JPS6219046B2 - - Google Patents

Info

Publication number
JPS6219046B2
JPS6219046B2 JP56086670A JP8667081A JPS6219046B2 JP S6219046 B2 JPS6219046 B2 JP S6219046B2 JP 56086670 A JP56086670 A JP 56086670A JP 8667081 A JP8667081 A JP 8667081A JP S6219046 B2 JPS6219046 B2 JP S6219046B2
Authority
JP
Japan
Prior art keywords
silicon layer
layer
insulating film
silicon
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56086670A
Other languages
Japanese (ja)
Other versions
JPS57201015A (en
Inventor
Tadashi Nishimura
Shigeo Nagao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56086670A priority Critical patent/JPS57201015A/en
Publication of JPS57201015A publication Critical patent/JPS57201015A/en
Publication of JPS6219046B2 publication Critical patent/JPS6219046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Description

【発明の詳細な説明】 この発明は絶縁膜上に単結晶シリコン層を形成
する半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device in which a single crystal silicon layer is formed on an insulating film.

通常、集積回路を製造するにあたつてはその中
に含まれる構成素子、例えばトランジスタ、ダイ
オード、抵抗などを何らかの手段で電気的に絶縁
分離する必要がある。そして、一般的に、シリコ
ン半導体素子製造に供されるシリコンエピタキシ
ヤル成長技術にはサフアイアなどの絶縁基板上に
適用する場合およびシリコン単結晶基板に適用す
る場合の2つの方法がある。前者の方法は予め絶
縁基板上にシリコン単結晶層を形成するため、単
に、このシリコン単結晶層を島状に物理的に切り
離し、その後、分離した島内に公知の技術で、各
素子を形成するものであるが、サフアイア基板が
高価であるうえ、機械的強度の脆さから破損し易
いため、製造歩留りが低下する。一方、後者の方
法は基板が比較的低廉であり、しかも機械的にも
強靭であるが、構成素子を絶縁分離するには繁雑
な製造方法例えば接合分離などを用いなければな
らない。そこで、従来、前記の2つの方法の長所
だけを取り入れ、高性能、低価格な集積回路の製
造を可能にする一手段として、シリコン基板に被
着した絶縁膜上にシリコン単結晶を形成すること
が提案されている。しかし、シリコン基板上に被
着可能な絶縁膜、例えばシリコン酸化膜、あるい
はシリコン窒化膜などは非晶質であり、単に公知
のエピタキシヤル成長技術を駆使しても、絶縁膜
上には全くシリコン層が形成されない。また、た
とえエピタキシヤル成長条件(例えば成長温度、
成長速度)を変化させたとしても、巨大な粒径の
シリコン単結晶粒がピラミツト状に点在付着する
だけで、実用に供するような均一な単結晶層とは
ならない。そこで、最近、レーザアニール法が注
目されている。このレーザアニール法はまず、絶
縁膜上に、比較的低温(例えば600℃前後)で多
結晶シリコン層を形成し、この多結晶シリコン面
にレーザビームを走査しながら、あるいは断続的
に照射することにより、単結晶を得ようとするも
のである。
Normally, when manufacturing an integrated circuit, it is necessary to electrically isolate the constituent elements contained therein, such as transistors, diodes, resistors, etc., by some means. In general, there are two methods for silicon epitaxial growth techniques used in the manufacture of silicon semiconductor devices: one method applied to an insulating substrate such as sapphire, and the other method applied to a silicon single crystal substrate. In the former method, a silicon single crystal layer is formed on an insulating substrate in advance, so this silicon single crystal layer is simply physically separated into islands, and then each element is formed in the separated islands using a known technique. However, since the sapphire substrate is expensive and is easily damaged due to its weak mechanical strength, the manufacturing yield is reduced. On the other hand, in the latter method, the substrate is relatively inexpensive and mechanically strong, but requires the use of complicated manufacturing methods such as bonding and separation in order to insulate and separate the constituent elements. Therefore, as a means of incorporating only the advantages of the above two methods and making it possible to manufacture high-performance, low-cost integrated circuits, a conventional method has been to form silicon single crystals on an insulating film deposited on a silicon substrate. is proposed. However, insulating films that can be deposited on silicon substrates, such as silicon oxide films or silicon nitride films, are amorphous, and even if known epitaxial growth techniques are used, no silicon will be deposited on the insulating film. No layer is formed. Also, even if the epitaxial growth conditions (e.g. growth temperature,
Even if the growth rate (growth rate) is changed, silicon single crystal grains of huge grain size will only be scattered and deposited in a pyramid shape, and a uniform single crystal layer that is suitable for practical use will not be obtained. Therefore, the laser annealing method has recently been attracting attention. This laser annealing method first forms a polycrystalline silicon layer on an insulating film at a relatively low temperature (for example, around 600°C), and then scans or intermittently irradiates the polycrystalline silicon surface with a laser beam. The aim is to obtain a single crystal.

しかしレーザアニールを用いても、絶縁膜上の
多結晶層では結晶成長の核となる種結晶が多す
ぎ、大きな粒径の単結晶領域を得ることは困難で
あつた。この困難さを解決するために“bridged
epi”と称する第1図aに示すようなシリコン単
結晶領域11からのはい上がりのエピタキシヤル
成長法が提案されているが、これも単結晶領域1
1を溶融させるようなレーザー14のパワーでは
第1図bに示すように絶縁基板13上の多結晶層
12が蒸発してしまうことが多く、マージンの非
常に少ない製造方法と言わざるを得ない。
However, even when laser annealing is used, there are too many seed crystals that serve as nuclei for crystal growth in the polycrystalline layer on the insulating film, making it difficult to obtain single crystal regions with large grain sizes. To solve this difficulty, “bridged”
An epitaxial growth method has been proposed in which the silicon single crystal region 11 as shown in FIG.
With the power of the laser 14 that melts the polycrystalline layer 12, the polycrystalline layer 12 on the insulating substrate 13 often evaporates as shown in FIG. .

そこで本発明はこのような従来の方法の欠点を
除去し、大きく均一な単結晶シリコン層を絶縁膜
上に安定に形成しようとするものであり、その特
徴とするところは、シリコン基板の一主面の一部
に絶縁膜を被着し、上記絶縁膜上に多結晶シリコ
ン層を形成し、多結晶シリコン層及びシリコン露
出部上にシリコンエピタキシヤル成長層を形成
し、然る後シリコンエピタキシヤル成長層をアニ
ールして単結晶シリコン層を得るものである。
Therefore, the present invention aims to eliminate the drawbacks of such conventional methods and stably form a large, uniform single crystal silicon layer on an insulating film. An insulating film is deposited on a part of the surface, a polycrystalline silicon layer is formed on the insulating film, a silicon epitaxial growth layer is formed on the polycrystalline silicon layer and the exposed silicon, and then a silicon epitaxial growth layer is formed. A single crystal silicon layer is obtained by annealing the grown layer.

以下、実施例について詳細に説明する。 Examples will be described in detail below.

まず、シリコン基板22上の一部をシリコン窒
化膜等の酸素を通さないち密な薄膜でおおい、こ
れを熱酸化すると、この膜におおわれていないシ
リコン基板22の表面が酸化され、酸化膜23が
生成される。これをふつ酸の希釈液で適当にエツ
チングした後、シリコン窒化膜を除去すると第2
図aのようにシリコン基板22の露出部と酸化膜
23の表面がほぼ同一平面となるように酸化膜2
3がシリコン基板22に埋設して形成される。次
に比較的低温、例えば600℃前後で公知の化学的
気相成長法で多結晶シリコン層を成長させこれに
写真製版を行つて、第2図bのごとく、酸化膜2
3上の多結晶シリコン層21のみ残す。この多結
晶シリコン層21は後記する第2の多結晶シリコ
ン層形成時の下敷となる。さらに、これを既知の
シリコン気相エピタキシヤル成長技術を使い、水
素ふいん気中で高温、例えば950℃−1200℃に加
熱した反応器中に配置し、シリコンソース材料と
して例えばモノシラン(SiH4)、ジクロルシラン
(SiH2Cl2)などを導入すれば、第2図cに示すよ
うに前記多結晶シリコン層21上には非常に大き
な粒径の単結晶を含む多結晶シリコン層が成長
し、基板シリコン22上にはこれと同一方向の結
晶軸をもつた単結晶シリコン層が成長して第2の
シリコン層24となる。これを連続発振のレーザ
ーで走査しながら照射し、このとき酸化膜23上
の第1多結晶層21、第2多結晶層24の両方が
完全に溶融するレーザパワーに設定すれば、第(2)
図dに示すようにシリコン基板22上に成長した
単結晶が核となり、第1、第2の多結晶層21,
24が単結晶化されて均一な単結晶層25とな
る。
First, a part of the silicon substrate 22 is covered with a dense thin film that does not allow oxygen to pass through, such as a silicon nitride film, and this is thermally oxidized.The surface of the silicon substrate 22 that is not covered with this film is oxidized, and the oxide film 23 is formed. generated. After appropriately etching this with a dilute solution of hydrochloric acid and removing the silicon nitride film, the second
As shown in Figure a, the oxide film 23 is placed so that the exposed portion of the silicon substrate 22 and the surface of the oxide film 23 are approximately on the same plane.
3 is embedded in the silicon substrate 22. Next, a polycrystalline silicon layer is grown by a known chemical vapor deposition method at a relatively low temperature, for example, around 600°C, and photolithography is performed on this to form an oxide film 2, as shown in FIG. 2b.
Only the polycrystalline silicon layer 21 on top of the polycrystalline silicon layer 21 is left. This polycrystalline silicon layer 21 becomes an underlay when forming a second polycrystalline silicon layer to be described later. Furthermore, using known silicon vapor phase epitaxial growth techniques, this is placed in a reactor heated to a high temperature, e.g. 950°C to 1200°C, in a hydrogen atmosphere, and monosilane (SiH 4 ), for example, is used as the silicon source material. , dichlorosilane (SiH 2 Cl 2 ), etc., a polycrystalline silicon layer containing very large grain size single crystals grows on the polycrystalline silicon layer 21 as shown in FIG. A single crystal silicon layer having a crystal axis in the same direction as the single crystal silicon layer grows on the silicon 22 to become a second silicon layer 24. If this is irradiated with a continuous wave laser while scanning, and the laser power is set to completely melt both the first polycrystalline layer 21 and the second polycrystalline layer 24 on the oxide film 23, the (2 )
As shown in FIG.
24 is single crystallized to form a uniform single crystal layer 25.

以上の実施例では、熱酸化法により絶縁膜を形
成する場合について説明したが、この方法に限定
せず、例えば化学的気相成長法、あるいはプラズ
マ成長法により堆積したシリコン酸化膜またはシ
リコン窒化膜でもよく、その膜質および製造方法
は何れでもよいことはもちろんである。また、膜
厚については必要な絶縁耐圧を確保すればよく、
絶対値を問わないことはもちろんである。
In the above embodiments, the case where the insulating film is formed by a thermal oxidation method has been described, but the method is not limited to this method. For example, a silicon oxide film or a silicon nitride film deposited by a chemical vapor deposition method or a plasma growth method Of course, any film quality and manufacturing method may be used. In addition, as for the film thickness, it is sufficient to ensure the necessary dielectric strength voltage.
Of course, the absolute value does not matter.

以上、詳細に説明したように、この発明に係る
半導体装置の製造方法によればシリコン基板に被
着した絶縁膜上に大きな均一な単結晶シリコン層
を安定に形成することができ、高性能で、低価格
な集積回路を製造することができるなどの効果が
ある。
As explained above in detail, according to the method for manufacturing a semiconductor device according to the present invention, a large uniform single crystal silicon layer can be stably formed on an insulating film deposited on a silicon substrate, and it can achieve high performance. , it is possible to manufacture low-cost integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁膜上での単結晶成長方法を
示す断面図、第2図は本発明の製造方法の一実施
例を示す断面図である。 図中、21は第1の多結晶シリコン層、22は
シリコン基板、23は絶縁膜、24は第2の多結
晶シリコン層、25は単結晶シリコン層を示す。
FIG. 1 is a sectional view showing a conventional method for growing a single crystal on an insulating film, and FIG. 2 is a sectional view showing an embodiment of the manufacturing method of the present invention. In the figure, 21 is a first polycrystalline silicon layer, 22 is a silicon substrate, 23 is an insulating film, 24 is a second polycrystalline silicon layer, and 25 is a single crystal silicon layer.

Claims (1)

【特許請求の範囲】 1 シリコン基板の一主面の一部に絶縁膜を形成
し上記一主面の他の部分にシリコン露出部を形成
する工程、比較的低温で上記絶縁膜上のみにエピ
タキシヤル成長時の下敷になる第1の多結晶シリ
コン層を形成する工程、比較的高温で化学的気相
成長法によるエピタキシヤル成長により上記第1
の多結晶シリコン層上に第2の多結晶シリコン層
を、上記露出部上に単結晶シリコン層を形成する
工程、上記第2の多結晶シリコン層及び上記単結
晶シリコン層上にレーザまたは電子線等のエネル
ギー線を照射して上記第2の多結晶シリコン層を
単結晶化する工程を含む半導体装置の製造方法。 2 絶縁膜がシリコン酸化膜であることを特徴と
する特許請求の範囲第1項記載の半導体装置の製
造方法。 3 絶縁膜がシリコン窒化膜であることを特徴と
する特許請求の範囲第1項記載の半導体装置の製
造方法。 4 絶縁膜をシリコン基板に埋設したことを特徴
とする特許請求の範囲第1〜3項の何れかに記載
の半導体装置の製造方法。
[Claims] 1. A step of forming an insulating film on a part of one main surface of a silicon substrate and forming an exposed silicon part on another part of the one main surface, epitaxy only on the insulating film at a relatively low temperature. Step of forming a first polycrystalline silicon layer that will serve as an underlay during layer growth, by epitaxial growth using chemical vapor deposition at a relatively high temperature
forming a second polycrystalline silicon layer on the polycrystalline silicon layer and a single-crystalline silicon layer on the exposed portion; forming a laser or electron beam on the second polycrystalline silicon layer and the single-crystalline silicon layer; A method for manufacturing a semiconductor device, comprising the step of monocrystallizing the second polycrystalline silicon layer by irradiating the second polycrystalline silicon layer with energy rays such as 2. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a silicon oxide film. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a silicon nitride film. 4. A method for manufacturing a semiconductor device according to any one of claims 1 to 3, characterized in that an insulating film is embedded in a silicon substrate.
JP56086670A 1981-06-04 1981-06-04 Manufacture of semiconductor device Granted JPS57201015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086670A JPS57201015A (en) 1981-06-04 1981-06-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086670A JPS57201015A (en) 1981-06-04 1981-06-04 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57201015A JPS57201015A (en) 1982-12-09
JPS6219046B2 true JPS6219046B2 (en) 1987-04-25

Family

ID=13893462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086670A Granted JPS57201015A (en) 1981-06-04 1981-06-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57201015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115935U (en) * 1988-01-30 1989-08-04

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151820A (en) * 1984-08-20 1986-03-14 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115935U (en) * 1988-01-30 1989-08-04

Also Published As

Publication number Publication date
JPS57201015A (en) 1982-12-09

Similar Documents

Publication Publication Date Title
US4444620A (en) Growth of oriented single crystal semiconductor on insulator
JP2596547B2 (en) Solar cell and method of manufacturing the same
JPH02191320A (en) Crystal product and its manufacture
JP2670453B2 (en) Crystal formation method
JPS6158879A (en) Preparation of silicon thin film crystal
JP2695413B2 (en) Manufacturing method of crystal substrate
JP2900588B2 (en) Crystal article forming method
JPH0475649B2 (en)
JPS6219046B2 (en)
JPS60152018A (en) Manufacture of semiconductor thin film crystal layer
JP2756320B2 (en) Crystal formation method
JPH02106034A (en) Forming method of soi structure
JP2687393B2 (en) Method for manufacturing semiconductor device
JPH0324719A (en) Forming method of single crystal film and crystal products
JP2737152B2 (en) SOI forming method
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPS6191917A (en) Manufacture of semiconductor thin film crystal
JPH0284772A (en) Manufacture of semiconductor device
JP2687394B2 (en) Method for manufacturing semiconductor device
JP2651146B2 (en) Crystal manufacturing method
JPH0513327A (en) Method of forming single crystal silicon film
JP2532252B2 (en) Method for manufacturing SOI substrate
JPH02105517A (en) Manufacture of semiconductor device
JP2592832B2 (en) Crystal formation method
JPS63192223A (en) Manufacture of semiconductor device