JPS62191824A - Pseudo stereoscopic display system - Google Patents

Pseudo stereoscopic display system

Info

Publication number
JPS62191824A
JPS62191824A JP61033145A JP3314586A JPS62191824A JP S62191824 A JPS62191824 A JP S62191824A JP 61033145 A JP61033145 A JP 61033145A JP 3314586 A JP3314586 A JP 3314586A JP S62191824 A JPS62191824 A JP S62191824A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing plate
crystal cell
polarizing
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61033145A
Other languages
Japanese (ja)
Other versions
JPH0578017B2 (en
Inventor
Kenichi Nakagawa
謙一 中川
Kojiro Tsubota
坪田 耕次郎
Kunihiko Yamamoto
邦彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61033145A priority Critical patent/JPS62191824A/en
Priority to US07/015,053 priority patent/US4772943A/en
Priority to DE87102246T priority patent/DE3788144T2/en
Priority to EP87102246A priority patent/EP0233636B1/en
Publication of JPS62191824A publication Critical patent/JPS62191824A/en
Priority to US07/221,601 priority patent/US4870486A/en
Publication of JPH0578017B2 publication Critical patent/JPH0578017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To permit easy observation of stereoscopic images with light and inexpensive spectacles by disposing a liquid crystal cell on the front surface of a television screen, alternately and time-dividedly changing the polarizing direction of the light passed the cell and viewing the images with the spectacles having polarizing plates. CONSTITUTION:The polarizing plate 12 and the ferroelectric smectic liquid crystal cell 13 are disposed on the front face of the screen of a television 11. The liquid crystal 13 is so provided that the optical axis of the cell is alternately changed over in synchronization with the frame signal of the television by a driving circuit 14. An observer views the images with the spectacles 15 having the polarizing plates which are respectively opposite in the polarizing directions on the right and left. The right and left eyes, therefore, recognize the images separately and observe the television images by having the stereoscopic parallax between the right and left eyes. The stereoscopic images are thus easily observed by using the light and inexpensive polarizing spectacles.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は左右両眼の視差を利用した立体視テレビ等の画
像表示システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an image display system such as a stereoscopic television that utilizes the parallax between left and right eyes.

〈従来技術〉 3次元画像あるいは立体画像を実現しようという試みの
歴史は非常に古く、その方式はレーザ・ホログラム等も
含めるときわめて多種のものとなる。しかしながら、3
原色フルカラーで動画を表示できる立体画像表示方式と
して成功しているものは、次の三方式であり、いずれも
右目用と左目用の画像を個々に表示し、鑑賞者の網膜上
で合成される個々の像のずれに基いて立体による視差が
あるかの如く鑑賞者に錯覚させ、立体画像表示を行なう
方式を基本としている。
<Prior Art> Attempts to realize three-dimensional images or three-dimensional images have a very long history, and there are many different methods including lasers, holograms, etc. However, 3
The following three systems have been successful as three-dimensional image display systems that can display moving images in full primary colors.In each case, images for the right eye and left eye are displayed individually, and the images are combined on the viewer's retina. The basic method is to display a three-dimensional image by giving the viewer the illusion that there is a three-dimensional parallax based on the displacement of individual images.

(1)左右両眼用の画像を偏光方向が互いに90゜の角
度をなす直線偏光にしておき、偏光板付きの眼鏡で分離
して見る。劇場用立体映画では主流の方式である。
(1) Images for both the left and right eyes are made into linearly polarized light whose polarization directions make an angle of 90 degrees to each other, and the images are separated and viewed using glasses with polarizing plates. This is the mainstream method for theatrical 3D movies.

(2)左右両眼用の画像を交互に時分割で表示し、電子
的々光バルブ機能のある眼鏡を表示の周期と同期して交
互に開閉させることによって立体画像表示を行なう。
(2) Three-dimensional images are displayed by alternately displaying images for the left and right eyes in a time-sharing manner, and by alternately opening and closing glasses with an electronic light valve function in synchronization with the display cycle.

上記(1)の方式で得られる立体画像はフリッカが感じ
られず、また鑑賞者が着用する偏光板付きの眼鏡は軽く
て安価であるなど理想に近いものである。しかし、偏光
軸の異なる画像2枚を常に同時に映し出すためには2台
の表示装置や映写装置が必要となり、装置の数が多くな
って操作も複雑となるため、一般家庭用としては不向き
である。
The three-dimensional image obtained by the method (1) above is nearly ideal, with no visible flicker, and the glasses with polarizing plates worn by the viewer are light and inexpensive. However, in order to always display two images with different polarization axes at the same time, two display devices and projection devices are required, which increases the number of devices and makes operation complicated, making it unsuitable for general home use. .

上記(2)の方式は、左2右両眼に入る毎秒フレーム数
が半分となるために、フリッカが感じられるが、1台の
テレビで立体画像化が可能である点で現実的である。し
かし、電子的な光パルプ機能のある眼鏡を着用しなけれ
ばならない点で問題がある。
In the method (2) above, the number of frames per second entering both the left and right eyes is halved, so flicker is felt, but it is realistic in that it is possible to create a stereoscopic image with one television. However, there is a problem in that the user must wear glasses with electronic optical pulp function.

すなわちこのような眼鏡は重くて長時間の使用による疲
労が避けられない。その上、このような光バルブ機能の
ある眼鏡は高価であり、1人に1個必要となるため、鑑
賞者の人数分だけ購入する場合の費用は相当に高いもの
となる。
In other words, such glasses are heavy and cause fatigue when used for a long time. Moreover, glasses with such a light valve function are expensive, and each person needs one pair, so the cost of purchasing them for the number of viewers is quite high.

〈発明の目的〉 本発明は、一般家庭や教室など多人数で鑑賞す″る場合
に適した時分割2画像方式の立体画像表示システムを提
供することを目的として為され友もので、従来用いられ
ている上記二つの方式のそれぞれの長所を採り入れたも
のである。
<Purpose of the Invention> The present invention has been made for the purpose of providing a stereoscopic image display system using a time-sharing two-image method, which is suitable for viewing by a large number of people such as at home or in a classroom. This method incorporates the advantages of the two methods described above.

〈実施例〉 本発明は、テレビ画面の前面に液晶セルを配置してこれ
を通過する光の偏光方向を交互に時分割的に切り替え、
偏光板付きの眼鏡で左右の目に分離して見ることにより
、立体画像表示を実行することを特徴とする。
<Embodiment> The present invention arranges a liquid crystal cell in front of a television screen and alternately switches the polarization direction of light passing through the cell in a time-division manner.
It is characterized by displaying stereoscopic images by viewing the left and right eyes separately using glasses with polarizing plates.

以下、実施例に従って詳細に説明する。、ボ1図及び君
2図はそれぞれ本発明の1実施例を示す表示システムの
構成図である。図中、11はテレビであって、その画面
の前には偏光板12が設けである。さらにその偏光板1
2の前は液晶セ/L’13が配置されている。液晶セル
13は強誘電性ヌメクチック液晶をホモジニアス配向さ
せたもので、この液晶セ/L’ 13の基板の内側には
透明電極が設けである。このシステムにおいて液晶セル
13は印加電圧の極性を反転することによ多光軸をセル
の面内で回転させることのできる光学的補償板として働
く。液晶セ/l/13の駆動回路14は、液晶セル13
に印加する電圧波形を作るためのもので、画像を表示す
るテレビ11から送られるテレビ信号のフレーム信号に
同期して液晶セル13の光軸を交互に切り替える。鑑賞
者が着用する眼鏡15は、左右それぞれに偏光方向が反
対の偏光板を備えている。テレビ画像の光の偏光方向を
交互に切り替え、偏光板付きの眼鏡で左右の目に時分割
的に分離して見ることによシ左右の目が個別にテレビ画
像を視認することとなり、この際にテレビ画像が左右の
目で立体的視差を有して観測される。
Hereinafter, a detailed explanation will be given according to examples. , Fig. 1 and Fig. 2 are respectively configuration diagrams of a display system showing one embodiment of the present invention. In the figure, 11 is a television, and a polarizing plate 12 is provided in front of the screen. Furthermore, the polarizing plate 1
In front of 2, a liquid crystal cell/L'13 is arranged. The liquid crystal cell 13 is made by homogeneously aligning ferroelectric numectic liquid crystal, and a transparent electrode is provided inside the substrate of the liquid crystal cell 13. In this system, the liquid crystal cell 13 acts as an optical compensator that can rotate multiple optical axes in the plane of the cell by reversing the polarity of the applied voltage. The drive circuit 14 of the liquid crystal cell 13
The optical axis of the liquid crystal cell 13 is alternately switched in synchronization with the frame signal of the television signal sent from the television 11 that displays images. Glasses 15 worn by the viewer are provided with polarizing plates having opposite polarization directions on the left and right sides. By alternately switching the polarization direction of the light from the TV image and viewing it separately in time between the left and right eyes using glasses with polarizing plates, the left and right eyes will be able to view the TV image separately. TV images are observed with stereoscopic parallax between the left and right eyes.

偏光の利用のしかたによっては第2図に示したように液
晶セル13の前方に四分の一波長板16を設けて、液晶
セル13を通過した直線偏光を略々円偏光に変換する構
成としても良い。
Depending on how polarized light is used, a quarter-wave plate 16 may be provided in front of the liquid crystal cell 13, as shown in FIG. 2, to convert the linearly polarized light that has passed through the liquid crystal cell 13 into approximately circularly polarized light. Also good.

上述のような基本構成を具体化するに当っては、偏光の
種類と液晶セル13のレターデーションによって、以下
に示す典型的な三方式が考えられる。
In implementing the basic configuration as described above, the following three typical methods can be considered depending on the type of polarization and the retardation of the liquid crystal cell 13.

第1の方式は、第1図の構成で眼鏡15に円偏光板を用
いるものである。液晶セ/l/13ば0.1ないし0.
15ミクロンのレターデーションを有しかつ印加電圧の
極性反転による光軸の回転角度が70°ないし110°
 であるものを用いる。液晶セル13は四分の一波長板
として作用させるために、特ニレタープージョンが0.
13ミクロンで光軸の回転角度が90°のものが好適で
ある。液晶セ/1713と偏光板12の配置は第3図(
A)に示すように液晶セ/+713の光軸が採り得る2
つの光軸32.33の中線と偏光板12の偏光軸31と
を一致または概ね一致させて設定する。テレビ画像の光
は、偏光板12と液晶セ)v13によって円偏光となり
、その偏光方向は液晶セル13に印加する電圧の極性反
転によって右または左に交互に切り替えられる。
The first method uses a circularly polarizing plate for the glasses 15 in the configuration shown in FIG. LCD C/L/13: 0.1 to 0.
It has a retardation of 15 microns and the rotation angle of the optical axis is 70° to 110° due to polarity reversal of the applied voltage.
Use what is. In order for the liquid crystal cell 13 to function as a quarter-wave plate, the special nitroreflection is set to 0.
It is preferable that the diameter is 13 microns and the rotation angle of the optical axis is 90°. The arrangement of the liquid crystal panel 1713 and the polarizing plate 12 is shown in Figure 3 (
As shown in A), the optical axis of the liquid crystal center/+713 can be taken 2
The center lines of the two optical axes 32 and 33 are set to coincide or approximately coincide with the polarization axis 31 of the polarizing plate 12. The light of the television image becomes circularly polarized light by the polarizing plate 12 and the liquid crystal cell 13, and the direction of polarization is alternately switched to the right or left by reversing the polarity of the voltage applied to the liquid crystal cell 13.

第2の方式は、第1図の構成で眼鏡15に直線偏光板を
用いるものである。液晶セル13は0.2ないL 0.
3ミクロンのレターデーションを有し、かつ印加電圧の
極性反転による光軸の回転角度が35°ないし55°で
あるものを用いる。液晶セル13は二分の一波長板とし
て作用させるために、特にレターデーションが0.25
ミクロンで光軸の回転角度が45°のものが好適である
。液晶−t!ル13と偏光板12の配置は第3図CB)
に示したように液晶セル13の光軸が採り得る2つの光
軸32.33の一方と該偏光板12の偏光軸31とを一
致または概ね一致させて設定する。テレビ画像の光は偏
光板12と液晶セル13によって直線偏光となって透過
し、その偏光方向は液晶セル13に印加する電圧の極性
反転によって直交する2方向に交互に切フ替えられる。
The second method uses a linear polarizing plate for the glasses 15 in the configuration shown in FIG. The liquid crystal cell 13 is 0.2 L 0.
It has a retardation of 3 microns and the rotation angle of the optical axis due to polarity reversal of the applied voltage is 35° to 55°. The liquid crystal cell 13 has a retardation of 0.25 in order to function as a half-wave plate.
It is preferable that the optical axis has a rotation angle of 45 degrees in microns. LCD-t! The arrangement of the filter 13 and the polarizing plate 12 is shown in Figure 3 CB)
As shown in FIG. 3, one of the two possible optical axes 32 and 33 of the liquid crystal cell 13 is set to coincide or approximately coincide with the polarization axis 31 of the polarizing plate 12. The light of the television image passes through the polarizing plate 12 and the liquid crystal cell 13 as linearly polarized light, and the polarization direction is alternately switched between two orthogonal directions by reversing the polarity of the voltage applied to the liquid crystal cell 13.

眼鏡15に取り付ける2枚の直線偏光板の偏光軸34.
35の設定角度は、片方をテレビ画面側の偏光板12の
偏光軸と一致させ、他方はそれと直交する角度に設定す
る。
Polarization axes 34 of the two linear polarizers attached to the glasses 15.
35, one side is set to coincide with the polarization axis of the polarizing plate 12 on the TV screen side, and the other side is set to an angle perpendicular thereto.

第3の方式は、第2図の構成で眼鏡15に円偏光板を用
いるものである。液晶セル13は、0,2ないし0.3
ミクロンのレターチージョンを有し、かつ印加電圧の極
性反転による光軸の回転角度が35°ないし55°であ
るものを用いる。液晶セル13は二分の一波長板として
作用させるために、特にレターデーションが0.25ミ
クロンで光軸の回転角度が45°のものが好適である。
The third method uses a circularly polarizing plate for the glasses 15 in the configuration shown in FIG. The liquid crystal cell 13 is 0.2 to 0.3
It has a micron retardation and the rotation angle of the optical axis due to polarity reversal of the applied voltage is 35° to 55°. The liquid crystal cell 13 preferably has a retardation of 0.25 microns and an optical axis rotation angle of 45° in order to function as a half-wave plate.

液晶セル13と偏光板12の配置は窮3図(C)に示し
たように液晶セル13の光軸が採り得る2つの光軸32
.33の一方と該偏光板12の偏光軸31とを一致また
は概ね一致させて設定する。四分の一波長板16の光軸
36Vi、偏光板12の偏光軸に対して略々45°の角
度をなすように設置する。テレビ画像の光は偏光板12
と液晶セル13と四分の一波長板16によって円偏光と
なり、その偏光方向は液晶セル13に印加する電圧の極
性反転によって右または左に交互に切り替えられる。
The arrangement of the liquid crystal cell 13 and the polarizing plate 12 is such that the optical axis of the liquid crystal cell 13 has two possible optical axes 32, as shown in Figure 3 (C).
.. 33 and the polarization axis 31 of the polarizing plate 12 are set to match or approximately match. The optical axis 36Vi of the quarter-wave plate 16 is installed so as to form an angle of approximately 45° with respect to the polarization axis of the polarizing plate 12. The light of the TV image is transmitted through the polarizing plate 12.
The liquid crystal cell 13 and the quarter-wave plate 16 turn the light into circularly polarized light, and the direction of polarization is alternately switched to the right or left by reversing the polarity of the voltage applied to the liquid crystal cell 13.

以上詳述した3方式において、液晶セ/l/13のレタ
ーチージョン、光軸の回転角度もしくは設定角度または
四分の一波長板16のレターチージョンもしくは光軸の
設定角度あるいは眼鏡15の偏光板の角度設定などは、
最適設計のためにここ圧記した条件からずらしてもよい
In the three systems described in detail above, the letter tension of the liquid crystal center/l/13, the rotation angle or setting angle of the optical axis, the letter tsion or setting angle of the optical axis of the quarter-wave plate 16, or the polarization of the glasses 15. Setting the angle of the board, etc.
For optimum design, the conditions may be varied from those mentioned here.

強誘電性スメクチック液晶セルは、本発明の実施には非
常に好適である。すなわち、数十ないし数百マイクロ秒
の高速応答に充分耐えることができ、また液晶セル13
の平面内だけで光軸の方向が動くことさらにヌイッチン
グ状態にメモリー効果を有することなど他の液晶セルに
はない種々の優れた特性がある。
Ferroelectric smectic liquid crystal cells are highly suitable for implementing the present invention. In other words, it can sufficiently withstand high-speed response of tens to hundreds of microseconds, and the liquid crystal cell 13
It has various excellent properties that other liquid crystal cells do not have, such as the ability to move the direction of the optical axis only within the plane of , and the fact that it has a memory effect in the nutching state.

以下この強誘電性ヌメクチック液晶セルの動作原理につ
いて説明する。
The operating principle of this ferroelectric numectic liquid crystal cell will be explained below.

強誘電性を示すキラル・ヌメクチック液晶を利用したこ
の光スインチング素子は、N、A、C1arkとS、 
T、 Lagerwallによって、アブライドフィジ
ックヌ レターズ(第36巻、第899頁、1980年
刊)に公表され、サーフェイス スタビライズド フェ
ロエレクトリック リフイド クリスタルと命名されて
いる。第4図(A)は電界を印加した時のこの液晶セル
の断面を示したもので、1はガラス基板、2は透明電極
、3は液晶分子である。
This optical switching device uses chiral numectic liquid crystal exhibiting ferroelectricity, and consists of N, A, C1ark, S,
It was published by T. Lagerwall in Abrid Physique Letters (vol. 36, p. 899, published in 1980) and named Surface Stabilized Ferroelectric Refided Crystal. FIG. 4(A) shows a cross section of this liquid crystal cell when an electric field is applied, in which 1 is a glass substrate, 2 is a transparent electrode, and 3 is a liquid crystal molecule.

セル内部の電界は図中の上から下に向かっている。The electric field inside the cell goes from top to bottom in the figure.

この電界に対して、液晶分子3の双極子は矢印のように
配列する。窟4図CB)はこの状態の分子配向をセル面
に垂直な方向から見た図であるが、液晶分子3ばその配
列格子面の垂線から角度θだけ煩いでいる。次に、印加
電界の極性を反転すると第5図(A)に示したように液
晶分子3の双極子は矢印のように反転し、第5図CB)
に示したように液晶分子3は角度−〇の方向にその方位
角を変える。
In response to this electric field, the dipoles of the liquid crystal molecules 3 are arranged as shown by the arrows. Figure 4 (CB) is a diagram of the molecular orientation in this state viewed from a direction perpendicular to the cell surface, and the liquid crystal molecules 3 are offset by an angle θ from the perpendicular to the lattice plane of arrangement. Next, when the polarity of the applied electric field is reversed, the dipole of the liquid crystal molecule 3 is reversed as shown in the arrow as shown in FIG. 5(A), and as shown in FIG. 5(CB).
As shown in , the liquid crystal molecules 3 change their azimuth in the direction of angle -0.

この液晶セルの結晶光学的な性質は、実用上分子長軸の
配向方向を光軸とする1軸性結晶と考えてよい。すなわ
ち、こ−の液晶セルは印加電圧の極性を反転することに
よって光軸を角度2θだけ回転させることのできる光学
的補償板と見なすことができる。なお、この先軸の回転
はスメクチック層の法線の回りに対称であシ、またこの
液晶セルのレターデーションは、液晶の複屈折Δnとセ
ル厚dの積Δn −dで表わされる。
In practical terms, the crystal optical properties of this liquid crystal cell can be considered to be a uniaxial crystal whose optical axis is the orientation direction of the long axis of the molecules. That is, this liquid crystal cell can be regarded as an optical compensator whose optical axis can be rotated by an angle of 2.theta. by reversing the polarity of the applied voltage. Note that this rotation of the front axis is symmetrical about the normal line of the smectic layer, and the retardation of this liquid crystal cell is expressed by the product Δn - d of the birefringence Δn of the liquid crystal and the cell thickness d.

液晶分子の傾き角θは液晶材料によって異なるが、第1
の方式に適用するためには、2θが90゜であることが
望ましいのでθが45°の材料が好適であり、第2及び
第3の方式に適用するためには、2θが45°であるこ
とが望ましいのでθが22.5°の材料が好適である。
The tilt angle θ of liquid crystal molecules varies depending on the liquid crystal material, but the first
In order to apply to the second method, it is desirable that 2θ is 90°, so a material with θ of 45° is suitable, and in order to apply to the second and third methods, 2θ is 45°. Therefore, a material with θ of 22.5° is suitable.

しかし、θがこれらの条件から±10°程度の範囲でず
れていても実用上差し支えない。
However, there is no practical problem even if θ deviates from these conditions within a range of about ±10°.

この液晶セルは、オンオフスイッチング状態にメモリー
効果を示す。すなわち、第6図に示したように正負のパ
ルス状の電界によってスイッチングした後に電圧をOv
にしてもそれぞれの分子配向状態が略々保持される。こ
の液晶セルの応答時間τは、前述の文献によれば、 τlη/(Ps−E) (ここに、η、Ps、Eは、それぞれ液晶材料の粘度、
自発分極、電界強度をあられす。)という式で表わされ
ており、高速スイッチングをさせるためには強い電界は
ど有利である。この液晶セルに印加する電圧は、テレビ
画面の切り替え速度よシも速く、また左右の目に正しく
画面が送られるように位相が制御されておれば良く、種
4の波形が考えられる。最も単純な波形は矩形波である
This liquid crystal cell exhibits a memory effect in its on-off switching states. That is, as shown in FIG. 6, after switching by a positive and negative pulsed electric field, the voltage is
However, each molecular orientation state is approximately maintained. According to the above-mentioned literature, the response time τ of this liquid crystal cell is τlη/(Ps-E) (where η, Ps, and E are the viscosity of the liquid crystal material, respectively;
Hail spontaneous polarization, electric field strength. ), and a strong electric field is advantageous for high-speed switching. The voltage applied to this liquid crystal cell only needs to be faster than the switching speed of the television screen and whose phase is controlled so that the screen is sent correctly to the left and right eyes, and the waveform of Type 4 can be considered. The simplest waveform is a square wave.

さらに、メモリ効果を活用して省電力化と液晶セルの長
寿命化を計るならば、第7図に示したような波形でもよ
い。この波形は、期間t71や期間t73の波高値の高
い電圧で高速スイッチングさせ、その後の期間t72と
期間t74はメモリ効果を利用して分子配向をその状態
に保持するために必要な電圧を印加するものである。さ
らに、二つのスイッチング速度を等しくし、メモリ効果
の保持特性を向上する目的で、印加電圧波形に直流のオ
フセット電圧を重畳してもよい。
Furthermore, if the memory effect is utilized to save power and extend the life of the liquid crystal cell, a waveform as shown in FIG. 7 may be used. In this waveform, high-speed switching is performed using a voltage with a high peak value in periods t71 and t73, and in subsequent periods t72 and t74, a voltage necessary to maintain the molecular orientation in that state is applied using a memory effect. It is something. Furthermore, a DC offset voltage may be superimposed on the applied voltage waveform for the purpose of equalizing the two switching speeds and improving the retention characteristics of the memory effect.

〈発明の効果〉 本発明に係る時分割2画像力式の立体画像表示システム
は、装置構成が簡単であ!ll鑑賞者が着用する眼鏡が
軽い、安価であるなどの利点があるため、一般家庭や教
室などで容易に使用することができ、実用性がきわめて
高い。
<Effects of the Invention> The time-sharing two-image power type three-dimensional image display system according to the present invention has a simple device configuration! Since the glasses worn by viewers are light and inexpensive, they can be easily used at home or in classrooms, making them extremely practical.

【図面の簡単な説明】[Brief explanation of drawings]

く図面の簡単な説明〉 第1図及び第2図は本発明の1実施例を示す表示システ
ムの模式構成図である。 第3図は第1図及び第2図に示す光学系の光軸および偏
光軸の角度設定を示す説明図である。 第4図及び第5図は本発明の1実施例に用いる液晶セル
の動作原理を説明する説明図である。 第6図は本発明の1実施例に用いる液晶セルのメモリー
効果を示す説明図である。 第7図は液晶セルに印加する電圧波形の例である。 11・・・テレビ、  12・・・偏光板、  13・
・・液、晶セル、 14・・・駆動回路、 15・・眼
鏡、 16・・・四分の一波長板、 31・偏光板12
の偏光軸、32.33・・・液晶セルの採り得る光軸、
 34・・・眼鏡の片側の偏光軸、 35・・・眼鏡の
他の片側の偏光軸、 36・・・四分の一波長板の光軸
。 代理人 弁理士  杉 山 毅 至(他1名)(A) 
                   CB)(C) 第3図 3兎晶/irチ 第4図 1、 第5図 第6図 第7図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are schematic configuration diagrams of a display system showing one embodiment of the present invention. FIG. 3 is an explanatory diagram showing the angle setting of the optical axis and polarization axis of the optical system shown in FIGS. 1 and 2. FIG. FIGS. 4 and 5 are explanatory diagrams illustrating the operating principle of a liquid crystal cell used in one embodiment of the present invention. FIG. 6 is an explanatory diagram showing the memory effect of a liquid crystal cell used in one embodiment of the present invention. FIG. 7 is an example of a voltage waveform applied to a liquid crystal cell. 11...TV, 12...Polarizing plate, 13.
・・Liquid, crystal cell, 14・・Drive circuit, 15・・Glasses, 16・・Quarter wavelength plate, 31・Polarizing plate 12
Polarization axis of 32.33... Possible optical axis of liquid crystal cell,
34... Polarization axis on one side of the glasses, 35... Polarization axis on the other side of the glasses, 36... Optical axis of the quarter-wave plate. Agent Patent attorney Takeshi Sugiyama (1 other person) (A)
CB) (C) Fig. 3 3 Usakiri/ir Chi Fig. 4 1, Fig. 5 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】 1、表示画面の前方に偏光板を配置し、該偏光板の前方
に強誘電性スメクチック液晶を配向させた液晶セルを配
置し、前記表示画面の画像のフレーム信号に同期した交
流電圧を前記液晶セルに印加して前記表示画面から前記
偏光板及び前記液晶セルを通過して進行する表示光の偏
光方向を時分割で切り替える駆動回路を前記液晶セルに
接続し、前記表示光を視認する左眼用と右眼用の偏光方
向が互いに異なる偏光眼鏡を具設したことを特徴とする
擬似立体表示システム。 2、液晶セルが0.1ないし0.15ミクロンのレター
デーションを有しかつ印加電圧の極性反転による光軸の
回転角度が70°ないし110°であり、光軸として採
り得る2方向軸の中線と偏光板の偏光軸とが概ね一致し
ており、偏光眼鏡の偏光板が円偏光板または円偏光に近
い偏光能を有する楕円偏光板である特許請求の範囲第1
項記載の擬似立体表示システム。 3、液晶セルが0.2ないし0.3ミクロンのレターデ
ーションを有しかつ印加電圧の極性反転による光軸の回
転角度が35°ないし55°であり、光軸として採り得
る2方向軸の一方と偏光板の偏光軸とが概ね一致してお
り、偏光眼鏡の偏光板が直線偏光板である特許請求の範
囲第1項記載の擬似立体表示システム。 4、液晶セルが0.2ないし0.3ミクロンのレターデ
ーションを有しかつ印加電圧の極性反転による光軸の回
転角度が35°ないし55°であり、光軸として採り得
る2方向軸の一方と偏光板の偏光軸とが概ね一致してお
り、前面に光軸が前記偏光板の偏光軸と35°ないし5
5°の角度をなすように四分の一波長板が配置され、偏
光眼鏡の偏光板が円偏光板または円偏光に近い偏光能を
有する楕円偏光板である特許請求の範囲第1項記載の擬
似立体表示システム。
[Claims] 1. A polarizing plate is arranged in front of the display screen, a liquid crystal cell in which ferroelectric smectic liquid crystal is aligned is arranged in front of the polarizing plate, and synchronized with the frame signal of the image on the display screen. A drive circuit is connected to the liquid crystal cell to apply an alternating current voltage to the liquid crystal cell to time-divisionally change the polarization direction of display light traveling from the display screen through the polarizing plate and the liquid crystal cell. A pseudo-stereoscopic display system characterized by comprising polarized glasses for the left eye and right eye for viewing light with different polarization directions. 2. The liquid crystal cell has a retardation of 0.1 to 0.15 microns, and the rotation angle of the optical axis due to polarity reversal of the applied voltage is 70° to 110°, and it is one of the two possible optical axis directions. Claim 1, wherein the line and the polarization axis of the polarizing plate roughly match, and the polarizing plate of the polarized glasses is a circularly polarizing plate or an elliptically polarizing plate having a polarizing ability close to that of circularly polarizing light.
Pseudo-stereoscopic display system described in Section 2. 3. The liquid crystal cell has a retardation of 0.2 to 0.3 microns, and the rotation angle of the optical axis due to polarity reversal of the applied voltage is 35° to 55°, one of two possible optical axis directions. 2. The pseudo-stereoscopic display system according to claim 1, wherein the polarizing axis of the polarizing plate and the polarizing plate are substantially coincident with each other, and the polarizing plate of the polarized glasses is a linear polarizing plate. 4. The liquid crystal cell has a retardation of 0.2 to 0.3 microns, and the rotation angle of the optical axis due to polarity reversal of the applied voltage is 35° to 55°, one of two possible optical axis directions. and the polarization axis of the polarizing plate are approximately coincident with each other, and the optical axis on the front side is at an angle of 35° to 5° with the polarization axis of the polarizing plate.
The quarter-wave plate is arranged to form an angle of 5°, and the polarizing plate of the polarized glasses is a circularly polarizing plate or an elliptically polarizing plate having a polarizing ability close to circularly polarized light. Pseudo-stereoscopic display system.
JP61033145A 1986-02-17 1986-02-17 Pseudo stereoscopic display system Granted JPS62191824A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61033145A JPS62191824A (en) 1986-02-17 1986-02-17 Pseudo stereoscopic display system
US07/015,053 US4772943A (en) 1986-02-17 1987-02-17 Virtual stereographic display system
DE87102246T DE3788144T2 (en) 1986-02-17 1987-02-17 Apparently stereographic playback system.
EP87102246A EP0233636B1 (en) 1986-02-17 1987-02-17 Virtual stereographic display system
US07/221,601 US4870486A (en) 1986-02-17 1988-07-20 Virtual stereographic display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033145A JPS62191824A (en) 1986-02-17 1986-02-17 Pseudo stereoscopic display system

Publications (2)

Publication Number Publication Date
JPS62191824A true JPS62191824A (en) 1987-08-22
JPH0578017B2 JPH0578017B2 (en) 1993-10-27

Family

ID=12378415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033145A Granted JPS62191824A (en) 1986-02-17 1986-02-17 Pseudo stereoscopic display system

Country Status (1)

Country Link
JP (1) JPS62191824A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438620U (en) * 1987-09-02 1989-03-08
JPH01316090A (en) * 1988-06-15 1989-12-20 Stanley Electric Co Ltd Three-dimensional video device
JPH01316091A (en) * 1988-06-16 1989-12-20 Stanley Electric Co Ltd Three-dimensional video display method
US7123213B2 (en) 1995-10-05 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Three dimensional display unit and display method
JP2008523421A (en) 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3D display device
JP2010020274A (en) * 2008-07-09 2010-01-28 Lg Display Co Ltd Stereoscopic image display
WO2012039267A1 (en) * 2010-09-24 2012-03-29 コニカミノルタオプト株式会社 Laser projector device and image projection system
JP2012189686A (en) * 2011-03-09 2012-10-04 Fujifilm Corp Three dimensional display device, and three dimensional display system of time division system
US8933988B2 (en) 2009-01-28 2015-01-13 Nec Corporation Picture transmission system and picture transmission method
US9179122B2 (en) 2008-12-04 2015-11-03 Nec Corporation Image transmission system, image transmission apparatus and image transmission method
JP2016173574A (en) * 2006-10-18 2016-09-29 リアルディー インコーポレイテッドRealD Inc. Combining p and s rays for bright stereoscopic projection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102086A (en) * 1983-10-03 1985-06-06 ポラロイド コ−ポレ−シヨン Three-dimensional television video forming device
JPS619618A (en) * 1984-06-25 1986-01-17 Canon Inc Stereoscopic display device
JPS6123116A (en) * 1984-07-11 1986-01-31 Yoshinori Hiraiwa Image display device for two-eye type stereoscopy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102086A (en) * 1983-10-03 1985-06-06 ポラロイド コ−ポレ−シヨン Three-dimensional television video forming device
JPS619618A (en) * 1984-06-25 1986-01-17 Canon Inc Stereoscopic display device
JPS6123116A (en) * 1984-07-11 1986-01-31 Yoshinori Hiraiwa Image display device for two-eye type stereoscopy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438620U (en) * 1987-09-02 1989-03-08
JPH01316090A (en) * 1988-06-15 1989-12-20 Stanley Electric Co Ltd Three-dimensional video device
JPH0456514B2 (en) * 1988-06-15 1992-09-08 Stanley Electric Co Ltd
JPH01316091A (en) * 1988-06-16 1989-12-20 Stanley Electric Co Ltd Three-dimensional video display method
US8242974B2 (en) 1995-10-05 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Three dimensional display unit and display method
US7123213B2 (en) 1995-10-05 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Three dimensional display unit and display method
US8711062B2 (en) 1995-10-05 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Display unit and display method
JP2008523421A (en) 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3D display device
JP2016173574A (en) * 2006-10-18 2016-09-29 リアルディー インコーポレイテッドRealD Inc. Combining p and s rays for bright stereoscopic projection
JP2010020274A (en) * 2008-07-09 2010-01-28 Lg Display Co Ltd Stereoscopic image display
US10048506B2 (en) 2008-07-09 2018-08-14 Lg Display Co., Ltd. Stereoscopic 3D display device
US9179122B2 (en) 2008-12-04 2015-11-03 Nec Corporation Image transmission system, image transmission apparatus and image transmission method
US8933988B2 (en) 2009-01-28 2015-01-13 Nec Corporation Picture transmission system and picture transmission method
WO2012039267A1 (en) * 2010-09-24 2012-03-29 コニカミノルタオプト株式会社 Laser projector device and image projection system
JP5633570B2 (en) * 2010-09-24 2014-12-03 コニカミノルタ株式会社 Laser projection apparatus and image projection system
JP2012189686A (en) * 2011-03-09 2012-10-04 Fujifilm Corp Three dimensional display device, and three dimensional display system of time division system

Also Published As

Publication number Publication date
JPH0578017B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
US4870486A (en) Virtual stereographic display system
EP0477882B1 (en) Full color three-dimensional flat panel display
US7791686B2 (en) LCD-based confidential viewing apparatus utilizing auto-inversion masking
TWI474080B (en) Liquid crystal display device
KR100478804B1 (en) Optical shifter and optical display system
JPH0534672B2 (en)
JP2014500974A (en) Stereoscopic display system, glasses used in the system, and display method therefor
JPH10239641A (en) Polarizing spectacles and image display system
GB1448520A (en) Stereoscopic display device
US8941801B2 (en) In-plane switched active retarder for stereoscopic display systems
JPS62191824A (en) Pseudo stereoscopic display system
WO2019080532A1 (en) Three-dimensional display device and control method thereof
JPS62191820A (en) Pseudo stereoscopic displaying system
JPH1138361A (en) Three-dimensional display device
CN114415391A (en) Stereoscopic display device
JPH075325A (en) Polarizing film for stereoscopic display and stereoscopic display device
JPS63274918A (en) Liquid crystal stereoscopic display device
CN208888494U (en) Active 3D glasses, 3D display system, Dual-purpose glasses
CN202166803U (en) Three-dimensional displayer
CN109254414A (en) Active 3D glasses and its control method, 3D display system, Dual-purpose glasses
JPH01316091A (en) Three-dimensional video display method
JP2803230B2 (en) Liquid crystal element, polarization conversion element using the same, and driving method thereof
RU2189619C1 (en) Glasses to observe color stereo tv pictures
JP2004144823A (en) Liquid crystal optical element and three-dimensional image display device equipped with the same
JPS62249137A (en) Stereoscopic multicolor image projector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term