JPS62179540A - Nonadsorptive hydrophilic membrane - Google Patents

Nonadsorptive hydrophilic membrane

Info

Publication number
JPS62179540A
JPS62179540A JP61022347A JP2234786A JPS62179540A JP S62179540 A JPS62179540 A JP S62179540A JP 61022347 A JP61022347 A JP 61022347A JP 2234786 A JP2234786 A JP 2234786A JP S62179540 A JPS62179540 A JP S62179540A
Authority
JP
Japan
Prior art keywords
membrane
neutral
hydroxyl group
adsorptive
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61022347A
Other languages
Japanese (ja)
Other versions
JPH06104753B2 (en
Inventor
Morikazu Miura
司和 三浦
Kazuo Toyomoto
豊本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61022347A priority Critical patent/JPH06104753B2/en
Publication of JPS62179540A publication Critical patent/JPS62179540A/en
Publication of JPH06104753B2 publication Critical patent/JPH06104753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Graft Or Block Polymers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the titled hydrophilic membrane which excels in water permeability and retentivity and stain resistance and can be used continuously and repeatedly and can be easily handled, by graft-polymerizing a monomer having a neutral OH group with a porous membrane obtained from, e.g., a polyolefin. CONSTITUTION:A graft-polymerizable monomer having at least one neutral OH group or a functional group as its precursor (e.g., allyl alcohol or vinyl acetate) is graft-polymerized with a hydrophobic porous membrane obtained from a polyolefin, an olefin/halogenated olefin copolymer, polyvinylidene fluoride or the like to obtain the titled hydrophilic membrane having a three-dimensional network structure and a neutral OH group content of 0.1-5 meq per g of the membrane and being in the form of a flat film, a tube, especially, a hollow yarn of an inside diameter of 0.1-10mm and a thickness of 0.05-5mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製薬工業等における各種薬品よりなる注射薬
、輸液、バルク原液、又は用水等の除菌、除黴粒子精製
に好適な親水性多孔膜及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a hydrophilic solution suitable for sterilization and purification of fungicidal particles of injections, infusions, bulk stock solutions, or water used for various drugs in the pharmaceutical industry, etc. The present invention relates to a porous membrane and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、製薬工業においては、その製造された各種薬液よ
り、菌又は微粒子を除去するに当り、多くのミクロフィ
ルターが使用されている。
Conventionally, in the pharmaceutical industry, many microfilters have been used to remove bacteria or particulates from various drug solutions produced therein.

それらのミクロフィルターには多くのタイプの平膜(デ
ィスク状)又はプリーツ状のカートリッジよりなる親水
性膜が使用されてきた。この理由は、それらの使用が大
部分は1回限りの使用でほとんどが廃棄されてしまう、
所謂ディスポーザルタイプの用途圧しか適用されないも
のであって、繰返し使用するか、長期間連続又は断続的
に使用する用途では適用され得なかった。この繰返し使
用又は長時間使用のために1最近、中空糸状のミクロフ
ィルターが実用化されつつある。この中空糸状ミクロフ
ィルターは、その膜形状の利点の故に1所謂クロスフロ
ーと呼ばれる平行流方式が可能で、膜面への懸濁物(菌
又は微粒子)の付着の防止が可能で、かつ、逆洗洗浄等
によりp過性能を回復せしめることができる。
Hydrophilic membranes consisting of many types of flat membranes (disc-shaped) or pleated cartridges have been used in these microfilters. The reason for this is that most of them are used only once and most are discarded.
It can only be applied to so-called disposable type applications, and cannot be applied to applications that are used repeatedly or continuously or intermittently over a long period of time. For this repeated use or long-term use, hollow fiber microfilters have recently been put into practical use. Due to the advantage of its membrane shape, this hollow fiber microfilter is capable of a parallel flow system called cross flow, which prevents suspended matter (bacteria or particulates) from adhering to the membrane surface, and reverses the flow. The p excess performance can be restored by washing or the like.

この中空糸ミクロフィルターの出現により、所謂バイオ
リアクターへの適用や、無菌化酵素等への応用等、飛躍
的に膜精製の分野が拡大した。ただし、前記の中空糸状
膜はほとんどがポリオレフィンの膜から成り立っており
、本来疎水性であるので、実液に採用するKは、あらか
じめエチルアルコール等で一時的に膜を濡らしておく必
要があり、更にその途中で膜を乾燥させることは極力防
ぐ必要があり、かつ、−途中、溶解成分の膜への吸着の
可能性もあり好ましいものではなかった。
The appearance of this hollow fiber microfilter has dramatically expanded the field of membrane purification, including application to so-called bioreactors and sterilization enzymes. However, since most of the hollow fiber membranes mentioned above are made of polyolefin membranes and are inherently hydrophobic, it is necessary to temporarily wet the membrane with ethyl alcohol etc. beforehand when using K in the actual solution. Furthermore, it is necessary to prevent the membrane from drying during the process as much as possible, and there is a possibility that dissolved components may be adsorbed to the membrane during the process, which is not preferable.

実際に1輸液や注射液は比較的高価なためK。In reality, infusions and injections are relatively expensive, so K.

できるだけホールドアツプ量が少々<、かつ、取扱いが
簡便であることが必要で、そのためKも膜が乾燥状態で
もそのまま直ちに使用できることが必須条件となりつつ
ある。
It is necessary that the hold-up amount is as small as possible and that handling is simple, and therefore it is becoming an essential condition that K can be used immediately as it is even in a dry state.

なお、このポリオレフィン製の中空糸状膜の他、ポリビ
ニルアルコール改質膜も上布されているが、本来その有
する機械的弱さの他に、一旦乾燥した後機械的強度が更
に弱くなり、繰返し安定して使用することは事実上不可
能で、輸液製品のファイナルフィルター等にはほとんど
使用されていない。
In addition to this polyolefin hollow fiber membrane, a polyvinyl alcohol modified membrane is also coated, but in addition to its inherent mechanical weakness, the mechanical strength becomes even weaker once it dries, making it unstable for repeated use. It is virtually impossible to use it as a liquid, and it is rarely used in final filters of infusion products.

一方、ポリオレフィン中空糸状膜を化学修飾することに
よって親水化をはかる方法は数多く提案されているりそ
の具体例はポリオレフィンに発煙又は無水引Lクロルス
ルホン酸等によるスルホン化、又はアクリル酸等をグラ
フトすることによりスルホン基又はカルボキシル基を導
入する方法である0この方法によれば、一つの親水化の
目的には到達し、一部の純水製造、その他イオン吸着等
付加機能を与える目的には適している。
On the other hand, many methods have been proposed for making polyolefin hollow fiber membranes hydrophilic by chemically modifying them. Specific examples include sulfonation with fuming or anhydrous L-chlorosulfonic acid, or grafting of acrylic acid, etc. to polyolefin. This method is a method of introducing a sulfone group or a carboxyl group by using a method of introducing a sulfonic group or a carboxyl group.This method achieves the purpose of making it hydrophilic, and is suitable for producing some pure water and providing additional functions such as ion adsorption. There is.

しかし、それらの膜で例えば、蛋白質、アミノ酸、塩類
等を加えた薬液を精製しようとする場合には、−過後、
r液が膜への吸着、反応等のために変質することがしば
しばであった。このことのために1その優れた機械的性
能にも拘わらず、輸液、注射薬等の精製KFi使用する
ことが不可能であった・ 〔発明が解決しようとする問題点〕 本発明は、製薬工業等の輸液、注射液等の薬液中より菌
又は微粒子を除去精製するに際し、長時間繰返し使用で
き、かつ、膜が乾燥状態のままで直ちに使用可能であり
、更KP/l!が変質しない、極めて有用なミクロフィ
ルター膜を提供するととだある。
However, when trying to purify a drug solution containing proteins, amino acids, salts, etc. using these membranes,
The r-liquid often deteriorated in quality due to adsorption to the membrane, reaction, etc. For this reason, 1. Despite its excellent mechanical performance, it has been impossible to use purified KFi in infusions, injections, etc. [Problems to be solved by the invention] The present invention When removing and purifying bacteria or particulates from pharmaceutical solutions such as industrial infusions and injections, it can be used repeatedly for a long time, and can be used immediately with the membrane in a dry state. It is said that it provides an extremely useful microfilter membrane that does not deteriorate in quality.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

ここに本発明者は、上記課題を解決するミクロフィルタ
ー膜を鋭意研究した結果、以下の手段により達成せられ
ることが判った。
As a result of intensive research into microfilter membranes that solve the above problems, the inventors of the present invention found that the problems can be achieved by the following means.

すなわち、基材膜の材質がポリオレフィン又はオレフィ
ンとハロゲン化オレフィンの共重合体、又はポリフッ化
ビニリデンである多孔膜に、中性ヒドロキシル基を含む
側鎖がグラフトされ、かつ中性ヒドロキシル基含有率が
、膜lダラム当り0、 /ないしjミリ当量である平均
孔径Q、01N5μ、空孔率−〇ないしro%の非吸着
性親水性膜によって、極めて効果的に課題が解決される
ことが判った。
That is, side chains containing neutral hydroxyl groups are grafted onto a porous membrane whose base membrane material is polyolefin, a copolymer of olefin and halogenated olefin, or polyvinylidene fluoride, and the neutral hydroxyl group content is It has been found that the problem can be solved very effectively by a non-adsorptive hydrophilic membrane with an average pore size Q of 0, / to j milliequivalents per duram of membrane, 01N5μ, and a porosity of -〇 to ro%. .

以下本発明について更に具体的詳細に説明する。The present invention will be explained in more specific detail below.

本発明においてグラフト処理される膜としては、ポリオ
レフィン、オレフィンとハロゲン化オレフィンとの共重
合体、ポリ7ツ化ビニリデン等の疎水性多孔膜であるこ
とが必要で、これは基材膜として必要な機械的性質の保
持に役立つ。
The membrane to be grafted in the present invention must be a hydrophobic porous membrane such as polyolefin, a copolymer of olefin and halogenated olefin, or polyvinylidene heptadide, which is necessary as a base membrane. Helps maintain mechanical properties.

ここで、前記のポリオレフィン、オレフィンとハロゲン
化オレフィンとの共重合体の具体例としては、ポリオレ
フィン樹脂、例えばポリエチレン、ポリプロピレン、ポ
リブチレン又は前記の2橿以上の混合物又はエチレン、
プロピレン、ブチ/、ヘキセン、テトラフルオロエチレ
ン、クロロトリフルオロエチレンの2種以上の混合物よ
りなる共重合体等、又はポリフッ化ビニIJデン樹脂が
採用される。
Here, as specific examples of the above-mentioned polyolefin, a copolymer of an olefin and a halogenated olefin, polyolefin resins such as polyethylene, polypropylene, polybutylene or a mixture of two or more of the above-mentioned resins, or ethylene,
A copolymer made of a mixture of two or more of propylene, butylene, hexene, tetrafluoroethylene, and chlorotrifluoroethylene, or a polyvinyl fluoride IJden resin is used.

次に、これらの疎水性膜にクラフトされるモノマーとし
ては、1個以上の中性ヒドロキシル基(アルコール性水
酸基)あるいけその前駆体となる官能基を有し、かつ、
グラフト可能でなくてはならない。具体的には、2−ヒ
ドロキシエチル−アクリレート、コーヒドロキシエチル
ーメタクリレート等のアクリル識又はメタクリル酸と多
価アルコールのエステル類、及ヒアリルアルコール等の
不飽和結合を有するアルコール類、及び酢酸ビニル、プ
ロピオン酸ビニル等のエノールエステル類が挙げられる
。特に好ましいのは不飽和結合を有するアルコール類及
びエノールエステル類でアル〇例えばアリルアルコール
等を前記疎水性膜へグラフトすることKより、又、酢酸
ビニル等をグラフトし、その後加水分解させることによ
り、所望とする中性水酸基を含む側鎖をもつ非吸着性親
水性膜を得ることができる。しかも、このようにして得
られたものについては2−ヒドロキクエチルーアクリレ
ート等を用いた場合と異なり、エステル結合を有しない
ため、側鎖は化学的に極めて安定であり、酸、アルカリ
等の条件下においても容易には化学変化を起こさない。
Next, the monomers that are crafted into these hydrophobic films have one or more neutral hydroxyl groups (alcoholic hydroxyl groups) or functional groups that can be used as precursors of hydroxyl groups, and
Must be graftable. Specifically, esters of acrylic acid or methacrylic acid and polyhydric alcohols such as 2-hydroxyethyl-acrylate and co-hydroxyethyl-methacrylate, alcohols having unsaturated bonds such as hyalyl alcohol, and vinyl acetate, Examples include enol esters such as vinyl propionate. Particularly preferred are alcohols and enol esters having unsaturated bonds, such as allyl alcohol, by grafting onto the hydrophobic membrane, or by grafting vinyl acetate or the like, followed by hydrolysis. A non-adsorptive hydrophilic membrane having a desired side chain containing a neutral hydroxyl group can be obtained. Moreover, unlike the case of using 2-hydroxyethyl acrylate, the product obtained in this way does not have an ester bond, so the side chain is chemically extremely stable, and it can be used under conditions such as acids and alkalis. Chemical changes do not occur easily even under low temperatures.

かくして得られた側鎖中でのヒドロキシル基は任意にそ
の濃度を調節できるが、本発明の効果として、膜7グラ
ム当り0.7ないしjミリ当ひ、好ましくは1ないし3
ミリ当量が必要である。
The concentration of the hydroxyl groups in the side chains thus obtained can be adjusted as desired, but as an effect of the present invention, the concentration of hydroxyl groups in the side chains obtained in this way is 0.7 to 1 mm, preferably 1 to 3 mm per 7 grams of membrane.
Milliequivalents are required.

ここで、膜/グラムとは、膜のかなりマクロ的な重f:
cf、基準にした値のことであり、例えば膜表面の一部
、又は内部の一部だけを取り出したM量のことではない
。基材膜の優れた機械的性質を保持したまま親水化処理
されるには、できるだけ孔の表面によ)優先的にグラフ
トされたほうが目的を達しやすい。したがって、ここで
言う基材膜lグラムと言う意味は膜の全面忙わたって平
等に加味測定された値を示してお抄、ごく微視的な観点
での重量を意味していない。
Here, film/gram refers to the fairly macroscopic weight f of the film:
cf refers to a value based on a reference, and does not refer to the amount of M extracted from, for example, only a part of the film surface or a part of the inside. In order to make the base film hydrophilic while retaining its excellent mechanical properties, it is easier to achieve the goal by grafting preferentially to the pore surface (as much as possible). Therefore, the meaning of 1 gram of the base film here refers to a value measured evenly over the entire surface of the film, and does not mean the weight from a very microscopic viewpoint.

本発明によってグラフト処理された多孔膜は、平均孔径
0.01μないしSμの範囲にある。ここで平均孔径と
は、ASTMFJ#−70に記載されている方法で得ら
れ九値を指してお抄、通常エアーフロー法と呼ばれ・空
気圧を変えて乾燥膜と湿潤膜の空気透過流束を測定し、
その比から求めるものである。
The porous membrane grafted according to the present invention has an average pore diameter in the range of 0.01μ to Sμ. Here, the average pore size refers to the nine values obtained by the method described in ASTM FJ #-70, which is usually called the air flow method. measure,
It is determined from that ratio.

本発明における平均孔径の範囲は実用性能上から設定さ
れたものであり、これ以外の範囲では透過速度もしくけ
微粒子除去効果等の点で不適当である。
The range of the average pore diameter in the present invention is determined from the viewpoint of practical performance, and any other range is inappropriate in terms of permeation rate, particle removal effect, etc.

次に1本発明によって得られた多孔膜の空孔率は一〇f
xいしlOチの範囲にある。ここで、空孔率とけ、あら
かじめ膜を水等の液体に浸漬し、その後乾燥して、その
前後の重量変化から測定されたものである。空孔率が本
発明の範囲以外では、それぞれ透過速度、機械的性質等
の点で好ましくない。
Next, the porosity of the porous membrane obtained by the present invention is 10 f.
It is in the range of Here, the porosity was determined by immersing the membrane in a liquid such as water in advance, then drying it, and measuring the weight change before and after that. Porosity values outside the range of the present invention are unfavorable in terms of permeation rate, mechanical properties, etc.

本発明で“得られた多孔膜のベースとなる基材膜の孔構
造としては、種々の成形加工によって得ることができる
。具体的には、所謂延伸法や電子線照射後化学処理で作
られたエツチング法等も適用可能であるが、孔構造とし
ては、延伸法やエツチング法などくより得られた直孔貫
通型の空孔構造よりも、例えば特公昭59−3729λ
号、特公昭l1O−937号公報及び特公昭弘7−17
弘10号公報に示されたミクロ相分離法や混合抽出法な
どにより形成される三次元網目構造を有するものが好ま
しい。特に1特開昭j!−1310211号公報に示さ
れた構造体の製造技術が確立することによって本発明の
意義が明確化し、従来技術では得られない優れた性能を
有する材料の製造方法を達成することができた。
The pore structure of the base membrane, which is the base of the porous membrane obtained in the present invention, can be obtained by various forming processes. Etching methods, etc., can also be applied; however, the pore structure, for example, that of the Japanese Patent Publication Publication No. 59-3729
No., Special Publication No. 10-937 and Special Publication No. 7-17
Preferably, those having a three-dimensional network structure formed by the microphase separation method or mixed extraction method described in Kou No. 10 are preferred. Especially 1 Tokkai Shoj! The significance of the present invention became clear through the establishment of the manufacturing technology for the structure disclosed in Japanese Patent Publication No. -1310211, and a method for manufacturing a material with excellent performance that could not be obtained with the prior art was achieved.

多孔性基材膜の形状は、平膜状、チューブ状、中空糸膜
状のいずれも適用可能であるが、本発明の目的として内
径0. /ないしlOミリ、厚みOO5ないしjミリな
る形状を有する中空糸タイプのものが好ましい。
The shape of the porous base membrane is applicable to any of flat membrane, tube, and hollow fiber membrane shapes, but for the purpose of the present invention, the shape of the porous base membrane is 0. It is preferable to use a hollow fiber type having a shape of / to 10 mm and a thickness of 0 to 5 to j mm.

本発明の親水性膜の官能基を基材膜にグラフトさせる方
法には、化学処理法等の方法もあるが、最も有効的には
電離性放射線を基材膜に照射せしめる方法が最も良い。
Methods for grafting the functional groups of the hydrophilic membrane of the present invention onto the base film include methods such as chemical treatment, but the most effective method is to irradiate the base film with ionizing radiation.

この方法では基材膜を化学的に劣化せしめることが少な
いこと、フリーの重合体が出来にくいこと及びかくして
製造された多孔膜は、機械的、化学的にも優れており、
濾過性能も良い。
This method rarely causes chemical deterioration of the base film, does not easily produce free polymer, and the porous film produced in this way has excellent mechanical and chemical properties.
Good filtration performance too.

用いられる電離性放射線は、α線、β線、γ線、加速電
子線、X線などであるが、実用的には電子線又はγ線が
好ましい。グラフト重合させる方法としては、多孔性基
材とモノマーの共存下に放射線を照射し、グラフト重合
させる同時照射法と、多孔性基材のみにあらかじめ放射
線を照射し、その後多孔性基材にモノマ−1接触反応さ
せてグラフト重合させる前照射法があるが、同時照射法
では多孔性基材へのモノマーのグラフト重合が進行する
と同時くいグラフト重合に関与しない七ツマ−のみが単
独重合し、多孔性基材の空孔を閉塞するという問題が生
じるので、前照射法が好ましい。
Ionizing radiations used include alpha rays, beta rays, gamma rays, accelerated electron beams, and X-rays, but electron beams or gamma rays are practically preferred. There are two methods for graft polymerization: a simultaneous irradiation method in which radiation is irradiated to the porous substrate and the monomer in the coexistence of the monomer, and graft polymerization is performed; There is a pre-irradiation method in which one-contact reaction is carried out to effect graft polymerization, but in the simultaneous irradiation method, as the graft polymerization of the monomer to the porous substrate progresses, only the monomers that do not participate in the graft polymerization are homopolymerized, resulting in the porous The pre-irradiation method is preferred since it poses the problem of blocking the pores in the substrate.

前照射法では、多孔性基材にモノマーを接触させる以前
に基材にあらかじめ放射線を照射し、モノマーと接触さ
せるまでの間マイカフ10℃以下に保ち、50℃以下、
好ましくは15℃〜50℃の低温でモノマーと接触させ
てグラフト重合を行なう。放射線を照射したのちに多孔
性基材を低温保存しない場合は、生成ラジカルが急速く
減衰し、室温(コj℃)で30分酢遇するとその数は半
分圧なる。更に、それと同時に生成ラジカルが微量の吸
着酸素と反応し、目的物質の耐熱耐薬品性を損なうとい
う欠陥を生じる。又、グラフト重合温度が30℃以上に
なると、グラフト重合にあずからないモノマーの単独熱
重合物が生成し、多孔性基材の空孔を閉塞するとか、反
応後の後処理工程では抽出されない単独熱11合物が親
水化の後に流出してきて二次公害の原因となる、といっ
た問題が生じる。
In the pre-irradiation method, the base material is irradiated with radiation before contacting the monomer with the porous base material, and the temperature of the microcuff is kept at 10 °C or less until it comes into contact with the monomer, and the temperature is kept at 50 °C or less.
Graft polymerization is preferably carried out by contacting with monomers at a low temperature of 15°C to 50°C. If the porous base material is not stored at a low temperature after irradiation with radiation, the generated radicals will rapidly decay, and the number of radicals will be reduced to half when exposed to vinegar for 30 minutes at room temperature (°C). Furthermore, at the same time, the generated radicals react with a trace amount of adsorbed oxygen, resulting in a defect that impairs the heat and chemical resistance of the target substance. In addition, when the graft polymerization temperature is 30°C or higher, a homopolymerized monomer that does not participate in the graft polymerization is generated, which may block the pores of the porous substrate, or monomers that are not extracted in the post-treatment process after the reaction. A problem arises in that the heat 11 compound flows out after becoming hydrophilic and causes secondary pollution.

以下、実施例により本発明の構成及び効果を具体的に述
べるが、いずれも本発明を限定するものではない。
Hereinafter, the structure and effects of the present invention will be specifically described with reference to Examples, but these are not intended to limit the present invention.

〔実施例〕〔Example〕

実施例1及び比較例1.コ 微粉硅酸にプシ# vN J LP ) 23,1重量
部、ジブチルフタレート(DBP ) ss、41重量
部、ポリプロピレン樹脂粉末〔旭化成ポリプロピレンー
M723/’Jコi、sH量部の組成物をあらかじめ予
備混合した後、30ミリニ軸押出機で内径Q7m、厚み
a2swmo中空糸状w押出り、り後、/、 /、 /
、 −) +7クロルエタン〔70ロセンvG(商品名
)〕中に60分間浸漬しDBP を抽出した後、更に温
度60℃の苛性ソーダtio%水溶液中に約−0分浸漬
して微粉硅酸を抽出したあと、水洗・乾燥した。
Example 1 and Comparative Example 1. A composition of 23.1 parts by weight of silicic acid powder, 41 parts by weight of dibutyl phthalate (DBP), and parts by weight of polypropylene resin powder [Asahi Kasei Polypropylene-M723/'J Coi, sH] was prepared in advance. After pre-mixing, extrusion into a hollow fiber shape with an inner diameter of Q7m and a thickness of a2swmo using a 30mm mini-screw extruder, /, /, /
, -) +7 After being immersed in chloroethane [70 Rosen vG (trade name)] for 60 minutes to extract DBP, it was further immersed in a caustic soda tio% aqueous solution at a temperature of 60°C for about -0 minutes to extract fine powder silicic acid. Then, I washed and dried it.

かくして得られた多孔膜に1電子加速器(加圧電圧/、
!;MeV、電子線電流/ mA )を用いて窒素雰囲
気下700KGYで照射した後、あらかじめ溶存酸素を
0.IP以下にした酢酸ビニル蒸気に当ててグラフトさ
せた。
One electron accelerator (pressure voltage/,
! ; MeV, electron beam current/mA) under a nitrogen atmosphere at 700 KGY, and then the dissolved oxygen was preliminarily reduced to 0. Grafting was carried out by exposure to vinyl acetate vapor below IP.

このグラフト膜を更に10℃の苛性ノーズ30チ水溶液
で211時間反応させ、平均孔径0./!μ、空孔率6
2%、ヒドロキシル基ム!ミリ当fk71グラム膜の実
施例膜を得た。
This graft membrane was further reacted with a 30% caustic nose aqueous solution at 10°C for 211 hours, and the average pore size was 0. /! μ, porosity 6
2%, hydroxyl group! An example membrane of fk71 grams per millimeter was obtained.

比較のために1実施例と同じ条件下で押出、抽出された
未処理ポリプロピレン中空糸膜を、特開昭!t−571
36号公報、実施例乙)と同じような方法でスルホン化
を行ない、スルホン基Q、 !; ミII当fz / 
/グラム膜(平均孔径θ16μ、空孔率6jチ)の比較
例1の膜を得た。
For comparison, an untreated polypropylene hollow fiber membrane extruded and extracted under the same conditions as in Example 1 was prepared from JP-A-Sho! t-571
Sulfonation was carried out in the same manner as in Publication No. 36, Example B), and the sulfone group Q, ! ; Mi II fz /
/gram membrane (average pore diameter θ 16μ, porosity 6j) a membrane of Comparative Example 1 was obtained.

なお、実施例膜において、DBP、無水硅酸を抽出した
後の未処理膜を比較例λの膜として以下の実験で使用し
た。
In addition, in the example membrane, an untreated membrane after extracting DBP and silicic anhydride was used as a comparative example λ membrane in the following experiment.

なお、ここで実施例膜のヒドロキシル基、及び比較例膜
のスルホン基の定lけ以下によった。
Here, the hydroxyl groups of the Example membrane and the sulfone groups of the Comparative Example membrane were determined below.

〔ヒドロキシル基の定量〕[Quantification of hydroxyl groups]

アルカリ処理後の膜を十分に水洗、乾燥した後無水酢酸
−ビリジ/混液(l:3容量比)を適量加え、密封容器
中で10℃、265時間加温する。
After the alkali-treated membrane was sufficiently washed with water and dried, an appropriate amount of acetic anhydride-viridi/mixture (l:3 volume ratio) was added, and the mixture was heated at 10° C. for 265 hours in a sealed container.

冷却後水を加えて過剰の無水酢酸を酢酸に変えてクレゾ
ールレッドとチモールブルーの混合指示薬を加え、標準
水酸化アルカリを用いて滴定した。
After cooling, water was added to convert excess acetic anhydride to acetic acid, a mixed indicator of cresol red and thymol blue was added, and titration was performed using standard alkali hydroxide.

〔スルホン基の定量〕[Quantification of sulfone group]

スルホン化多孔膜を/ N HCI水溶液に浸漬しH型
とした後、水洗し、次K / N CaCl2水溶液へ
浸漬、遊離したHCI t QノNkhOH水溶液を用
い、フェノールフタレインを指示薬として滴定した。
The sulfonated porous membrane was immersed in a /N HCI aqueous solution to form H-type, washed with water, then immersed in a K/N CaCl2 aqueous solution, and titrated with phenolphthalein as an indicator using the liberated HCI t Q-NkhOH aqueous solution.

上記31!Jの膜の一過特性を第1表に示す。Above 31! Table 1 shows the transient characteristics of the J film.

(以下余白) @  /)23℃、差圧7tQ■珈忙て測定。(Margin below) @ /) 23℃, differential pressure 7tQ■ Coffee measurement.

コ)  100’C恒温槽中で2j時間乾燥後の湿潤膜
に対する初期透水量比率。
e) Initial water permeability ratio for a wet membrane after drying for 2j hours in a 100'C constant temperature bath.

3】 ダウ社ユニフォームラテックス0. / Z液で
の光線透過率からの捕捉効率。
3] Dow Uniform Latex 0. / Capture efficiency from light transmittance in Z liquid.

4j)  / % L −IJジン液のp液の原液に対
する透過率。
4j) / % L - Transmittance of IJ Gin solution to the p solution of the stock solution.

第1表のデータは、本発明実施例の優れた薬液精製効果
の一端を示している。
The data in Table 1 shows part of the excellent chemical purification effect of the Examples of the present invention.

実施例2.3及び比較例3 エテレ/−テトラフルオロエチレン共重合体(商品名ア
ク0ンCOP )21.2重量部、クロロトリフルオロ
エチレンオリゴマー(商品名ダイフロイ# *20 )
 j7.4’1iiL部、シリコーンオイル(商品名K
F−94)4.5重量部、微粉シリカ111.9重量部
を予備混合後、実施例/とほぼ同じ押出機で押出後、ク
ロロトリフルオロエチレンオリゴマー、シリコーンオイ
ル、微粉シリカを抽出し、実施例/と同じ操作で平均孔
径αlψμ、空孔率62%。
Example 2.3 and Comparative Example 3 Etele/-tetrafluoroethylene copolymer (trade name Akuon COP) 21.2 parts by weight, chlorotrifluoroethylene oligomer (trade name Daifloy # *20)
j7.4'1iiL part, silicone oil (product name K
F-94) After premixing 4.5 parts by weight and 111.9 parts by weight of finely divided silica, extrusion was performed using almost the same extruder as in Example/, and chlorotrifluoroethylene oligomer, silicone oil, and finely divided silica were extracted. Same operation as Example/, average pore diameter αlψμ, porosity 62%.

ヒドロキシル基金有量ダ、θミリ当量/lグラム膜なる
実施例膜を得た。
An example membrane having a hydroxyl base content of da, θ milliequivalents/l gram was obtained.

別に、実施例1における酢酸ビニルの代わりにアリルア
ルコールをグラフトさせ、S、S ミリ当量//クラム
膜の実施例膜(平均孔径0./lμ、空孔率(,0チ)
を得た。
Separately, allyl alcohol was grafted in place of vinyl acetate in Example 1, and S, S milliequivalent//example membrane of crumb membrane (average pore diameter 0./lμ, porosity (.0chi)
I got it.

前記二つの実施例膜のP遜性能は第2表の如くであった
。なお、参考のために、上布されている改質ポリビニル
アルコール膜(クラレ5F−uO/)を比較mlして示
した。
The P performance of the two examples membranes was as shown in Table 2. For reference, a comparative ml of the modified polyvinyl alcohol membrane (Kuraray 5F-uO/) applied thereon is shown.

なお、前記の実施例コ、3の膜に/チのγ−アミノ酪酸
モデル液を通してpa速度、保持率を測定したところ、
” n?/n?P遇した後、その保持率はそれぞれ7o
、63%であった。その後これを苛性ソーダ水溶液及び
蒸気滅菌操作で洗浄後その濾過速度を測定したところ、
それぞれ717117%、91%VC回復した口 この事実は、本発明膜は実際の薬液濾過に当って繰返し
使用できることを示すものである。
In addition, when the pa rate and retention rate were measured by passing the γ-aminobutyric acid model solution of Example 3 and Example 3 through the membrane,
” After encountering n?/n?P, the retention rate was 7o respectively.
, 63%. After that, it was washed with a caustic soda aqueous solution and steam sterilized, and the filtration rate was measured.
The fact that the VC was recovered by 717,117% and 91%, respectively, indicates that the membrane of the present invention can be used repeatedly in actual drug filtration.

〔発明の効果〕〔Effect of the invention〕

本発明の膜は、乾燥後の透水保持率が高く、使用中外部
からの汚染が少ないため、′#際の4液の末端ファイナ
ルフィルターに用いた場合、繰返し使用でき、@にプラ
ントに組み込んで連続使用できるので、薬液精製におい
て、精製装置の取扱いが非常に簡単になり、省力化が図
られた点で、その効果は大である。
The membrane of the present invention has a high water permeability retention rate after drying and has little contamination from the outside during use, so it can be used repeatedly when used as a final filter for 4 liquids, and can be incorporated into a plant. Since it can be used continuously, the purification equipment is very easy to handle in chemical liquid purification, and it is highly effective in terms of labor savings.

Claims (7)

【特許請求の範囲】[Claims] (1)基材膜の材質が、ポリオレフィン又はオレフィン
とハロゲン化オレフィンの共重合体、又はポリフッ化ビ
ニリデンである多孔膜に、中性ヒドロキシル基を含む側
鎖がグラフトされ、かつ中性ヒドロキシル基含有率が、
膜1グラム当り0.1ないし5ミリ当量である平均孔径
0.01μ〜5μ、空孔率20ないし80%の非吸着性
親水性膜。
(1) A porous membrane in which the material of the base membrane is polyolefin, a copolymer of an olefin and a halogenated olefin, or polyvinylidene fluoride is grafted with a side chain containing a neutral hydroxyl group, and contains a neutral hydroxyl group. Rate is,
A non-adsorptive hydrophilic membrane with an average pore size of 0.01 to 5 microns and a porosity of 20 to 80%, with an average pore size of 0.1 to 5 milliequivalents per gram of membrane.
(2)側鎖がビニルアルコールの単量体あるいは重合体
、又はアリルアルコールの単量体あるいは重合体である
特許請求の範囲第1項記載の非吸着性親水性膜。
(2) The non-adsorptive hydrophilic membrane according to claim 1, wherein the side chain is a vinyl alcohol monomer or polymer, or an allyl alcohol monomer or polymer.
(3)膜の孔構造が実質的に三次元網目構造を有し、膜
形状が内径0.1〜10mm、厚み0.005〜5mm
の中空糸状である特許請求の範囲第1項記載の非吸着性
親水性膜。
(3) The pore structure of the membrane has a substantially three-dimensional network structure, and the membrane shape has an inner diameter of 0.1 to 10 mm and a thickness of 0.005 to 5 mm.
The non-adsorptive hydrophilic membrane according to claim 1, which is in the form of hollow fibers.
(4)基材膜の材質がポリオレフィン又はオレフィンと
ハロゲル化オレフィンの共重合体又はポリフッ化ビニリ
デンである多孔膜に、中性ヒドロキシル基を含む側鎖が
グラフトされ、かつ、中性ヒドロキシル基含有率が、膜
1グラム当り0.1〜5ミリ当量である平均孔径0.0
1〜5μ、空孔率20〜80%の非吸着性親水性膜の製
造方法において、実質的に三次元網目構造を有する上記
材質の多孔膜に、電離性放射線を照射させることにより
、中性ヒドロキシル基を有するグラフト性モノマーをグ
ラフトさせることを特徴とする非吸着性親水性膜の製造
方法。
(4) Side chains containing neutral hydroxyl groups are grafted to a porous membrane whose base membrane material is polyolefin, a copolymer of olefin and halogelated olefin, or polyvinylidene fluoride, and neutral hydroxyl group content is 0.1 to 5 milliequivalents per gram of membrane, and the average pore size is 0.0
In a method for producing a non-adsorptive hydrophilic membrane with a porosity of 1 to 5μ and a porosity of 20 to 80%, neutral A method for producing a non-adsorptive hydrophilic membrane, which comprises grafting a grafting monomer having a hydroxyl group.
(5)中性ヒドロキシル基を有するグラフト性モノマー
がアリルアルコールである特許請求の範囲第4項記載の
非吸着性親水性膜の製造方法。
(5) The method for producing a non-adsorptive hydrophilic membrane according to claim 4, wherein the grafting monomer having a neutral hydroxyl group is allyl alcohol.
(6)基材膜の材質がポリオレフィン又はオレフィンと
ハロゲン化オレフィンの共重合体又はポリフッ化ビニリ
デンである多孔膜に、中性ヒドロキシル基を含む側鎖が
グラフトされ、かつ、中性ヒドロキシル基含有率が、膜
1グラム当り0.1〜5ミリ当量である平均孔径0.0
1〜5μ、空孔率20〜80%の非吸着性親水性膜の製
造方法において、実質的に三次元網目構造を有する上記
材質の多孔膜に、電離性放射線を照射させることにより
、中性ヒドロキシル基前駆体を有するグラフト性モノマ
ーをグラフトさせ、その後前駆体を中性ヒドロキシル基
へ誘導することを特徴とする非吸着性親水性膜の製造方
法。
(6) Side chains containing neutral hydroxyl groups are grafted to a porous membrane whose base membrane material is polyolefin, a copolymer of olefin and halogenated olefin, or polyvinylidene fluoride, and neutral hydroxyl group content is 0.1 to 5 milliequivalents per gram of membrane, and the average pore size is 0.0
In a method for producing a non-adsorptive hydrophilic membrane with a porosity of 1 to 5μ and a porosity of 20 to 80%, neutral 1. A method for producing a non-adsorptive hydrophilic membrane, which comprises grafting a grafting monomer having a hydroxyl group precursor, and then deriving the precursor into a neutral hydroxyl group.
(7)中性ヒドロキシル基前駆体を有するグラフト性モ
ノマーが酢酸ビニルであり、前駆体の中性ヒドロキシル
基への誘導がエステル結合の加水分解である特許請求の
範囲第6項記載の非吸着性親水性膜の製造方法。
(7) Non-adsorptive property according to claim 6, wherein the grafting monomer having a neutral hydroxyl group precursor is vinyl acetate, and the induction of the precursor to the neutral hydroxyl group is hydrolysis of an ester bond. A method for producing a hydrophilic membrane.
JP61022347A 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane Expired - Fee Related JPH06104753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022347A JPH06104753B2 (en) 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022347A JPH06104753B2 (en) 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane

Publications (2)

Publication Number Publication Date
JPS62179540A true JPS62179540A (en) 1987-08-06
JPH06104753B2 JPH06104753B2 (en) 1994-12-21

Family

ID=12080136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022347A Expired - Fee Related JPH06104753B2 (en) 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane

Country Status (1)

Country Link
JP (1) JPH06104753B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262705A (en) * 1986-05-07 1987-11-14 Agency Of Ind Science & Technol Hydrophilic porous membrane, its production and serum separator using said membrane
WO1989000878A1 (en) * 1987-08-06 1989-02-09 Terumo Kabushiki Kaisha Hydrophilic porous membrane, process for its production and plasma-separating apparatus
WO1989002303A1 (en) * 1987-09-11 1989-03-23 Japan As Represented By Director General, Agency O Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
EP0315420A2 (en) 1987-11-02 1989-05-10 Tokyo Bi-Tech Laboratories Inc Process for producing an apparatus with hollow fiber membrane for cleaning blood
JPH04126531A (en) * 1989-12-07 1992-04-27 Pall Corp Filtration medium with low adsorption force for protein
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
JP2501891B2 (en) * 1987-09-11 1996-05-29 工業技術院長 Hydrophilic polypropylene porous membrane and plasma separation device
EP1010457A1 (en) * 1996-12-10 2000-06-21 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
WO2002038256A1 (en) * 2000-11-13 2002-05-16 Usf Filtration And Separations Group Inc. Modified membranes
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
EP1897606A2 (en) * 1996-12-10 2008-03-12 Asahi Kasei Kabushiki Kaisha, Ltd. Process for preparing porous polyvinylidene fluoride resin membrane
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280146B (en) * 2019-06-14 2021-12-17 南京工业大学 Method for repairing defects of molecular sieve membrane by using three-dimensional mesh organic flexible material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141432A (en) * 1981-02-27 1982-09-01 Asahi Chem Ind Co Ltd Hydrophilic polyolefin resin porous membrane and its production
JPS60147447A (en) * 1984-01-10 1985-08-03 Toyo Soda Mfg Co Ltd Agricultural and horticultural film with outstanding sustainability in antifogging potential
JPS618102A (en) * 1984-06-21 1986-01-14 Asahi Chem Ind Co Ltd Conductive microfilter
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane
JPS62110978A (en) * 1985-11-05 1987-05-22 三菱レイヨン株式会社 Functional treatment of hollow yarn membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141432A (en) * 1981-02-27 1982-09-01 Asahi Chem Ind Co Ltd Hydrophilic polyolefin resin porous membrane and its production
JPS60147447A (en) * 1984-01-10 1985-08-03 Toyo Soda Mfg Co Ltd Agricultural and horticultural film with outstanding sustainability in antifogging potential
JPS618102A (en) * 1984-06-21 1986-01-14 Asahi Chem Ind Co Ltd Conductive microfilter
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane
JPS62110978A (en) * 1985-11-05 1987-05-22 三菱レイヨン株式会社 Functional treatment of hollow yarn membrane

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262705A (en) * 1986-05-07 1987-11-14 Agency Of Ind Science & Technol Hydrophilic porous membrane, its production and serum separator using said membrane
JPH0570493B2 (en) * 1986-05-07 1993-10-05 Kogyo Gijutsuin
US4940541A (en) * 1987-02-11 1990-07-10 Tokyo Bi-Tech Laboratories, Inc. Blood cleaning hollow fiber membrane, method for cleaning blood, and apparatus therefor
WO1989000878A1 (en) * 1987-08-06 1989-02-09 Terumo Kabushiki Kaisha Hydrophilic porous membrane, process for its production and plasma-separating apparatus
WO1989002303A1 (en) * 1987-09-11 1989-03-23 Japan As Represented By Director General, Agency O Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
AU611950B2 (en) * 1987-09-11 1991-06-27 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
JP2501891B2 (en) * 1987-09-11 1996-05-29 工業技術院長 Hydrophilic polypropylene porous membrane and plasma separation device
EP0315420A2 (en) 1987-11-02 1989-05-10 Tokyo Bi-Tech Laboratories Inc Process for producing an apparatus with hollow fiber membrane for cleaning blood
EP0315420A3 (en) * 1987-11-02 1990-03-28 Tokyo Bi-Tech Laboratories Inc Process for producing an apparatus with hollow fiber membrane for cleaning blood
US5075003A (en) * 1987-11-02 1991-12-24 Tokyo Bi-Tech Laboratories, Inc. Blood cleaning hollow fiber membrane method for cleaning blood, and apparatus therefor
JPH04126531A (en) * 1989-12-07 1992-04-27 Pall Corp Filtration medium with low adsorption force for protein
EP1010457A1 (en) * 1996-12-10 2000-06-21 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
EP1897606A2 (en) * 1996-12-10 2008-03-12 Asahi Kasei Kabushiki Kaisha, Ltd. Process for preparing porous polyvinylidene fluoride resin membrane
EP1010457A4 (en) * 1996-12-10 2006-03-22 Asahi Chemical Ind Porous polyvinylidene fluoride resin film and process for producing the same
EP1897606A3 (en) * 1996-12-10 2008-04-02 Asahi Kasei Kabushiki Kaisha, Ltd. Process for preparing porous polyvinylidene fluoride resin membrane
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
WO2002038256A1 (en) * 2000-11-13 2002-05-16 Usf Filtration And Separations Group Inc. Modified membranes
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8262778B2 (en) 2003-07-08 2012-09-11 Siemens Industry, Inc. Membrane post treatment
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JPH06104753B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JPS62179540A (en) Nonadsorptive hydrophilic membrane
JP4699207B2 (en) Hydrophilic microporous membrane
EP0302650B1 (en) Hydrophilic microporous membrane and process for preparing same
JPH069810A (en) Hydrophobic composite polymer membrane
JP2686949B2 (en) Selective adsorption functional microfilter and its manufacturing method
KR101162411B1 (en) Cation exchange membrane and process for preparing the same
JPS62258711A (en) Production of grafted membrane
JPH02132132A (en) Porous membrane having selective adsorptivity of anion and production thereof
JPH01224009A (en) Treatment of graft membrane
JPS6214903A (en) Process of turning hydrophobic microporous filter membrane hydrophilic
JP2003268152A (en) Hydrophilic microporous film
JPH07121345B2 (en) Non-adsorbing hydrophilic semipermeable membrane and method for producing the same
JP4079221B2 (en) Method for producing graft membrane
JPS6331501A (en) Composite semipermeable membrane and its production
JPS63240902A (en) Treating method
JPS63310602A (en) Novel method for purifying condensate
EP0682978A1 (en) Hydrophilic PTFE membrane
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JPS6283006A (en) Manufacturing process for separating functional material
JP3040129B2 (en) Composite membrane
JPH0316626A (en) Hydrophilic porous film
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JPH03195745A (en) Method for modifying surface of polymer structure
JPS62201604A (en) Method for removing cobalt ion
JPH0829232B2 (en) Method to give pressure resistance to filtration membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees