、空燃比センサは当然活性化し
ているのであるが、従来では空燃比センサが作動され、
ヒータが通電されて所定時間経過した時、空燃比センサ
の活性化が確認されることから、それまでの間は空燃比
センサが活性化しているにもかかわらず空燃比を検出す
ることができず、内燃機関等の空燃化1i11!陣を良
好に行なえないといった問題があったのである。
In other words, for example, if the air-fuel ratio sensor is restarted after it has stopped operating, the air-fuel ratio sensor is naturally activated, but in the past, the air-fuel ratio sensor was activated.
When the heater is energized and a predetermined period of time has elapsed, activation of the air-fuel ratio sensor is confirmed. Until then, the air-fuel ratio cannot be detected even though the air-fuel ratio sensor is activated. , air-fuel conversion of internal combustion engines, etc. 1i11! There was a problem that they could not conduct their battles well.

そこで、本発明は、検出素子部の内部抵抗を直接測定す
ることで、空燃比センかの活性化を速やかに、しかも精
度よく検出することができる空燃比センサの活性化検出
装置を提供す゛るごとを目的としなされたものであって
、以下の如き構成をとった。
SUMMARY OF THE INVENTION Therefore, the present invention provides an activation detection device for an air-fuel ratio sensor that can quickly and accurately detect activation of the air-fuel ratio sensor by directly measuring the internal resistance of the detection element. It was created with the following purpose:

[問題点を解決するだめの手段] 即ち上記問題点を解決するための手段としての本発明の
構成は、 酸素イオン伝導性の固体電解質両面に一対の多孔質電極
を積層し、第1の多孔質電極が測定ガスに直接接し、第
2の多孔質電極が測定ガスの拡散が制限されたガス拡散
制限室内の測定ガスに接するように配設してなる検出素
子部、を備えた空燃比センサの活性化検出装置であって
、 上記第2の多孔質電極側より上記検出素子部に所定の電
流を供給する電流供給手段と、該電流供給手段の電流供
給によって上記第1及び第2の多孔質電極間に生ずる電
圧から、上記検出素子部の内部抵抗を測定する内部抵抗
測定手段と、 該内部抵抗測定手段により測定されたーF記検出素子部
の内部抵抗が予め設定された設定値以下であるとき、当
該空燃比センサの活性化を検知する、活性化判断手段と
、 を備えたことを特徴とする空燃比センサの活性化検出装
置を要旨としている。
[Means for Solving the Problems] That is, the structure of the present invention as a means for solving the above problems is as follows: A pair of porous electrodes are laminated on both sides of an oxygen ion conductive solid electrolyte, and the first porous An air-fuel ratio sensor comprising: a detection element portion in which a porous electrode is placed in direct contact with a gas to be measured, and a second porous electrode is placed in contact with the gas to be measured in a gas diffusion restriction chamber in which diffusion of the gas to be measured is restricted. An activation detection device comprising: current supply means for supplying a predetermined current to the detection element section from the second porous electrode side; and current supply from the current supply means to the first and second porous holes. an internal resistance measuring means for measuring the internal resistance of the detecting element section from the voltage generated between the electrodes; The present invention provides an activation detection device for an air-fuel ratio sensor, comprising: activation determining means for detecting activation of the air-fuel ratio sensor when .

ここで検出素子部に使用されるW1素イオン伝導性固体
電解質としては、ジルコニアとイツトリアの固溶体、あ
るいはジルコニアとカルシアとの固溶体等が代表的なし
のであり、その他二酸化セリウム、二酸化トリウム、二
酸化ハフニウムの各固溶体、ベロアスカイト型酸化物固
溶体、3価金属酸化物固溶体等も使用可能である。
Typical examples of the W1 ion-conducting solid electrolyte used in the detection element are a solid solution of zirconia and yttria, or a solid solution of zirconia and calcia, as well as cerium dioxide, thorium dioxide, and hafnium dioxide. Various solid solutions, velorskite oxide solid solutions, trivalent metal oxide solid solutions, etc. can also be used.

またその固体電解質両面に夫々設けられる第1及び第2
の多孔″f!電極としては、酸化反応の触媒作用を有す
る白金やロジウム等を用いればよく、その形成方法とし
ては、これらの金属粉末を主成分としてこれに固体電解
質と同じセラミック材料の粉末を混合してペースト化し
、厚膜技術を用いて印1lII後、焼結して形成する方
法、あるいはフレーム溶rF11化学メツギ、蒸着等の
薄膜技術を用いて形成する方法等が挙げられる。尚、こ
の多孔質電極は測定ガス、即ち排気に直接接することか
ら、」二部電極層に更に、アルミナ、スピネル、ジルコ
ニア、ムライト等の多孔質保護層を厚膜技術を用いで形
成することが好ましい。
In addition, first and second electrodes are provided on both sides of the solid electrolyte, respectively.
The porous "f! electrode" may be made of platinum, rhodium, etc., which have a catalytic effect on oxidation reactions, and the method for forming it is to use powders of these metals as the main component and powder of the same ceramic material as the solid electrolyte. Examples include a method of mixing and forming a paste and sintering it after marking using a thick film technique, or a method of forming using a thin film technique such as flame melting rF11 chemistry, vapor deposition, etc. Since the porous electrode is in direct contact with the gas to be measured, ie, the exhaust gas, it is preferable to further form a porous protective layer of alumina, spinel, zirconia, mullite, etc. on the two-part electrode layer using thick film technology.

このように形成された″検出素子部は、第1の多孔質電
極が測定ガス(排気)に直接接し、第2の多孔質電極が
測定ガスの拡散が制限されたガス拡散制限室内の測定が
ス(排気)に接するように配設されるが、この種の検出
素子部を有する空燃比センサとしては、従来技術の項で
説明した如く、2個の検出素子部を備えた空燃比セン9
−や、検出素子部とヂタニア等からなる入センサとを組
み合せた空燃比センサが挙げられる。
In the detection element section formed in this way, the first porous electrode is in direct contact with the measurement gas (exhaust gas), and the second porous electrode is in direct contact with the measurement gas (exhaust gas), and the second porous electrode is in direct contact with the measurement gas in the gas diffusion restriction chamber where the diffusion of the measurement gas is restricted. As explained in the prior art section, an air-fuel ratio sensor having this type of detection element section is arranged so as to be in contact with the gas (exhaust air).
- and an air-fuel ratio sensor that combines a detection element portion and an input sensor made of ditania or the like.

また2個の検出素子部を備えた空燃比センサとして近年
では、得られる検出特性が測定ガス中の酸素濃度に応じ
て連続的に変化し、あらゆる領域での空燃比を精度よく
検出できるようり、酸素濃淡電池素子として用いる検出
素子部のガス拡散制限室とは反対側の電極に大気を導入
し、この酸素濃淡電池素子に生ずる電圧が一定となるよ
う、酸素ポンプ素子として用いる検出素子部に流れる。
In addition, in recent years, air-fuel ratio sensors equipped with two detection elements have been developed whose detection characteristics change continuously according to the oxygen concentration in the measurement gas, making it possible to accurately detect the air-fuel ratio in any range. , atmospheric air is introduced into the electrode on the opposite side of the gas diffusion restriction chamber of the detection element used as an oxygen concentration battery element, and the atmosphere is introduced into the detection element used as an oxygen pump element so that the voltage generated in the oxygen concentration battery element is constant. flows.

”■流を双方向に制胛して、その電流値から測定ガス中
の酸素濃度、即ら空燃比を検出するよう構成された空燃
比センサ、 あるいは酸素濃淡電池素子として用いる検出素子部に所
定の電流を流しでガス拡散制限室(二接しない電極側に
酸素を発生させ、その発生させた酸素を漏出低抗部を介
して外部あるいはガス拡散制限室に漏出さ達ることでこ
の電極側の酸素分圧を一定に保ち、上記と同様、酸素ポ
ンプ素子として用いる検出素子部に流れる電流値り目ら
酸素濃度を検出するよう構成された空燃比センサ、等が
考えられてJ3す、この種の空燃比センサにおいても当
該発明を適用4ることが”Cきる。
``■ An air-fuel ratio sensor configured to control the flow in both directions and detect the oxygen concentration in the measured gas, that is, the air-fuel ratio, from the current value, or a detection element section used as an oxygen concentration cell element. By passing a current, oxygen is generated in the gas diffusion restriction chamber (the side of the electrode that is not in contact with the other), and the generated oxygen leaks to the outside or to the gas diffusion restriction chamber through the leakage resistance part, and this electrode side An air-fuel ratio sensor configured to keep the oxygen partial pressure constant and detect the oxygen concentration from the current value flowing through the detection element used as the oxygen pump element, as described above, has been considered. The invention can also be applied to various types of air-fuel ratio sensors.

尚上記ガス拡散t111限室とは、排気を拡散υ1限的
に導入する室のことであって、従来技術の項で述べたよ
うに2鋼の検出素子部を間隙を介して対向配設した場合
、この間隙がガス拡散制限室となるが、この他ガス拡散
制限室としては、例えば2118iの検出素子部の間に
AJILzOa、スピネル、)すルステライト、ステア
タイ(・、ジルコニア等からなる中空のスペーサを挟み
、ガス拡散制限部としてこのスペーサの一部に周囲の測
定ガス雰囲気と測定ガス室とを連通さぜる孔を設番)る
ことによ−)ても形成することができる。
The above-mentioned gas diffusion t111 limited chamber is a chamber into which exhaust gas is introduced in a diffusion υ1 limited manner, and as described in the prior art section, two steel detection element parts are arranged facing each other with a gap between them. In this case, this gap becomes a gas diffusion restriction chamber, but other gas diffusion restriction chambers include, for example, a hollow spacer made of AJILzOa, spinel, )lusterite, steatite, zirconia, etc. between the detection element parts of 2118i. It is also possible to form a gas diffusion restriction section by sandwiching a hole in a part of this spacer to communicate the surrounding measurement gas atmosphere with the measurement gas chamber.

[作用1 本発明は、上記のような空燃比センサに備えられ、測定
ガスと直接接する第1の多孔質電極と、測定ガスの拡散
が制限されたガス拡散1.II限室の測定ガスと接する
第2の多孔質電極と、を夫々酸素イオン電導性の固体電
解質両面に積層してなる検出素子部に、第2の多孔質電
極側より一定電流を供給し、各電極間に生ずる電圧から
その内部抵抗を測定し、測定された内部抵抗が所定値以
下であるとき空燃比センサの活性化を検知するようされ
ている。
[Function 1] The present invention includes a first porous electrode that is included in the air-fuel ratio sensor as described above and is in direct contact with a measurement gas, and a gas diffusion method in which diffusion of the measurement gas is restricted. A constant current is supplied from the second porous electrode side to a detection element portion formed by laminating a second porous electrode in contact with the measurement gas in the II limit chamber on both sides of an oxygen ion conductive solid electrolyte, and The internal resistance is measured from the voltage generated between each electrode, and activation of the air-fuel ratio sensor is detected when the measured internal resistance is less than a predetermined value.

つまりこれは、空燃比センサが充分活性化していないと
きには検出素子部の内部抵抗が大きく、検出素子部に電
流を流したときその両端の多孔質電極間に生ずる電圧が
通常より非常に大きくなってしまうことから、これを利
用して検出素子部の活性化を検出することで空燃比セン
サ自体の活性化を判断しているのである。
In other words, this means that when the air-fuel ratio sensor is not activated sufficiently, the internal resistance of the detection element is large, and when current is passed through the detection element, the voltage generated between the porous electrodes at both ends becomes much larger than normal. Therefore, activation of the air-fuel ratio sensor itself is determined by using this to detect activation of the detection element section.

ここで上記検出素子部に、第2の多孔質電極側より電流
を供給するのは、ガス拡散制限室内の酸素ガス分圧と周
囲の測定ガス中の酸素ガス分圧との比により検出素子部
に大きな起電力が発生しないようにするためである。つ
まり、ガス拡散制限室は測定ガスの拡散が制限されてお
り、周囲の測定ガスに比べてM素ガス分圧が低く、これ
によって検出素子部に起電力が発生すると考えられるこ
とから、第2の多孔質電極側より電流を供給することに
よって、周囲の測定ガス中の酸素をガス拡散制限室内に
汲み込み、これによって検出素子部に生ずる起電力が小
さくなるよう、即ち各電極間に生ずる電圧で以て検出素
子部の内部抵抗が良好に検出できるよう、にしているの
である。
Here, current is supplied to the detection element section from the second porous electrode side depending on the ratio of the oxygen gas partial pressure in the gas diffusion restriction chamber to the oxygen gas partial pressure in the surrounding measurement gas. This is to prevent large electromotive force from being generated. In other words, the diffusion of the measurement gas is restricted in the gas diffusion restriction chamber, and the M elemental gas partial pressure is lower than that of the surrounding measurement gas, which is thought to generate an electromotive force in the detection element. By supplying current from the porous electrode side of the electrode, oxygen in the surrounding measurement gas is pumped into the gas diffusion restriction chamber, thereby reducing the electromotive force generated in the detection element, that is, increasing the voltage generated between each electrode. This allows the internal resistance of the detection element portion to be detected satisfactorily.

またこのように検出素子部に生ずる起電力を抑えるため
には、上記電流供給手段により供給する電流を小さくし
ておくことが望ましい。つまりこの電流値を大きくする
と第1の多孔質電極周囲の酸素ガス分圧が小さくなり過
ぎ、反起電力が生じて内部抵抗が良好に検出できなくな
るので、この′III流値としては、例えば数十〜数百
EμA1程度の微小な値に設定jることが望ましいので
ある。
Further, in order to suppress the electromotive force generated in the detection element section, it is desirable to keep the current supplied by the current supply means small. In other words, if this current value is increased, the oxygen gas partial pressure around the first porous electrode becomes too small, and a counter-electromotive force is generated, making it impossible to detect the internal resistance well. It is desirable to set it to a small value of about ten to several hundred EμA1.

更に以上のように検出素子部に生ずる起電力ができるだ
け小さくなるよう設定しても、第1の多孔質電極側の酸
素ガス分圧と、第2の多孔質電極側の酸素ガス分圧と、
を完全に一致させることはできず、特に空燃比のリッチ
域とリーン域とでは大きく異なる電圧が生じてしまい、
得られる内部抵抗も異なる値になってしまう。そこで、
上記活性化1断手段で空燃比センサの活性化判断に用い
る設定値としては、空燃比センサが活性化するまでの燃
焼R器の運転状態に応じて設定づることか望ましい。
Furthermore, even if the electromotive force generated in the detection element section is set to be as small as possible as described above, the partial pressure of oxygen gas on the first porous electrode side and the partial pressure of oxygen gas on the second porous electrode side,
It is not possible to match them completely, and voltages that are significantly different will occur, especially in the rich and lean air-fuel ratio ranges.
The resulting internal resistances will also have different values. Therefore,
It is preferable that the set value used for determining the activation of the air-fuel ratio sensor by the activation/off means is set in accordance with the operating state of the combustion engine until the air-fuel ratio sensor is activated.

例えばこの種の空燃比センサを用いて内燃機関の空燃比
制御を実行する場合、空燃比センサは内燃機関の始動と
共に徐々に活性化され、また内燃機関は燃料の始動時増
量によって空燃比リッチ域で運転されることから、上記
設定値としては、空燃比リッヂ域におけるセンサ活性化
時の内部抵抗を予め設定しておくことが9ましいのであ
る。
For example, when performing air-fuel ratio control of an internal combustion engine using this type of air-fuel ratio sensor, the air-fuel ratio sensor is gradually activated as the internal combustion engine starts, and the internal combustion engine moves into an air-fuel ratio rich range by increasing the amount of fuel at startup. Therefore, it is preferable to set the internal resistance at the time of sensor activation in the air-fuel ratio ridge region in advance as the set value.

即ち具体的には、例えば燃料増量補正によって始動時に
空気過III率λ−0,8のリッチ域で運転される内燃
機関の場合、予めこの運転条件下で空燃比センサを動作
させ、得られろ検出結果が活性化時の90%となるまで
の時間TWをit 1tll シておき、その後同じ運
転条件下で内燃機関を運転し、対応する部間Twで当該
検出装置を用いて検出素子部の内部抵抗を測定し、その
測定結果を設定値とすればよいのである。
Specifically, for example, in the case of an internal combustion engine that is operated in a rich range of air excess ratio λ-0.8 at the time of startup due to fuel increase correction, the air-fuel ratio sensor is operated in advance under this operating condition to obtain the Set the time TW until the detection result reaches 90% of the activation time, then operate the internal combustion engine under the same operating conditions, and use the detection device to detect the detection element part at the corresponding interval Tw. All you have to do is measure the internal resistance and use the measurement result as the set value.

[実施例1 以下に本発明の一実施例を図面と共に説明する。[Example 1 An embodiment of the present invention will be described below with reference to the drawings.

まず第2図及び第3図は本実施例の活性化検出分解斜視
図である。
First, FIGS. 2 and 3 are exploded perspective views of activation detection in this embodiment.

第2図及び第3図に示す如く本実施例の空燃比センサは
、固体電解質板1の両面に多孔質電極2及び3を積層し
てなる酸素ポンプ素子4と、同じく固体電解質板5の両
面に多孔質電極6及び7を積層してなる酸素濃淡電池素
子8と、これら各検出素子4及び8の間に積層され、各
検出素子4及び8の対向する多孔質電極3及び6部分で
中空部9aが形成されたスペーサ9と、酸素濃淡電池素
子8の多孔質電極7側にv4層される′a薮休体0と、
により構成されている。
As shown in FIGS. 2 and 3, the air-fuel ratio sensor of this embodiment includes an oxygen pump element 4 formed by laminating porous electrodes 2 and 3 on both sides of a solid electrolyte plate 1, and an oxygen pump element 4 formed by laminating porous electrodes 2 and 3 on both sides of a solid electrolyte plate 5. An oxygen concentration battery element 8 is formed by laminating porous electrodes 6 and 7 on the wafer, and is laminated between each of these detection elements 4 and 8. A spacer 9 in which a portion 9a is formed, a 'a bushy body 0 which is layered on the porous electrode 7 side of the oxygen concentration battery element 8,
It is made up of.

ここでまずスペーサ9は、多孔質電極3と多孔質電極6
との間で測定ガスの拡散が制限されたガス拡散制限室を
形成するためのらのであって、その中空部9aがガス拡
散制限室とされる。またこのスペーサ9には、その中空
部9a内に周囲の測定ガスを導入できるよう、中空部9
【1周囲の3箇所にガス拡散制限部としての切り欠き下
が形成されている。
First, the spacer 9 is connected to the porous electrode 3 and the porous electrode 6.
The hollow portion 9a is used as the gas diffusion restriction chamber. The spacer 9 also has a hollow portion 9a so that surrounding measurement gas can be introduced into the hollow portion 9a.
[Notch bottoms are formed at three locations around 1 to serve as gas diffusion restriction portions.

次に遮蔽体10は耐索′&i淡電池累子8の多孔買電4
4i7を内部!、!準酸素源として用いるために、多孔
′0電極7を外部の測定ガスより1するためのちのであ
る。またこの遮蔽体10に覆われた多孔質電極7は、内
部IJハ(酸素源として用いた際にその内部に発生され
た酸素をガス拡rllυ1限室、叩Iう中空部9a内に
漏出できるよう、例えばフルミカ等からなる多孔質絶縁
体Zと、スルー・トール[」と、を介して多孔質電極6
のリード部6立と接続されている。つまり多孔質絶縁体
Z1スルーホール1]、及び多孔質電極6のリード部6
1が、漏出抵抗部として形成され、多孔質電極7内に発
生された酸素をこの漏出抵抗部を介して中空部Oa内に
漏出できるようにされているのである。
Next, the shielding body 10 is a porous power supply 4 of the cable resistant & i light battery 8.
4i7 inside! ,! In order to use it as a quasi-oxygen source, the porous electrode 7 is removed from the external measuring gas. In addition, the porous electrode 7 covered with the shield 10 can leak oxygen generated inside the internal IJ (when used as an oxygen source) into the gas expansion chamber 9a and into the hollow part 9a. For example, the porous electrode 6 is connected to the porous insulator Z made of Flumica or the like through the through-toll.
It is connected to the 6 lead parts of. That is, the porous insulator Z1 through hole 1] and the lead portion 6 of the porous electrode 6
1 is formed as a leak resistance section, and oxygen generated in the porous electrode 7 can leak into the hollow portion Oa through this leak resistance section.

更に酸素ポンプ索子4及び酸素濃淡電池素子8の各多孔
質電極2,3.6.7の電極端子は、当該空燃比ヒン+
1−の外壁面に形成されている。つ土り、酸素ポンプ索
子4の多孔買電ff12は外部に露出して形成されるこ
とから、そのリード部2.Q、がそのまま電極端子とさ
れ、内部に積層された酸素ポンプ素子4の多孔質電極3
あるいは酸素′a淡電池木子8の多孔質電極6及び7に
おいCは、そのリード部3iあるいは6文及び7.Q、
と、固体電解質板1あるいは遮蔽体10の外壁面に夫々
積W4された電極端子3tあるいは61及び7tとを、
スルー4・−ル3hあるいG;t 6 h及び7hを介
して電気的に接続することによって形成されているので
あ?15 この、1うに構成された本実施例の空燃比センサは、第
1図に示す如く、多孔質電極層7の酸素が外部に漏れな
いように密閉し、当該空燃比セン9Sを固定する固定部
15、及びねじ部16を介して内燃機関の排気管17に
取り付けられ、活性化検出回路20でその活性化が検出
された後、空燃比検出回路30によって動作される。面
図では、空燃比センサSの取り付は状態を解り易くする
ために、各多孔質電極のリード部及び電極端子は省略さ
れている。
Furthermore, the electrode terminals of each porous electrode 2, 3.6.7 of the oxygen pump cord 4 and the oxygen concentration battery element 8 are
It is formed on the outer wall surface of 1-. However, since the porous power supply ff12 of the oxygen pump cord 4 is formed to be exposed to the outside, its lead portion 2. Q is used as an electrode terminal as it is, and the porous electrode 3 of the oxygen pump element 4 is laminated inside.
Alternatively, C in the porous electrodes 6 and 7 of the oxygen 'a' battery wood 8 is the lead portion 3i or 6 and 7. Q,
and electrode terminals 3t or 61 and 7t stacked W4 on the outer wall surface of the solid electrolyte plate 1 or the shield 10, respectively,
Is it formed by electrically connecting through 4-3h or G; t 6 h and 7h? 15 As shown in FIG. 1, the air-fuel ratio sensor of this embodiment configured as in 1 is sealed so that oxygen in the porous electrode layer 7 does not leak to the outside, and is fixed to fix the air-fuel ratio sensor 9S. It is attached to an exhaust pipe 17 of an internal combustion engine via a portion 15 and a threaded portion 16, and after its activation is detected by an activation detection circuit 20, it is operated by an air-fuel ratio detection circuit 30. In the top view, the lead portions and electrode terminals of each porous electrode are omitted to make it easier to understand the installation state of the air-fuel ratio sensor S.

活性化検出回路20は空燃比センサSの酸素ポンプ素子
4に、前記第1の多孔質電極としての多孔質電極3側よ
り一定の電流(例えば100(μAl)を供給するため
の、演算増幅器OP1を用いて構成された定電流回路2
1と、このとき酸素ポンプ索子4両端の多孔質電極2及
び3に生ずる電圧を検出する、演算増幅器OP2を用い
て構成された電圧検出回路22と、この電圧検出回路2
2により検出された電圧が予め設定された設定電圧EO
以下となったとき、空燃比センサSの活性化を検出し・
、活性化検出13号を出力する、演剛増幅器OP3を用
いて構成された活性化判別回路23ど、この活性化判別
回路23より出力される活性化検出信号により切り替え
られ、上記空燃比検出回路30と空燃比センサSの酸素
ポンプ素子4とを接続して空燃比検出回路30により空
燃比を検出させるアナログス・イッチ24及び25と、
から構成されている。
The activation detection circuit 20 includes an operational amplifier OP1 for supplying a constant current (for example, 100 (μAl)) to the oxygen pump element 4 of the air-fuel ratio sensor S from the porous electrode 3 side serving as the first porous electrode. Constant current circuit 2 constructed using
1, a voltage detection circuit 22 configured using an operational amplifier OP2, which detects the voltage generated in the porous electrodes 2 and 3 at both ends of the oxygen pump cord 4, and this voltage detection circuit 2.
The voltage detected by 2 is the preset voltage EO.
When the following conditions occur, the activation of the air-fuel ratio sensor S is detected.
, an activation detection circuit 23 configured using a reductive amplifier OP3, which outputs activation detection signal No. 13, etc., which is switched by the activation detection signal output from the activation detection circuit 23, and the air-fuel ratio detection circuit 30 and the oxygen pump element 4 of the air-fuel ratio sensor S, analog switches 24 and 25 allow the air-fuel ratio detection circuit 30 to detect the air-fuel ratio;
It consists of

即ち本実施例の活性化検出回路20は、定電流回路21
により酸素ポンプ素子4の周囲測定ガスと両接接1−る
多孔質電極2側から一定電流を供給し、そのとき酸素ポ
ンプ素子4の各多孔質電極2゜3間に生ずる電圧を電圧
検出回路22で以て検出することで酸素ポンプ素子4の
内部抵抗を測定し、活性化判断回路23によりその測定
値、即ち多孔質電極2,3間の電圧が設定電圧Eo以下
か否かを判断することで、酸素ポンプ索子4の内部抵抗
が所定値以下となって素子が活性化している旨を判断す
るよう構成されているのである。
That is, the activation detection circuit 20 of this embodiment has a constant current circuit 21
A constant current is supplied from the porous electrode 2 side which is in contact with the surrounding gas to be measured on both sides of the oxygen pump element 4, and the voltage generated between each porous electrode 2 of the oxygen pump element 4 is detected by the voltage detection circuit. 22 to measure the internal resistance of the oxygen pump element 4, and the activation determination circuit 23 determines whether the measured value, that is, the voltage between the porous electrodes 2 and 3, is less than or equal to the set voltage Eo. Thus, the device is configured to determine that the internal resistance of the oxygen pump cord 4 is below a predetermined value and that the device is activated.

尚上記定電流回路21、電圧検出回路22、活性化判別
回路23は、夫々、前述の電流供給手段、内部抵抗測定
手段、活性化判断手段に相当する。
The constant current circuit 21, voltage detection circuit 22, and activation determination circuit 23 correspond to the current supply means, internal resistance measurement means, and activation determination means described above, respectively.

また上記活性化検出回路23で用いる設定電圧EOにつ
いては後に詳しく説明する。
Further, the set voltage EO used in the activation detection circuit 23 will be explained in detail later.

次に空燃比検出回路3oは、上記活性化検出回路20で
空燃比センサSの活性化が検出され、上記各アナログス
イッチ24及び25が図とは反対方向に切り替えらるこ
とによって空燃比センサSと接続される。そしてこの空
燃比検出回路30では、酸素濃淡電池素子8に所定の電
流を流して多孔M電極7内に酸素を発生させ、この発生
された耐南ガス分F[と、測定ガス室としての中空部9
a内の酸素ガス分圧との比に応じて酸素濃淡電池素r8
の両端の電極に生ずる電圧が一定となるよう、filら
中空部9a内の酸素ガス分圧が一定となるよう、Miポ
ンプ累子4に流れるrW流を双方向に制御し、王の′澄
流値を空燃比信号として出力するように構成されている
Next, the air-fuel ratio detection circuit 3o detects activation of the air-fuel ratio sensor S by the activation detection circuit 20, and the analog switches 24 and 25 are switched in a direction opposite to that shown in the figure. connected to. In this air-fuel ratio detection circuit 30, a predetermined current is passed through the oxygen concentration cell element 8 to generate oxygen in the porous M electrode 7, and the generated anti-nan gas F[ and the hollow space serving as the measurement gas chamber are Part 9
Oxygen concentration battery element r8 according to the ratio with the oxygen gas partial pressure in a
The rW flow flowing through the Mi pump resistor 4 is bidirectionally controlled so that the voltage generated at both ends of the electrodes becomes constant, and the partial pressure of oxygen gas in the hollow part 9a becomes constant. It is configured to output the flow value as an air-fuel ratio signal.

即ち空燃比検出回路30は、第4図に示す如く、酸X濃
淡電池素子8の多孔質電極7に所定の電圧Vb(V14
えばlo[V])を印加し、基準ffl圧Vaが印加さ
れた他方の多孔質電極6側に流れる電流をルリ限する抵
抗Rと、酸素ilI淡電池素子8の両側の電極に発生し
、基準電圧V9 (VAえば5V)で以って嵩上げされ
た電圧を検出する、演算増幅器OP4により構成された
バッファ回路31と、このバッファ回路31より出力さ
れる検出電圧を増幅する、演算増幅器OP5により構成
された非反転増幅回路32と、この非反転増幅回路32
により増幅された検出電圧を所定の基準電圧Vcと比較
し、検出電圧が基準電圧1./cに対し大ぎいどきに所
定の積分定数で以って徐々に低下し逆の場合に所定の積
分定数で以って徐々に増加する第5図に示す如き制!2
1I電圧を出力する、演口増幅器OP6を用いて構成さ
れた比較・積分回路33ど、上記基準電圧Vaを出力す
る、演口増幅器OP7により構成されたバッファ回路]
4ど、バッフ7+9!′t834からの基準電圧vaを
酸素ポンプ索子4の中空部9a側の多孔質電極3に印加
し、この電極3と比較・積分回路33からの制御電圧が
印加されたもう一方の多孔質電極2との間で流れる電流
を検出するための電流検出用抵抗R1と、この抵抗R1
に生ずる電圧を空燃比倍@Vλとして出りする、演算増
幅器OP8により構成された出力回路35と、から構成
されているのである。尚この空燃比検出回路30によっ
て得られる空燃比信号は、例えば第6図に示す如く、空
燃比のリッチ域からリーン域にか目で連続的に変化する
That is, the air-fuel ratio detection circuit 30 applies a predetermined voltage Vb (V14) to the porous electrode 7 of the acid
For example, lo[V]) is applied, and a resistance R is generated to limit the current flowing to the other porous electrode 6 side to which the reference ffl pressure Va is applied, and the electrodes on both sides of the oxygen ILI light battery element 8, A buffer circuit 31 constituted by an operational amplifier OP4 detects the voltage boosted by the reference voltage V9 (VA, for example, 5V), and an operational amplifier OP5 amplifies the detection voltage output from the buffer circuit 31. The configured non-inverting amplifier circuit 32 and the non-inverting amplifier circuit 32
The detected voltage amplified by 1. /c, the system shown in FIG. 5 gradually decreases with a predetermined integral constant, and in the opposite case gradually increases with a predetermined integral constant! 2
Comparison/integration circuit 33 configured using an aperture amplifier OP6 that outputs a 1I voltage, etc., a buffer circuit configured using an aperture amplifier OP7 that outputs the reference voltage Va]
4th, buff 7+9! The reference voltage va from 't834 is applied to the porous electrode 3 on the hollow part 9a side of the oxygen pump cord 4, and this electrode 3 and the other porous electrode to which the control voltage from the comparison/integration circuit 33 is applied a current detection resistor R1 for detecting the current flowing between the resistor R1 and the resistor R1.
and an output circuit 35 constituted by an operational amplifier OP8, which outputs the voltage generated at the air-fuel ratio multiplied by @Vλ. The air-fuel ratio signal obtained by the air-fuel ratio detection circuit 30 changes continuously from a rich range to a lean range of the air-fuel ratio, as shown in FIG. 6, for example.

このように構成された空燃比検出装置では、空燃比セン
サSの活性化が活性化検出回路20で以て検出され、そ
の動作によって空燃比検出回路30が空燃比センサSと
接続されることとなるのであるが、次に上記活性化検出
回路20で空燃比センサSの活性化を判断する除用いる
設定電圧EOの設定方法について内燃機関に用いる空燃
比センサを例にとり説明する。
In the air-fuel ratio detection device configured as described above, activation of the air-fuel ratio sensor S is detected by the activation detection circuit 20, and the air-fuel ratio detection circuit 30 is connected to the air-fuel ratio sensor S by the activation detection circuit 20. Next, a method for setting the set voltage EO used to determine activation of the air-fuel ratio sensor S in the activation detection circuit 20 will be explained using an air-fuel ratio sensor used in an internal combustion engine as an example.

この設定電圧EOは前述の内部抵抗の設定値に相当する
ものであって、まず当該空燃比センサSが使用される内
燃機関始動時の空燃比を確認し、その空燃比で内燃機関
を始動したとき上記空燃比回路30によって得られる空
燃比信号を測定した後、実験的に設定される。
This set voltage EO corresponds to the set value of the internal resistance mentioned above, and first, the air-fuel ratio at the time of starting the internal combustion engine in which the air-fuel ratio sensor S is used is confirmed, and the internal combustion engine is started at that air-fuel ratio. is set experimentally after measuring the air-fuel ratio signal obtained by the air-fuel ratio circuit 30.

即ち第7図は、次表に示す如さ1汰ぐ作成された空燃比
センサSを、4サイクル、1.5F立立向内燃関の排気
管に装着し、内燃機関を、回転数1200 Cr、p、
s、] 、吸気管内圧−500[++vHG]、排気温
170 [’C] 、空燃比△/F : 12の条件下
で運転したときに、上記空燃比検出回路30で以って空
燃比センサSを同時に動作したときの酸素ポンプ素子4
に流れるポンプ電流ip、その両端に生ずる電圧p、及
びM素濃淡電池素子8の両端に生ずる電圧VS、を夫々
表わす測定データであるが、この測定データがら空燃比
j7ンサSが90%活性化するまでの時間Tw(この場
合22(secl)をとり、この時間TWに対応して空
燃比検出回路30オーブン時に上記電圧検出回路22で
1qられる酸素ポンプ素子4両端に生ずる電圧を実験的
に求め、この値を設定電圧Eoとすればよいのである。
That is, Fig. 7 shows that the air-fuel ratio sensor S prepared as shown in the following table is attached to the exhaust pipe of a 4-cycle, 1.5F vertical internal combustion engine, and the internal combustion engine is rotated at a rotation speed of 1200 Cr. ,p,
s,], intake pipe internal pressure -500 [++vHG], exhaust temperature 170 ['C], and air-fuel ratio Δ/F: 12, the air-fuel ratio detection circuit 30 detects the air-fuel ratio sensor. Oxygen pump element 4 when S is operated simultaneously
This measurement data represents the pump current ip flowing in the pump current ip, the voltage p generated across it, and the voltage VS generated across the M element concentration battery element 8. This measurement data shows that the air-fuel ratio j7 sensor S is 90% activated. Taking the time Tw (in this case, 22 (sec)) until the air-fuel ratio detection circuit 30 is in the oven, the voltage generated across the oxygen pump element 4, which is 1q in the voltage detection circuit 22 when the air-fuel ratio detection circuit 30 is in the oven, is experimentally determined. , this value may be set as the set voltage Eo.

第8図はこの実験により得られる酸素ポンプ素子両端に
生ずる電圧から、酸素ポンプ素子4内部の内部抵抗を計
粋した値を表わすものであるが、上記の如き構成の空燃
比センサSの場合、上記測定データから求まる活性化9
0%までの時間TW(22[5ecl)に相当する酸素
ポンプ素子4の内部抵抗Rpは約700[Ω]となり、
設定電圧としては、酸素ポンプ4に流す電流Iρを10
0Eμ△]とずれば、IDXR6より70[mV]とな
ることがわかる。尚、この実験に際しては空燃比センサ
はヒータで以で加熱した。
FIG. 8 shows the value of the internal resistance inside the oxygen pump element 4 calculated from the voltage generated across the oxygen pump element obtained through this experiment. In the case of the air-fuel ratio sensor S having the above configuration, Activation 9 determined from the above measurement data
The internal resistance Rp of the oxygen pump element 4 corresponding to the time TW (22 [5 ecl) to reach 0% is approximately 700 [Ω],
As the setting voltage, the current Iρ flowing through the oxygen pump 4 is set to 10
It can be seen that if it deviates from 0EμΔ], it becomes 70 [mV] from IDXR6. In this experiment, the air-fuel ratio sensor was heated with a heater.

こごで上記実験例は、内燃機関始動時には、通常燃料の
増量補正によって空燃比がリッチとなり、空燃比センサ
Sの活性化を判断する際には上記のような条件下で内燃
機関が運転されることから、このときの設定電圧EOの
設定方法を示したもので、例えば始紡時にリーンとなる
ような燃焼機器に当該空燃比センサSを用いる場合、次
のように設定電圧EOを設定すればよい。
In the above experimental example, when starting the internal combustion engine, the air-fuel ratio becomes rich due to normal fuel increase correction, and when determining whether to activate the air-fuel ratio sensor S, the internal combustion engine is operated under the above conditions. Therefore, this shows how to set the set voltage EO at this time. For example, when using the air-fuel ratio sensor S in a combustion equipment that is lean at the start of spinning, set the set voltage EO as follows. Bye.

即ち第9図は空燃比リーン時の排気として大気を用いた
場合の空燃比センサSによる空燃比検出特性であるが、
この場合、空燃比センサの活性化が90%となるまでの
時間TWは30[SeO3となることから、この条件下
で空燃比検出回路30がオーブン時に活性化検出回路2
0の電圧検出回路22で得られる酸素ポンプ素子4の両
端に生ずる電圧を測定し、3Q[sec]経過後の電圧
を設定電圧EOとして設定すればよい。つまりこの実験
により(qられた酸素ポンプ素子4の両端に生ずる電圧
からその内部抵抗RDを算出すると第10図に示す如く
なり、30[SQC]経過(々の内部抵抗Rpは約15
0[Ω]となることから、定電流回路21による電流値
を100[μA1とすれば設定電圧EOを15−mV]
とすればよいことがわかる。尚この実験においては上記
表に示した如き寸法で形成された空燃比センサを用い、
20±5’C(7)大気を流速50 [1/m + n
]で流し、ピータで以て空燃比センサを加熱して行なっ
た。
That is, FIG. 9 shows the air-fuel ratio detection characteristics by the air-fuel ratio sensor S when atmospheric air is used as the exhaust gas when the air-fuel ratio is lean.
In this case, the time TW until the activation of the air-fuel ratio sensor reaches 90% is 30 [SeO3, so under this condition, the air-fuel ratio detection circuit 30 is activated when the activation detection circuit 2 is in the oven.
The voltage generated across the oxygen pump element 4 obtained by the zero voltage detection circuit 22 may be measured, and the voltage after 3Q [sec] may be set as the set voltage EO. In other words, based on this experiment, the internal resistance RD of the oxygen pump element 4 is calculated from the voltage generated across the terminals of the oxygen pump element 4 as shown in FIG.
0 [Ω], so if the current value from the constant current circuit 21 is 100 [μA1, the set voltage EO is 15-mV]
You can see that it is sufficient to do this. In this experiment, an air-fuel ratio sensor formed with the dimensions shown in the table above was used.
20±5'C (7) Atmospheric flow velocity 50 [1/m + n
] and heated the air-fuel ratio sensor with a pipette.

以上のように構成された本実施例の空燃比センサの活性
化検出装置においては、空燃比検出回路30による空燃
比の検出前に、酸素ポンプ素子4の内部抵抗がら空燃比
センサSの活性化を直接検出できるようになり、空燃比
センサが活性化された侵、空燃比検出回路30で以て空
燃比を速やかに検出させることが可能となる。従って従
来のように空燃比センサが活性化しているにもかかわら
ず空燃比を検出することができず、内燃機関等の空燃比
制御を良好に行なうことができなくなるといったことは
なく、空燃比制御を常に良好に実行させることが可能と
なる。
In the air-fuel ratio sensor activation detection device of this embodiment configured as described above, before the air-fuel ratio detection circuit 30 detects the air-fuel ratio, the air-fuel ratio sensor S is activated depending on the internal resistance of the oxygen pump element 4. When the air-fuel ratio sensor is activated, the air-fuel ratio can be detected directly using the air-fuel ratio detection circuit 30. Therefore, unlike in the past, the air-fuel ratio sensor is not able to detect the air-fuel ratio even though it is activated, and the air-fuel ratio of the internal combustion engine, etc. cannot be properly controlled. This makes it possible to always perform it well.

[発明の効果] 以上詳述した如く、本発明の空燃比センサの活性化検出
装置によれば、空燃比センサを構成する検出素子部の内
部抵抗からその活性化を直接検出することが可能となる
。従って空燃比センサの活性化を応答遅れを生ずること
なく速Abかに検出でき、空燃比センサが活性化した後
の空燃比制御を速やかに実行させることができるように
なる。
[Effects of the Invention] As detailed above, according to the air-fuel ratio sensor activation detection device of the present invention, it is possible to directly detect the activation from the internal resistance of the detection element portion constituting the air-fuel ratio sensor. Become. Therefore, activation of the air-fuel ratio sensor can be detected at speed Ab without causing a response delay, and air-fuel ratio control after activation of the air-fuel ratio sensor can be quickly executed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第10図は本発明の一実施例を示し、第1
図は本実施例の空燃比センサ及び活性化検出回路仝休の
構成を表わす構成図、第2図は空燃比センサの部分破膜
斜視図、第3図はその分解斜視図、第4図は空燃比検出
回路を表わす電気回路図、第5図は空燃比検出回路内で
発生される酸素ポンプ素子の制御信号を表わす線図、第
6図は空燃比検出回路により1!′7られる空燃比13
号を表わザ線図、第7図は空燃比センサを空燃比リッ′
f−域の排気中で動作したときの活性化状態を表ねず線
図、第8図は空燃比リッチ域での酸素fA淡主電池素子
空燃比センサの活性化に伴い変化する!1!2索ポンプ
素子の内部抵抗の変化を表わす線図、第9図し゛た。 は空燃比センサを大気中で動作モ時の活性化状態を表わ
す線図、第10図は大気中で空燃比センサの活性化に伴
い変化する酸素ポンプ素子の内部抵抗を表わす線図、で
ある。 1.5・・・固体電解質板 2.3.6.7・・・多孔質電極 4・・・酸素ポンプ素子 8・・・酸素濃淡電池素子 9・・・スペーサ 9a・・・中空部(ガス拡散制限室) 20・・・活性化検出回路 21・・・定電流回路 22・・・電圧検出回路 23・・・活性化判別回路 30・・・空燃比検出回路
1 to 10 show an embodiment of the present invention, and a first embodiment of the present invention is shown in FIG.
The figure is a configuration diagram showing the configuration of the air-fuel ratio sensor and the activation detection circuit of this embodiment, FIG. 2 is a partially ruptured perspective view of the air-fuel ratio sensor, FIG. 3 is an exploded perspective view thereof, and FIG. An electric circuit diagram showing the air-fuel ratio detection circuit, FIG. 5 is a diagram showing the control signal of the oxygen pump element generated within the air-fuel ratio detection circuit, and FIG. 6 is a diagram showing the control signal of the oxygen pump element generated in the air-fuel ratio detection circuit. '7 air fuel ratio 13
Figure 7 shows the air-fuel ratio sensor.
The graph in FIG. 8 shows the activation state when operating in exhaust gas in the f-region, and the oxygen fA changes in the air-fuel ratio rich region as the main battery element air-fuel ratio sensor is activated! Figure 9 is a diagram showing the change in internal resistance of the 1!2 cable pump element. 10 is a diagram showing the activation state when the air-fuel ratio sensor is operated in the atmosphere, and FIG. 10 is a diagram showing the internal resistance of the oxygen pump element that changes as the air-fuel ratio sensor is activated in the atmosphere. . 1.5...Solid electrolyte plate 2.3.6.7...Porous electrode 4...Oxygen pump element 8...Oxygen concentration battery element 9...Spacer 9a...Hollow part (gas Diffusion restriction chamber) 20... Activation detection circuit 21... Constant current circuit 22... Voltage detection circuit 23... Activation determination circuit 30... Air-fuel ratio detection circuit

Claims (1)

【特許請求の範囲】  酸素イオン伝導性の固体電解質両面に一対の多孔質電
極を積層し、第1の多孔質電極が測定ガスに直接接し、
第2の多孔質電極が測定ガスの拡散が制限されたガス拡
散制限室内の測定ガスに接するように配設してなる検出
素子部、を備えた空燃比センサの活性化検出装置であっ
て、 上記第2の多孔質電極側より上記検出素子部に所定の電
流を供給する電流供給手段と、 該電流供給手段の電流供給によって上記第1及び第2の
多孔質電極間に生ずる電圧から、上記検出素子部の内部
抵抗を測定する内部抵抗測定手段と、 該内部抵抗測定手段により測定された上記検出素子部の
内部抵抗が予め設定された設定値以下であるとき、当該
空燃比センサの活性化を検知する活性化判断手段と、 を備えたことを特徴とする空燃比センサの活性化検出装
置。
[Claims] A pair of porous electrodes are laminated on both sides of an oxygen ion conductive solid electrolyte, the first porous electrode being in direct contact with the measurement gas,
An activation detection device for an air-fuel ratio sensor, comprising a detection element portion in which a second porous electrode is arranged to be in contact with a measurement gas in a gas diffusion restriction chamber in which diffusion of the measurement gas is restricted, a current supply means for supplying a predetermined current to the detection element section from the second porous electrode side; and a voltage generated between the first and second porous electrodes due to the current supply from the current supply means. an internal resistance measuring means for measuring an internal resistance of the detecting element; and when the internal resistance of the detecting element measured by the internal resistance measuring means is less than or equal to a preset value, activation of the air-fuel ratio sensor; An activation detection device for an air-fuel ratio sensor, comprising: activation determination means for detecting;
JP61039826A 1986-02-25 1986-02-25 Activation detector for air/fuel ratio detector Pending JPS62197759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039826A JPS62197759A (en) 1986-02-25 1986-02-25 Activation detector for air/fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039826A JPS62197759A (en) 1986-02-25 1986-02-25 Activation detector for air/fuel ratio detector

Publications (1)

Publication Number Publication Date
JPS62197759A true JPS62197759A (en) 1987-09-01

Family

ID=12563778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039826A Pending JPS62197759A (en) 1986-02-25 1986-02-25 Activation detector for air/fuel ratio detector

Country Status (1)

Country Link
JP (1) JPS62197759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164087A (en) * 2010-01-14 2011-08-25 Ngk Spark Plug Co Ltd Gas sensor control device and gas sensor control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104991A (en) * 1976-02-28 1977-09-02 Bosch Gmbh Robert Method and apparatus for sighting operation preparing state for oxygen measuring and detecting device
JPS5622949A (en) * 1979-08-02 1981-03-04 Nissan Motor Co Ltd Exhaust sensor bias circuit of air fuel ratio controller
JPS6086457A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Air fuel ratio sensor for controlling engine
JPS60165542A (en) * 1984-02-08 1985-08-28 Mitsubishi Electric Corp Air fuel ratio sensor of engine
JPS60224051A (en) * 1984-04-23 1985-11-08 Nissan Motor Co Ltd Air-fuel ratio detecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104991A (en) * 1976-02-28 1977-09-02 Bosch Gmbh Robert Method and apparatus for sighting operation preparing state for oxygen measuring and detecting device
JPS5622949A (en) * 1979-08-02 1981-03-04 Nissan Motor Co Ltd Exhaust sensor bias circuit of air fuel ratio controller
JPS6086457A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Air fuel ratio sensor for controlling engine
JPS60165542A (en) * 1984-02-08 1985-08-28 Mitsubishi Electric Corp Air fuel ratio sensor of engine
JPS60224051A (en) * 1984-04-23 1985-11-08 Nissan Motor Co Ltd Air-fuel ratio detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164087A (en) * 2010-01-14 2011-08-25 Ngk Spark Plug Co Ltd Gas sensor control device and gas sensor control method
JP2011164086A (en) * 2010-01-14 2011-08-25 Ngk Spark Plug Co Ltd Gas sensor control device and gas sensor control method

Similar Documents

Publication Publication Date Title
EP0841562B1 (en) Use of an NOx sensor for measuring nitrogen oxide concentration
US7462266B2 (en) Apparatus for detecting concentration of nitrogen oxide
US4464244A (en) Oxygen sensing device having solid electrolyte cell and means for supplying controlled current thereto
US4814059A (en) Electrochemical device having a heater and leak protection electrode
JPS62276453A (en) Air/fuel ratio sensor
EP0869356A2 (en) NOx sensor
JPH0312255B2 (en)
JPH0548420B2 (en)
JPH0414305B2 (en)
JPH1172478A (en) Oxide gas concentration detecting device and recording medium used therefor
US6346178B1 (en) Simplified wide range air fuel ratio sensor
JPS62197759A (en) Activation detector for air/fuel ratio detector
JP4016964B2 (en) Gas concentration detector
JPS62190461A (en) Activation detecting device for air fuel ratio sensor
JPH0588780B2 (en)
JP3431493B2 (en) Nitrogen oxide concentration detector
JPH0521499B2 (en)
JP3565520B2 (en) Oxygen concentration sensor
JPS61296262A (en) Air/fuel ratio sensor
EP3489672A1 (en) Gas sensor with a pump cell
JP2002303601A (en) Controller for gas concentration sensor
JP2023124819A (en) NOx SENSOR AND OPERATION METHOD OF NOx SENSOR
JPS62179655A (en) Method and apparatus for detecting air/fuel ratio
JPH0436341B2 (en)
JPS62203057A (en) Air/fuel ratio detector of internal combustion engine