JPS6217705A - Telecentric optical system lighting device - Google Patents

Telecentric optical system lighting device

Info

Publication number
JPS6217705A
JPS6217705A JP15663385A JP15663385A JPS6217705A JP S6217705 A JPS6217705 A JP S6217705A JP 15663385 A JP15663385 A JP 15663385A JP 15663385 A JP15663385 A JP 15663385A JP S6217705 A JPS6217705 A JP S6217705A
Authority
JP
Japan
Prior art keywords
light
face
objective lens
fiber bundle
random fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15663385A
Other languages
Japanese (ja)
Inventor
Shuhei Takagi
高木 秀平
Takeshi Sudo
武司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP15663385A priority Critical patent/JPS6217705A/en
Publication of JPS6217705A publication Critical patent/JPS6217705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To prevent ununiform light quantity on a pupil surface of an illuminating light by dividing the incident luminous flux which is made incident on one end face of a random fiber bundle for leading the luminous flux which has condensed light from a light source, to an object side, into plural fluxes, and distributing them uniformly in the other end face. CONSTITUTION:The illuminating light from a light source 1 is focused to an incident end face 20a of a random fiber bundle 20 by a condensing lens 2 and a concave mirror 3, and emitted from an emitting and face 20b. Its light travels to a lighting system lens 5 through an aperture diaphragm 4, condensed and becomes a parallel luminous flux, reflected along an objective lens optical axis by a half-transmission flux, reflected along an objective lens optical axis by a half-transmission prism 6, focused at a pupil position of the first objective lens 8 through the second objective lens 7, and an image of the aperture diaphragm 4 is formed at its pupil position together with an image of the emitting end face 20b. The light becomes a parallel luminous flux again and projected to an object to be inspected 10 from the first objective lens 8, and illuminates vertically the object to be inspected 10, along the optical axis. The random fiber bundle 20 is formed by bundling plural optical fibers, making a line of fibers of one end face different from a line of fibers of the other end face, and twisting them together so that they become an irregular arrangement each other.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光学装置のテレセントリック光学系。[Detailed description of the invention] [Technical field of invention] The present invention relates to a telecentric optical system for an optical device.

特にそのテレセントリック光学系を有効に機能させるた
めの照明装置に関する。
In particular, the present invention relates to an illumination device for effectively functioning the telecentric optical system.

〔発明の背景〕[Background of the invention]

光学測定装置や光学式位置検出装置等の光学装置におい
ては、被検物体面での光軸方向の焦点ずれが観察面やセ
ンサー等の受光面で光軸に直角な方向の位置ずれとなっ
て計測を狂わす原因となる。
In optical devices such as optical measurement devices and optical position detection devices, a focal shift in the direction of the optical axis on the surface of the object to be measured results in a positional shift in the direction perpendicular to the optical axis on the observation surface or light receiving surface of a sensor, etc. This will cause the measurement to go awry.

これを防ぐためには、その光学系をテレセントリック光
学系に構成し、対物レンズの被検物体側を主光線が光軸
に平行となるようなテレセントリックの配置に設定する
ことが従来からよく行われている。この場合、被検物体
を照明する照明光として、主光線が光軸に平行な光束が
用いられ、その、照明光の光源像が対物レンズの瞳面に
形成されるように構成される。しかし、その際、光源像
が光軸から偏って置かれると、対物レンズの瞳面で照明
の光量重心が光軸から偏るため、対物レンズの被検物体
側での実質的主光線が光軸から傾きテレセントリック性
がくずれてしまい測定を狂わす欠点が有った。
In order to prevent this, it has traditionally been common practice to configure the optical system as a telecentric optical system, and to set the objective lens on the test object side in a telecentric arrangement so that the principal ray is parallel to the optical axis. There is. In this case, a light beam whose principal ray is parallel to the optical axis is used as the illumination light that illuminates the object to be examined, and the configuration is such that a light source image of the illumination light is formed on the pupil plane of the objective lens. However, in this case, if the light source image is placed offset from the optical axis, the center of gravity of the illumination light amount will be offset from the optical axis at the pupil plane of the objective lens. This had the disadvantage that the tilt telecentricity was lost and the measurement was disturbed.

その欠点を除くために従来装置においては、照明光学系
中に検定レンズを挿入して、光源像を観察面等に形成さ
せた後、光源像がその観察面の中央(光軸中心)に位置
するように、光源の位置を調整する必要が有り、光源を
交換する場合や光学装置の使用が長時間中断されている
場合には、使用に先立って、その都度光源位置を検定し
、その位置調整を必要としていた。もしその検定作業を
怠る場合には、測定結果が信軌性の無いものとなる欠点
が有った。
In order to eliminate this drawback, in conventional devices, a test lens is inserted into the illumination optical system to form a light source image on the observation surface, etc., and then the light source image is positioned at the center of the observation surface (center of the optical axis). When it is necessary to adjust the position of the light source, and when replacing the light source or when the use of the optical device has been interrupted for a long time, the position of the light source must be verified each time before use. Adjustments were needed. If the verification work was neglected, there was a drawback that the measurement results would be unreliable.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来装置の欠点を解決し、光源の位置が
偏っていても、また、光源に輝度ムラが有っても測定精
度に狂いを生じないテレセントリック光学系用照明装置
を提供することを目的とする。
The present invention solves the above-mentioned drawbacks of the conventional device and provides an illumination device for a telecentric optical system that does not cause deviation in measurement accuracy even if the position of the light source is biased or the light source has uneven brightness. With the goal.

(発明の概要) 上記の目的を達成するために本発明においては。(Summary of the invention) In order to achieve the above object, the present invention.

光源と、光源からの光を集める集光手段と、その集光手
段によって集光された光束を物体側に導くランダム・フ
ァイバー束とを含み、そのランダム・ファイバー束は、
多数のファイバーを束ねて。
The random fiber bundle includes a light source, a condensing means for collecting light from the light source, and a random fiber bundle that guides the light beam condensed by the condensing means to the object side.
Bundle many fibers together.

一方の端面におけるファイバーの配列に対して他方の端
面での配列が不規則に分散するように瑳り合せて形成さ
れ、その一方の端面に入射する入射光束を複数に分割し
、他方の端面において一様に分布させるように構成する
ことを技術的要点とするものである。
It is formed by gluing the fibers so that the arrangement of the fibers on one end face is irregularly distributed with respect to the arrangement on the other end face, and the incident light beam incident on one end face is divided into multiple parts, and the fibers on the other end face are The technical point is to configure it so that it is distributed uniformly.

〔実施例〕〔Example〕

次に1本発明の実施例を添付の図面に基づいて詳しく説
明する。
Next, one embodiment of the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の第1実施例を示す落射照明型光学測定
装置の光学系配置図である。第1図において、光源1か
らの照明光は、集光レンズ2と凹面鏡3とによって本発
明の要部をなし後で詳しく述べられるランダム・ファイ
バー束20の入射端面20aに集光される。入射端面2
0aから入射した光束はランダム・ファイバー束20に
導かれて射出端面20bから射出される。この射出端面
20bから射出された光は、その射出端面20bに近接
して設けられた開口絞り4を通して照明系レンズ5に向
い、照明系レンズ5によ゛って集光されて平行光束とな
る。その平行光束は、半透過プリズム6によって対物レ
ンズ光軸に沿って反射され、第2対物レンズ7を通過し
た後、第1対物レンズ8の瞳位置(この実施例では第1
対物レンズ8内の絞り9の位置)に集束され、射出端面
20bの像と共に開口絞り4の像がその瞳位置に形成さ
れる。さらに、その光は再び平行光束となって第1対物
レンズ8から被検物体IOに投射され、被検物体10を
光軸に沿って垂直に照明する。その照明範囲は照明系レ
ンズ5の近傍に設けられた視野絞り11によって定めら
れる。
FIG. 1 is an optical system layout diagram of an epi-illumination type optical measuring device showing a first embodiment of the present invention. In FIG. 1, illumination light from a light source 1 is focused by a condensing lens 2 and a concave mirror 3 onto an incident end face 20a of a random fiber bundle 20, which forms the main part of the present invention and will be described in detail later. Incidence end surface 2
The light beam incident from 0a is guided to the random fiber bundle 20 and exits from the exit end face 20b. The light emitted from the exit end surface 20b passes through the aperture diaphragm 4 provided close to the exit end surface 20b, and is directed to the illumination system lens 5, where it is condensed by the illumination system lens 5 and becomes a parallel beam of light. . The parallel light flux is reflected along the optical axis of the objective lens by the semi-transparent prism 6, passes through the second objective lens 7, and then passes through the pupil position of the first objective lens 8 (in this example, the first
The light is focused at the position of the aperture stop 9 within the objective lens 8, and an image of the aperture stop 4 is formed at the pupil position together with an image of the exit end surface 20b. Furthermore, the light becomes a parallel light beam again and is projected from the first objective lens 8 onto the object to be inspected IO, illuminating the object to be inspected 10 perpendicularly along the optical axis. The illumination range is determined by a field stop 11 provided near the illumination system lens 5.

上記のランダム・ファイバー束20は、複数のオプチカ
ルファイバーを束ねて、一方の端面におけるファイバー
の並びと他方の端面のファイバーの並びとを違えて互い
に不規則な配列となるように縒り合わせて形成したもの
で、第2図にその一例を示す。この第2図に示すランダ
ム・ファイバー束20は、直径δ−0,1m〜0.3鶴
程度のオプチカルファイバーを多数集めて直径Φ=5−
m〜10鶴程度になし、その両端面のファイバーA、B
The above-mentioned random fiber bundle 20 is formed by bundling a plurality of optical fibers and twisting them together in an irregular arrangement with the fibers arranged at one end face different from the arrangement of the fibers at the other end face. An example of this is shown in Figure 2. The random fiber bundle 20 shown in FIG.
m to about 10 Tsuru, fibers A and B on both end faces
.

C・・・の並びが第2図に示すように互いに不規則な配
列となるように瑳り合せて形成され、その両端を金属等
の結束管21によって圧着結束させたものである。その
瑳り方が良好で、入射端面20aのファイバーA、B、
C・・・の並びに対して射出端面20b側でそれぞれの
ファイバーの切り口が。
C... are glued together in an irregular arrangement as shown in FIG. 2, and both ends are crimped and bound with a binding tube 21 made of metal or the like. The way the fibers are glued is good, and the fibers A and B on the input end surface 20a are
The cut end of each fiber is on the injection end surface 20b side with respect to the arrangement of C....

その射出端面20bの全面にわたって分散するように偏
り無(均一に分散形成されていると、入射端面において
偏った光量分布を示す入射光も、射出端面から射出する
際には極めて均一な光量分布の光束となる。
If the light is distributed uniformly over the entire surface of the exit end surface 20b, even if the incident light shows a biased light intensity distribution at the entrance end surface, it will have an extremely uniform light intensity distribution when it exits from the exit end surface. It becomes a luminous flux.

第3図は、ランダム・ファイバー束20の両端面におけ
る光量分布の一例を示す線図である。うンダム・ファイ
バー束20の端面中心0において最大の光強度を示し周
辺に至るに従って減少する入射光束Aは、平坦な射出光
束A゛となって射出端面20bから射出される。また、
その最大の光強度部分が破vABの如く偏って入射端面
20aに入射しても、ランダム・ファイバー束20内を
通過することによって平均化されて、破線B″にて示す
ようにほぼ平坦なものとなり、一様な照明光に変えられ
る。
FIG. 3 is a diagram showing an example of the light amount distribution on both end faces of the random fiber bundle 20. The incident light beam A, which exhibits maximum light intensity at the center 0 of the end face of the undamped fiber bundle 20 and decreases toward the periphery, becomes a flat exit light flux A′ and is emitted from the exit end face 20b. Also,
Even if the maximum light intensity portion enters the incident end face 20a unevenly as shown by the broken line vAB, it is averaged by passing through the random fiber bundle 20 and becomes almost flat as shown by the broken line B''. This allows for uniform illumination.

なお、ランダム・ファイバー束20の両端に設けられた
結束管21によって、ファイバーA、B。
Note that the fibers A and B are separated by binding tubes 21 provided at both ends of the random fiber bundle 20.

C・・・はバラバラにならず、ランダム状態で強固に維
持される。従って、取扱いが容易で、テレセントリック
光学系中に設置するのに極めて好都合である。また、ラ
ンダム・ファイバー束20の全長が比較的短く且つファ
イバー自身の直径が比較的太い場合には、柔軟性を持た
せるために数10ミクロン程度の細いオプチカルファイ
バーの繊維を複数本束ねて第4図に示すように直径δ=
 0.2 m〜0.3fi程度の単位ファイバー束を作
り、これを土 多数集めて第2図に示すランダム・ファイバー20と同
様なものに形成してもよい。
C... does not fall apart and is firmly maintained in a random state. Therefore, it is easy to handle and is extremely convenient to install in a telecentric optical system. In addition, when the total length of the random fiber bundle 20 is relatively short and the diameter of the fiber itself is relatively thick, a plurality of thin optical fibers of about several tens of microns may be bundled together to provide flexibility. As shown in the figure, diameter δ=
A unit fiber bundle of approximately 0.2 m to 0.3 fi may be made, and a large number of these bundles may be collected to form a random fiber similar to the random fiber 20 shown in FIG.

さて、第1図において、ファイバー束20の入射端面2
0aでの照明光束に第3図中で曲線A。
Now, in FIG. 1, the entrance end surface 2 of the fiber bundle 20
Curve A in FIG. 3 represents the illumination flux at 0a.

Bにて示されるように極端な光量ムラが有っても。Even if there is extreme unevenness in the amount of light as shown in B.

その射出端面20bにおいては、一様な光量分布の射出
光束A’ 、B’ となるので、開口絞り4から射出さ
れる照明光束の主光線は常に第1対物レンズ8の瞳の中
心を通り、被検物体10側において光軸に平行となる。
At the exit end surface 20b, the emitted light beams A' and B' have a uniform light quantity distribution, so the chief ray of the illumination light beam emitted from the aperture stop 4 always passes through the center of the pupil of the first objective lens 8, It becomes parallel to the optical axis on the test object 10 side.

従って、光源1の照明光束に第3図中で曲線Aに示すよ
うな光量ムラが有っても、また光源が照明光軸から偏心
しているために、その照明光束が曲線Bに示すように偏
った光量分布を示す場合でも、常に正しいテレセントリ
ック照明を行うことができる。
Therefore, even if the illumination luminous flux of light source 1 has unevenness in the amount of light as shown by curve A in FIG. Correct telecentric illumination can always be performed even when the light intensity distribution is biased.

この照明光によって照明された被検物体10からの反射
光は、第1対物レンズ8の瞳位置(絞り9の位置)を通
過し、第2対物レンズ7を介してスクリーン12上に被
検物体像を形成するように。
The reflected light from the test object 10 illuminated by this illumination light passes through the pupil position of the first objective lens 8 (the position of the diaphragm 9), and passes through the second objective lens 7 onto the test object 12. Like forming an image.

第1対物レンズ8.第2対物レンズ7およびスクリーン
12が配置され、テレセントリック光学系が構成されて
いる。従って、被検物体10の像を形成する光束の主光
線は第1対物レンズ8の瞳中心を通り物体側において光
軸に平行となり、焦点調節誤差が測定精度に影響を及ぼ
すことが無く。
First objective lens8. A second objective lens 7 and a screen 12 are arranged to constitute a telecentric optical system. Therefore, the chief ray of the light beam forming the image of the object to be measured 10 passes through the center of the pupil of the first objective lens 8 and becomes parallel to the optical axis on the object side, so that focusing errors do not affect measurement accuracy.

完全なテレセントリック機能を果す装置とすることがで
きる。
The device can be fully telecentric.

上記の第1実施側の測定装置においては、ランダム・フ
ァイバー束20の入射端面における照明光に光量ムラや
偏りが有っても、射出端面では一様な光量分布の照明光
にすることができるので。
In the measurement device of the first implementation side, even if the illumination light at the input end face of the random fiber bundle 20 has unevenness or bias in the light amount, the illumination light can be made to have a uniform light amount distribution at the exit end face. So.

光源1の位置によって照明光束の主光線が対物レンズ主
軸に対して実質的に傾いてテレセントリック性が維持で
きなくなることがない。その為、測定作業に先立って光
源位置の検定を度々くり返す必要が無い。
The principal ray of the illumination light beam is not substantially tilted with respect to the principal axis of the objective lens depending on the position of the light source 1, so that telecentricity cannot be maintained. Therefore, there is no need to repeatedly verify the light source position prior to measurement work.

第5図は、半導体製造用縮小投影型露光装置のアライメ
ント用照明光学系中に用いられる本発明の第2実施例を
示す光学系配置図である。超高圧水銀灯101から発し
た光は、楕円反射鏡102によりロータリーミラーシャ
ッタ103の反射面り二 上台集光され、このロータリーミラーシャッタ1コ 03に設けられた開口を通過した後、恨すメータレンズ
104.フライアイレンズにて構成されたオブチカルイ
ンテグレータ105およびコンデンサーレンズ106を
介して投影原板のレチクル107を照明し、その照明さ
れたレチクル107上のパターン像を縮小投影レンズ1
0Bによってウェハ109上に形成して焼付露光を行う
ように構成されている。
FIG. 5 is an optical system layout diagram showing a second embodiment of the present invention used in an illumination optical system for alignment of a reduction projection type exposure apparatus for semiconductor manufacturing. The light emitted from the ultra-high pressure mercury lamp 101 is focused by the elliptical reflector 102 onto the reflecting surface of the rotary mirror shutter 103, and after passing through the aperture provided in the rotary mirror shutter 103, it passes through the meter lens. 104. A reticle 107 on a projection original plate is illuminated through an optical integrator 105 and a condenser lens 106 configured with a fly's eye lens, and the pattern image on the illuminated reticle 107 is reduced to a projection lens 1.
It is configured to be formed on the wafer 109 using 0B and subjected to printing exposure.

一方、ロータリーミラーシャッタ103で反射され、ア
ライメント光学系の第1集光レンズ110に入射する光
束は、ランダム・ファイバー束20の入射端面2Oa上
に集光される。その入射端面20aに集光される照明光
束は、超高圧水銀灯101の一方の電極によってその中
央部分の光線がカントされるため、光源像のベストフォ
ーカス状態以外では、第6図(A)に示すように中心に
おいて光量が極端に低下した部分を有する曲線■の如き
光量分布を示す。しかし、ランダム・ファイバー束20
の射出端面20bにおいては、平均化され1曲線■に示
すように平坦な光量分布となって射出される。射出端面
20bから射出された照明光は、第2集光レンズ111
.視野絞り112、半透過鏡113.第2アライメント
対物レンズ115.第1アライメント対物レンズ114
゜移動ミラー116を介してレチクル107上のアライ
メントマークPを照明し、さらに縮小投影レンズ108
を介してウェハ109上のアライメントマークQを照明
する。また、レチクル107およびウェハ109上の双
方のアライメントマークPおよびQは互いに重畳されて
、アライメント対物レンズ114,115により、半透
過鏡113の後方に配置されたITV撮像管117上に
結像され、レチクル107上のアライメントマークPに
対するウェハ上のアライメントマークQの正確な位置合
わせか、そのITV撮像管117を介して確認される。
On the other hand, the light beam reflected by the rotary mirror shutter 103 and incident on the first condensing lens 110 of the alignment optical system is condensed onto the incident end surface 2Oa of the random fiber bundle 20. The illumination light beam focused on the incident end surface 20a is canted in the central part by one electrode of the ultra-high pressure mercury lamp 101, so that when the light source image is not in the best focus state, the illumination light beam is as shown in FIG. 6(A). As shown in FIG. 3, the light amount distribution shows a curve (2) with a portion where the light amount is extremely reduced at the center. However, random fiber bundle 20
At the exit end surface 20b, the light is averaged and emitted with a flat light amount distribution as shown by curve 1. The illumination light emitted from the exit end surface 20b is transmitted through the second condensing lens 111.
.. Field diaphragm 112, semi-transparent mirror 113. Second alignment objective lens 115. First alignment objective lens 114
゜The alignment mark P on the reticle 107 is illuminated via the moving mirror 116, and the reduction projection lens 108
The alignment mark Q on the wafer 109 is illuminated through the wafer 109. Further, both alignment marks P and Q on the reticle 107 and the wafer 109 are superimposed on each other and are imaged by the alignment objective lenses 114 and 115 onto the ITV image pickup tube 117 disposed behind the semi-transmissive mirror 113, The correct positioning of the alignment mark Q on the wafer with respect to the alignment mark P on the reticle 107 is confirmed through the ITV image pickup tube 117.

なお1両アライメントマークPおよびQを照明する照明
光学系において、ランダム・ファイバー束20の射出端
面20bの像が縮小投影レンズ108の瞳108aの位
置に形成されるように各レンズ111,114.115
は配置され、レチクル107に対してはいわゆるケーラ
ー照明がなされ、ウェハ109に対してはテレセントリ
ックな照明がなされるように構成されている。また、レ
チクル107が異なる大きさのものと交換され。
In the illumination optical system that illuminates both alignment marks P and Q, each lens 111, 114, 115 is set so that the image of the exit end surface 20b of the random fiber bundle 20 is formed at the position of the pupil 108a of the reduction projection lens 108.
are arranged so that so-called Koehler illumination is applied to the reticle 107, and telecentric illumination is applied to the wafer 109. Also, the reticle 107 is replaced with one of a different size.

レチクル上のアライメントマークの位置が点Pの位置か
ら点P゛の位置に変えられてもアライメントが可能なよ
うに、第1アライメント対物レンズ114と移動ミラー
116はレチクル107の面に平行なアライメント光軸
Yに沿って破線にて示す如(移動可能に構成されている
。この場合第1アライメント対物レンズ114と、第2
アライメント対物レンズ115との間の光束は平行光束
である。
The first alignment objective lens 114 and the movable mirror 116 provide alignment light parallel to the surface of the reticle 107 so that alignment is possible even when the position of the alignment mark on the reticle is changed from the position of point P to the position of point P''. As shown by the broken line along the axis Y, the first alignment objective lens 114 and the second
The light flux between the alignment objective lens 115 and the alignment objective lens 115 is a parallel light flux.

この第1アライメント対物レンズ114と移動ミラー1
16との移動により2点P°上のアライメントマークと
ウェハ109上の点Q゛上に在るアライメントマークと
を重畳して観察可能となるが、この場合、レチクル10
7上のP点およびP′点と投影レンズ108の瞳108
aの中心とを通る主光線の投影光軸Xに対する角度はθ
からθ。
This first alignment objective lens 114 and the moving mirror 1
By moving the reticle 10, the alignment mark on the two points P° and the alignment mark on the point Q′ on the wafer 109 can be observed in a superimposed manner.
Points P and P' on 7 and the pupil 108 of the projection lens 108
The angle of the chief ray passing through the center of a with respect to the projection optical axis X is θ
From θ.

に変化する。従って、ウェハ109上の異なる点Qおよ
びQ゛を照明するために瞳108aを通過する光束は、
ランダム・ファイバー束2oの射出端面20bでは互い
に異なる位置R,R’を通る。
Changes to Therefore, the light flux passing through the pupil 108a to illuminate different points Q and Q' on the wafer 109 is
The random fiber bundle 2o passes through different positions R and R' at the exit end face 20b.

いま、射出端面20bにおける瞳108aの射影を第6
図(B)に示すようにり、L’ とすれば。
Now, the projection of the pupil 108a on the exit end surface 20b is expressed as the sixth
As shown in figure (B), let it be L'.

ウェハ109上のQ点はLの範囲を通過する光によって
照明され、Q′点はL゛の範囲を通過する光によって照
明される。
Point Q on wafer 109 is illuminated by light passing through a range L, and point Q' is illuminated by light passing through a range L.

そこで、ランダム・ファイバー束20を構成するファイ
バーの並びが第2図に示すようにランダム配列になって
いれば、たとえ入射端面20aにおいて第6図(A)中
の曲線■にて示すように光量分布が一様で無くても射出
端面20bにおいては曲線Hにて示す如くほぼ一様に平
坦なものとなるので、投影レンズ108の瞳108aを
通過する光束の光量分布は、第1対物レンズ114と共
に移動ミラー116を移動しても偏ることは無い。
Therefore, if the fibers constituting the random fiber bundle 20 are arranged randomly as shown in FIG. 2, even if the light intensity at the input end surface 20a is Even if the distribution is not uniform, it is almost uniformly flat at the exit end surface 20b as shown by the curve H, so the light intensity distribution of the light flux passing through the pupil 108a of the projection lens 108 is similar to that of the first objective lens 114. Even if the movable mirror 116 is moved together, it will not become biased.

従って、その照明光束の主光線はウェハ109側におい
て常に投影光軸に対して平行となり、正しいテレセント
リック照明が行われる。
Therefore, the principal ray of the illumination light beam is always parallel to the projection optical axis on the wafer 109 side, and correct telecentric illumination is performed.

しかし、ランダム・ファイバー束20が製作不良などに
よりその両端面でのファイバーの並びがランダムに配列
されず、入射光の光量分布と射出光の光量分布にあまり
差が無いか、大きな偏りのに示すように、中央部分にお
いて高く9周辺部において低い山形状の光量分布の光束
が射出されることになる。この場合、射出端面20bの
範囲りを通ってウェハ109上のQ点を照明する光束の
光量分布と、範囲L″を通ってウェハ109上のQ”点
を照明する光束の光量分布とは第6図(A)に示す如(
異なる。例えば、範囲L”内では。
However, due to manufacturing defects in the random fiber bundle 20, the fibers on both end faces are not arranged randomly, and the light intensity distribution of the incident light and the light intensity distribution of the emitted light may show little difference or a large deviation. Thus, a light beam having a mountain-shaped light intensity distribution is emitted, which is high in the center and low in the periphery. In this case, the light intensity distribution of the light beam that passes through the range of the exit end face 20b to illuminate point Q on the wafer 109 and the light intensity distribution of the light beam that passes through the range L'' and illuminates the point Q'' on the wafer 109 are as follows. As shown in Figure 6 (A) (
different. For example, within the range L''.

光量が範囲L゛の中心R′に対して非対称に分布され、
その光量重心の位置は5範囲L°の中心R。
The amount of light is distributed asymmetrically with respect to the center R′ of the range L′,
The position of the center of gravity of the light amount is the center R of the 5 range L°.

から偏ったものとなる。従って、投影レンズ108の瞳
108aの位置においてもQ″点を照明する光束の光量
重心が瞳108aの中心から偏ってしまう。そのため、
投影レンズ108の瞳108aを通る実質的主光線は瞳
108aの中心を通らず、ウェハ109側において投影
光軸Xと平行にならない。すなわち、テレセントリック
照明が行われていないことになり、ウェハ109と投影
レンズ108との間に焦点調節誤差が有ると、アライメ
ントの精度が狂うことになる。その為、常に正しいテレ
セントリック照明を行うためには、アライメントマーク
の位置が異なるレチクルに交換する際、その都度ファイ
バー束20の射出端面を移動するかまたは光源101と
楕円鏡102の位置を変えて、瞳108aを通る照明光
束の光量分布が瞳中心に対して対称的になるように度々
調整しなければならない。
It will be biased from Therefore, even at the position of the pupil 108a of the projection lens 108, the center of gravity of the light quantity of the light beam illuminating point Q'' is shifted from the center of the pupil 108a.
The substantial chief ray passing through the pupil 108a of the projection lens 108 does not pass through the center of the pupil 108a and is not parallel to the projection optical axis X on the wafer 109 side. That is, telecentric illumination is not performed, and if there is a focusing error between the wafer 109 and the projection lens 108, the alignment accuracy will be disrupted. Therefore, in order to always perform correct telecentric illumination, when replacing a reticle with a reticle with a different alignment mark position, move the exit end face of the fiber bundle 20 or change the positions of the light source 101 and the elliptical mirror 102 each time. Adjustments must be made frequently so that the light intensity distribution of the illumination light flux passing through the pupil 108a is symmetrical with respect to the pupil center.

しかし、第2図に示すようなランダム・ファイバー束2
0のようにオプチカルファイバーが両端において互いに
不規則に配列され、射出端面における光量分布にムラが
無いようにすれば、レチクル107や光源101の交換
の際に、光源やファイバー束の位置調整をすること無く
、テレセントリックな照明を安定して正しく行うことが
可能となる。
However, a random fiber bundle 2 as shown in FIG.
0, the optical fibers are arranged irregularly at both ends so that there is no unevenness in the light intensity distribution at the exit end surface, and when replacing the reticle 107 or light source 101, the position of the light source or fiber bundle can be adjusted. This makes it possible to perform telecentric lighting stably and correctly without any problems.

なお、上記の実施例は、いずれも対物レンズの瞳中心を
通して被検物体を照明する落射照明型テレセントリック
光学系の照明光学系に係るものであるが1輪郭投影機の
如(コンデンサーレンズの前側焦点位置または、これと
共役な位置に光源像を形成して被検物体を照明する透過
照明型テレセントリック光学系用照明光学系においても
2本発明の照明光源装置を適用し得ることは言うまでも
無い。この場合には、ランダム・ファイバー束の射出端
面(20b)またはその共役面をコンデンサーレンズ前
側焦点面に結像させるようにすればよい。
The above embodiments are all related to the illumination optical system of an epi-illumination type telecentric optical system that illuminates the object to be examined through the pupil center of the objective lens. It goes without saying that the illumination light source device of the present invention can also be applied to an illumination optical system for a transmitted illumination type telecentric optical system that illuminates a test object by forming a light source image at the position or a position conjugate thereto. In this case, the exit end surface (20b) of the random fiber bundle or its conjugate surface may be imaged on the front focal plane of the condenser lens.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、光学測定装置等に組み込ん
だ場合、被検物体に対し垂直に照明され瞳 る照明光の全面での光量ムラが簡単な構成で除去でき、
しかも拡散板を使用した場合のような光量の損失が極め
て少なく、さらに従来のファイバー束と同様に照明光を
任意の位置に導くことができるから、光源の位置検定を
度々すること無しに正しいテレセントリック照明を可能
とし、高い測定精度を維持することができる。
As described above, when the present invention is incorporated into an optical measuring device or the like, it is possible to eliminate unevenness in the amount of illumination light over the entire surface of the pupil that is illuminated perpendicularly to the object to be measured, with a simple configuration.
In addition, the loss of light intensity that occurs when using a diffuser plate is extremely small, and the illumination light can be guided to any position like a conventional fiber bundle, so it is possible to achieve correct telecentricity without having to repeatedly verify the position of the light source. It enables illumination and maintains high measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の第1実施例を示す測定機のテレセン
トリック照明光学系の光学位置図、第2図は本発明の要
部をなすランダム・ファイバー束の拡大斜視図、第3図
は、第2図に示すランダム・ファイバー束の両端面にお
ける入射光と射出光の光量分布を説明するための線図、
第4図ぼ、第2図に示すランダム・ファイバー束に使用
される単位ファイバー束の一例を示す斜視図、第5図は
。 半導体製造装置用縮小投影型露光装置に用いられた本発
明の第2実施例を示す光学系配置図、第6図は、第5図
に示すランダム・ファイバー束の両端における入射光と
射出光の光量分布を示す説明図で(A)は光量分布状態
を示す線図で(B)はランダム・ファイバー束の射出端
面における視野範囲を示す平面図である。 〔主要部分の符号の説明〕
Fig. 1 is an optical position diagram of a telecentric illumination optical system of a measuring instrument showing a first embodiment of the present invention, Fig. 2 is an enlarged perspective view of a random fiber bundle that forms the main part of the present invention, and Fig. 3 is , a diagram for explaining the light intensity distribution of the incident light and the emitted light on both end faces of the random fiber bundle shown in FIG. 2,
FIG. 4 is a perspective view showing an example of a unit fiber bundle used in the random fiber bundle shown in FIG. 2, and FIG. 5 is a perspective view showing an example of a unit fiber bundle used in the random fiber bundle shown in FIG. FIG. 6 is an optical system layout diagram showing a second embodiment of the present invention used in a reduction projection type exposure apparatus for semiconductor manufacturing equipment. In the explanatory diagrams showing the light amount distribution, (A) is a line diagram showing the state of the light amount distribution, and (B) is a plan view showing the viewing range at the exit end face of the random fiber bundle. [Explanation of symbols of main parts]

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、該光源からの光を集める集光手段と、該
集光手段によって集光された前記光源からの光束を物体
側に導く多数のオプチカルファイバーから成るランダム
・ファイバー束とを含み、該ランダム・ファイバー束は
、多数のファイバーを束ねて、一方の端面におけるファ
イバーの配列に対し他方の端面での配列が不規則に分散
するように縒り合せて形成され、前記一方の端面に入射
する入射光束を複数に分割し、他方の端面において一様
に分布させる如く構成したことを特徴とするテレセント
リック光学系用照明装置。
(1) Includes a light source, a condensing means for collecting light from the light source, and a random fiber bundle consisting of a large number of optical fibers that guide the light flux from the light source condensed by the condensing means to the object side. , the random fiber bundle is formed by bundling a large number of fibers and twisting them together so that the arrangement of the fibers on one end face is irregularly distributed compared to the arrangement on the other end face, and 1. An illumination device for a telecentric optical system, characterized in that the incident light beam is divided into a plurality of parts and distributed uniformly on the other end face.
(2)前記ランダム・ファイバー束(20)の他方の端
面(20b)から射出された照明光束は、テレセントリ
ック光学系中の対物レンズ(8)の瞳中心を通して主光
線が該対物レンズ光軸に平行に物体を照射するように配
置されていることを特徴とする特許請求の範囲第1項記
載のテレセントリック光学系用照明装置。
(2) The illumination light beam emitted from the other end surface (20b) of the random fiber bundle (20) passes through the pupil center of the objective lens (8) in the telecentric optical system, and the principal ray is parallel to the optical axis of the objective lens. 2. The illumination device for a telecentric optical system according to claim 1, wherein the illumination device is arranged so as to illuminate an object.
JP15663385A 1985-07-16 1985-07-16 Telecentric optical system lighting device Pending JPS6217705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15663385A JPS6217705A (en) 1985-07-16 1985-07-16 Telecentric optical system lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15663385A JPS6217705A (en) 1985-07-16 1985-07-16 Telecentric optical system lighting device

Publications (1)

Publication Number Publication Date
JPS6217705A true JPS6217705A (en) 1987-01-26

Family

ID=15631942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15663385A Pending JPS6217705A (en) 1985-07-16 1985-07-16 Telecentric optical system lighting device

Country Status (1)

Country Link
JP (1) JPS6217705A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339991A2 (en) * 1988-04-28 1989-11-02 Mitsubishi Rayon Co., Ltd. Improved light source system with device to provide uniform light
JPH03102341U (en) * 1990-02-08 1991-10-24
JPH0532699A (en) * 1991-07-25 1993-02-09 Oriental Yeast Co Ltd Molecular weight marker
US5228109A (en) * 1990-08-24 1993-07-13 Matsushita Electric Industrial Co., Ltd. Light beam heating apparatus and method utilizing a fiber optic cable with random fiber array
JPH08304287A (en) * 1995-05-12 1996-11-22 Bayer Corp Diffused-light reflectivity sensor for optical fiber
US5661837A (en) * 1994-06-29 1997-08-26 Nikon Corporation Illumination optical apparatus and scanning exposure apparatus using the same
JP2003021787A (en) * 2001-07-06 2003-01-24 Nikon Corp Observation device
EP1497679A1 (en) * 2002-04-23 2005-01-19 Corning Incorporated Telescopic collimator and method of manufacture
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339991A2 (en) * 1988-04-28 1989-11-02 Mitsubishi Rayon Co., Ltd. Improved light source system with device to provide uniform light
JPH01277206A (en) * 1988-04-28 1989-11-07 Mitsubishi Rayon Co Ltd Light receiving body for optical fiber type light guide and light source optical system including this body
US4997259A (en) * 1988-04-28 1991-03-05 Mitsubishi Rayon Co., Ltd. Light source system with uniforming device for optical fiber type lightguide
JPH03102341U (en) * 1990-02-08 1991-10-24
US5228109A (en) * 1990-08-24 1993-07-13 Matsushita Electric Industrial Co., Ltd. Light beam heating apparatus and method utilizing a fiber optic cable with random fiber array
JPH0532699A (en) * 1991-07-25 1993-02-09 Oriental Yeast Co Ltd Molecular weight marker
US5661837A (en) * 1994-06-29 1997-08-26 Nikon Corporation Illumination optical apparatus and scanning exposure apparatus using the same
JPH08304287A (en) * 1995-05-12 1996-11-22 Bayer Corp Diffused-light reflectivity sensor for optical fiber
JP2003021787A (en) * 2001-07-06 2003-01-24 Nikon Corp Observation device
EP1497679A1 (en) * 2002-04-23 2005-01-19 Corning Incorporated Telescopic collimator and method of manufacture
EP1497679A4 (en) * 2002-04-23 2005-05-18 Corning Inc Telescopic collimator and method of manufacture
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JPS6217705A (en) Telecentric optical system lighting device
US4294538A (en) Image forming optical system
US4402596A (en) Projection type exposure device
US6563577B2 (en) Defect testing apparatus and defect testing method
JP3278277B2 (en) Projection exposure apparatus and device manufacturing method using the same
US5103342A (en) Apochromatic lens system
JP3303595B2 (en) Illumination device and observation device using the same
US3984186A (en) Projection masking system
JP3994209B2 (en) Optical system inspection apparatus and inspection method, and alignment apparatus and projection exposure apparatus provided with the inspection apparatus
JP2633028B2 (en) Observation method and observation device
JP2518171B2 (en) Lighting fiber bundle inspection device
JP3445047B2 (en) Illumination device and observation device using the same
JP3997761B2 (en) Illumination optical device and inspection device provided with the same
TWI373602B (en) Measuring device and adjustment method thereof
JPH11260709A (en) Aligner and mask used for the aligner
JP3584277B2 (en) Illumination optical system, alignment optical system, and projection exposure apparatus
JPH08288205A (en) Illumination optical system and projection aligner provided with the illumination optical system
JP4639808B2 (en) Measuring apparatus and adjustment method thereof
JP4591658B2 (en) Imaging device inspection illumination device, imaging device inspection device, imaging device inspection method, and imaging device manufacturing method
JPH0783845A (en) Inspection device
JP2003035511A (en) Position detector and aligner equipped with it
JPS61230114A (en) Optical device for alignment
JPS60205522A (en) Collimator objective lens
JP3211246B2 (en) Projection exposure apparatus and element manufacturing method
JP3584299B2 (en) Alignment device