JPS62172777A - Variable wavelength laser light source - Google Patents

Variable wavelength laser light source

Info

Publication number
JPS62172777A
JPS62172777A JP61015087A JP1508786A JPS62172777A JP S62172777 A JPS62172777 A JP S62172777A JP 61015087 A JP61015087 A JP 61015087A JP 1508786 A JP1508786 A JP 1508786A JP S62172777 A JPS62172777 A JP S62172777A
Authority
JP
Japan
Prior art keywords
light
acousto
mirror
doppler shift
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015087A
Other languages
Japanese (ja)
Other versions
JPH0476517B2 (en
Inventor
Hideto Iwaoka
秀人 岩岡
Akira Ote
明 大手
Shuichi Murayama
秀一 村山
Koji Akiyama
浩二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61015087A priority Critical patent/JPS62172777A/en
Publication of JPS62172777A publication Critical patent/JPS62172777A/en
Publication of JPH0476517B2 publication Critical patent/JPH0476517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To perform a variable wavelength laser light source having narrow oscillating spectral width with good responsiveness and high ageing change resistance by diffracting a light plural times in acoustic-optical means and cancelling the influence due to a Doppler shift occurring due to diffraction. CONSTITUTION:A light emitted from a nonreflecting coating 11 of a semiconductor laser LD1 becomes a parallel light by a lens LS1, and is reflected on a mirror M1. The reflected light from the mirror M1 is returned through an optical path to the original position, and is again incident to the laser LD1. The light emitted from a nonreflecting coating 12 becomes parallel light by a lens LS2, and is incident to a first acoustic-optical element UM1. In this case, it is diffracted while receiving a Doppler shift by an ultrasonic wave 21. The light emitted from the element UM1 is again diffracted by an acoustic optical element UM2. Here, it is affected by a Doppler shift by ultrasonic wave 22, the light emitted from the element UM2 is reflected on a mirror M2, returned in the original optical path, and is again incident to the laser LD1. Thus, since the Doppler shift due to the diffraction is cancelled, the resonance is stable, and the spectral beam width can be narrowed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光の発振波長を変えることができる可
変波長レーザ光源の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvement of a variable wavelength laser light source that can change the oscillation wavelength of laser light.

(従来の技術) 従来の可変波長レーザ光源としては次のようなものがあ
る。
(Prior Art) Conventional tunable wavelength laser light sources include the following.

イ1回折格子を回転させるもの(第4図)光増幅部LD
の出力光は集光レンズLSを介して回折格子DGに入射
し、1次回折光41が光増幅部LDに戻る。42はO次
回折光である。回折格子DGを回転すると光増幅部LD
へ戻る1次回折光の波長が変化するので、発振波長を制
御することができる。
A1 What rotates the diffraction grating (Figure 4) Optical amplification unit LD
The output light enters the diffraction grating DG via the condenser lens LS, and the first-order diffracted light 41 returns to the optical amplification section LD. 42 is O-th order diffracted light. When the diffraction grating DG is rotated, the optical amplification section LD
Since the wavelength of the first-order diffracted light that returns to changes, the oscillation wavelength can be controlled.

口、音響光学素子によるもの(第5図)イのように回折
格子を回転する代りに、fl、 IJQI光学素子UM
で回折格子DGへの入射β」を変化さけて発振波長を制
σOする。
(Fig. 5) Instead of rotating the diffraction grating as in A, fl, IJQI optical element UM is used.
The oscillation wavelength is controlled σO by avoiding a change in the incidence β on the diffraction grating DG.

(発明が解決しようとりる問題点) しかしながら、上記のような構成の可変波長レーザ光源
には次のような問題点がある。
(Problems to be Solved by the Invention) However, the variable wavelength laser light source configured as described above has the following problems.

イは回折格子を機械的に動かすので、重粘1度化が困f
f1ilで、応答が悪く、経時変化に弱い。
Since the diffraction grating is mechanically moved, it is difficult to make the viscosity become heavy.
f1il, has poor response and is sensitive to changes over time.

口は光増幅部に戻ってくる光の波長がドツプラシフトに
よりわずかにずれるため、安定な発振が1qられす、発
振スペクトル幅が広くなってしまう。
Since the wavelength of the light returning to the optical amplification section is slightly shifted due to Doppler shift, stable oscillation is delayed by 1q, and the oscillation spectrum width becomes wider.

本発明はこのような問題点を解決するためになされたも
ので、応答が良好で、経時変化に強く、発振スペクトル
幅の狭い可変波長レーザ光源を実現することを目的とす
る。
The present invention has been made to solve these problems, and aims to realize a tunable wavelength laser light source that has good response, is resistant to changes over time, and has a narrow oscillation spectrum width.

(問題点を解決するための手段) 本発明に係る可変波長レーザ光源はレーザ共振器内に光
増幅部の出力光に関連する光が入射する音響光学手段と
この音響光学手段の出射光を入射して前記盲管光学手段
に戻づ光学手段とを備え、音響光学手段において光の回
折を複数回行い回折で生じるドツプラシフトによる影響
を相殺するように(を成したことを特長とする。
(Means for Solving the Problems) A tunable wavelength laser light source according to the present invention includes an acousto-optic means into which light related to the output light of the optical amplification section enters into a laser resonator, and an acousto-optic means in which light output from the acousto-optic means is input. and an optical means that returns to the blind tube optical means, and diffracts light a plurality of times in the acousto-optical means so as to cancel out the influence of Doppler shift caused by the diffraction.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

M1図は本発明に係る可変波長レーザ光源の一実施例を
承り構成ブロック図である。L D 1は光増幅部を構
成する半導体レーザ、11.12はこの半導体レーク°
LD1の両端にjpけられた無反射コート部、LSIは
この無反射コート部11がら出射する光を平1テ光とす
るレンズ、MlはこのレンズLSIを通過した光を反m
するミラー、1s2は無反射コート部12から出射する
光を平行光とするレンズ、UMIはこのレンズLS2を
出射する光が入射する第1の音響光学素子、UM2はこ
の音響光学素子UM1がら出tA′rfる光が入射する
第2の音響光学素子、M2はこの音響光学素子UM2か
ら出射した光を反射し前記ミラーM1との間でレーザ共
振器内 RlはIFJ記g響光学素子UM1.UM2を周波数F
で励振する発振器である。音響光学索子UM1゜UM2
は音響光学手段を構成し、ミラーM2は光学手段を構成
する。
FIG. M1 is a configuration block diagram of an embodiment of a variable wavelength laser light source according to the present invention. L D 1 is a semiconductor laser constituting the optical amplification section, 11.12 is this semiconductor laser °
The non-reflective coated portions provided on both ends of the LD1, the LSI are lenses that convert the light emitted from the non-reflective coated portions 11 into 100 nm light, and the Ml converts the light that has passed through this lens LSI into reflective light.
1s2 is a lens that converts the light emitted from the anti-reflection coating section 12 into parallel light, UMI is a first acousto-optic element into which the light emitted from this lens LS2 enters, and UM2 is an output tA from this acousto-optic element UM1. The second acousto-optic element M2, into which the acousto-optic light is incident, reflects the light emitted from the acousto-optic element UM2, and between the mirror M1 and the mirror M1, the laser resonator R1 is connected to the acousto-optic element UM1. UM2 to frequency F
It is an oscillator that is excited by Acousto-optic cable UM1゜UM2
constitutes an acousto-optic means, and the mirror M2 constitutes an optical means.

上記のような構成の装置の動作を次に詳しく説明する。The operation of the apparatus configured as described above will be described in detail below.

第2図は第1図装置の動作を説明するための動作説明図
である。半導体レーザL D 1の無反射コート部11
から出射した光はレンズLSIで平行光となり、ミラー
M1で反射される。ミラーM1からの反射光は光路を元
に戻って再び半導体レーIf L D 1に入射する。
FIG. 2 is an operation explanatory diagram for explaining the operation of the apparatus shown in FIG. Anti-reflection coating portion 11 of semiconductor laser LD 1
The light emitted from the lens LSI becomes parallel light and is reflected by the mirror M1. The reflected light from the mirror M1 returns along the optical path and enters the semiconductor ray If L D 1 again.

無反射コート部12から出射した周波数f0の光はレン
ズLS2で平1テ尤とされ、第1の@響光学素子(JM
lに入射する。この際回折条件から、超音波21により
生じる回折格子23への入射角θII+回折後の出射角
θ01.光の波長λ0および超音波の波長△0の間には
次式のような関係がある(第2図)・sinθL、+s
inθo1−λ0/Δ0・・・(1) す’j IFIら特定の入射角θL1および出射角θo
1を満足づるJ、うな光路を通る光の波長λ0ば超音波
の波長へ〇が変われば変化する。出射光は超音波による
ドツプラシフ1−を受け、この場合は+1次回折光(超
音波の方向と回折される方向が同じ)であるので、その
周波数はfo+Fとなる。音響光学素子UM1からの出
射光は音′iIJ光学水子UM2で再び回折する。前記
同様、超?1波22により生じる回折格子2+への入射
角θ、21回折後の出側角θ021光の波長λo、1ノ
よび超音波の波長へ〇の間には次式のような関係がある
The light with the frequency f0 emitted from the anti-reflection coated part 12 is converted into a flattened light by the lens LS2, and then passed through the first @acoustic optical element (JM
incident on l. At this time, from the diffraction conditions, the incident angle θII to the diffraction grating 23 generated by the ultrasonic wave 21 + the output angle θ01 after diffraction. There is a relationship between the wavelength λ0 of light and the wavelength Δ0 of ultrasonic waves as shown in the following equation (Figure 2)・sinθL, +s
inθo1−λ0/Δ0...(1) S'j IFI et al. Specific incident angle θL1 and exit angle θo
J that satisfies 1, the wavelength of the light passing through the optical path λ0 changes to the wavelength of the ultrasonic wave if 〇 changes. The emitted light is subjected to a Doppler shift 1- by the ultrasonic wave, and in this case, it is +1st order diffracted light (the direction of the ultrasonic wave is the same as the diffracted direction), so its frequency becomes fo+F. The light emitted from the acousto-optic element UM1 is diffracted again by the sonic optical water element UM2. Same as above, super? The following relationship exists between the incident angle θ to the diffraction grating 2+ caused by the first wave 22, the exit angle θ021 after the 21st diffraction, the wavelength λo of the light, 1 and the wavelength of the ultrasonic wave.

sinθ12+sinθ02−λ0/△0・・・(2) ただしく2)式において音響光学索子UM1のドツプラ
シフトによるλ0の変化は小さいので無視している。こ
こでは超音波の進行波22と回折光の関係が音響光学素
子LIM1における場合と逆で、−1次回折光となるの
で、ドツプラシフト吊は−Fとなり、音響光学素子UM
2の出射光の周波数はfo+F−F=f’oとなる。音
響光学索子UM2の出射光はミラーM2で反射した後も
との光路を逆11シて、再び半導体レーザLD1に入)
1する。
sin θ12+sin θ02−λ0/Δ0 (2) However, in equation 2), the change in λ0 due to the Doppler shift of the acousto-optic cable UM1 is ignored because it is small. Here, the relationship between the ultrasonic traveling wave 22 and the diffracted light is opposite to that in the acousto-optic element LIM1, and it becomes -1st-order diffracted light, so the Doppler shift angle becomes -F, and the acousto-optic element UM
The frequency of the second emitted light is fo+F−F=f'o. The emitted light from the acousto-optic probe UM2 is reflected by the mirror M2, then reverses its original optical path and enters the semiconductor laser LD1 again)
Do 1.

逆行する際に、ドツプラシフトでtJM2の出射光の周
波数はfo  Fとなり、LJMlの出01尤の周波数
はf o  F 十F = f 6ともとの周波数f 
oとなって半導体レー#fLD1に戻るので、共振状態
が持続する。なお回折効率を高めるためにブラッグ入射
条件を満足させ、超音波の波長へ〇のとぎ入射角θ直1
.出tJ4角θOI+入射角θ、2おJ、び出射角θo
2の間に次の関係が成立つようにしている。
When going backwards, the frequency of the output light of tJM2 becomes fo F due to the Doppler shift, and the frequency of the output light of LJMl becomes fo F 1 F = f 6 and the original frequency f
o and returns to the semiconductor laser #fLD1, so the resonance state continues. In addition, in order to increase the diffraction efficiency, the Bragg incidence condition is satisfied, and the incident angle θ is adjusted to the ultrasonic wavelength.
.. Output tJ4 angle θOI + incident angle θ, 2OJ, and output angle θo
The following relationship is established between the two.

OL+ =θOI=θi2−θ02 この様な構成で超音波の波長△。を変えれば、θLI+
 θO++ θ、2.θo2を満足して共振する光の波
長λ0を次式のように掃引ぐきる。
OL+ = θOI = θi2 - θ02 With this configuration, the wavelength of the ultrasonic wave is △. If you change θLI+
θO++ θ, 2. The wavelength λ0 of the light that resonates while satisfying θo2 is swept as shown in the following equation.

sinθ7.±sinθo1=(λ0+Δλ)/(八〇
+Δへ) 上記のような構成の可変波長レーザ光源の出力光のスペ
クトル線幅はシャロー・タウンズの式から 2 「 =  π hvV Cnsp/Pcとなる。た
だし r  c =c  (β L  −1n  R)  /
  2  π n  l−hニブランク定数 シ:発j辰波長 Pc:発振パワー nsp:自然発光のキャリア密度 C:光速 β:共賑器内の損失係数 L:共振器長 R:ミラーの反IA率 n:屈折率 したがって半導体レーザ単体のL=0.3mm程度に比
べ、上記の構成ではLを100mm以上にとれるので、
発振スペクトル線幅を容易に小さくすることができる、
sinθ7. ±sinθo1=(λ0+Δλ)/(to 80+Δ) From the Shallow-Towns equation, the spectral linewidth of the output light of the tunable wavelength laser light source configured as above becomes 2 " = π hvV Cnsp/Pc. However, r c = c (β L −1n R) /
2 π n l-h blank constant C: Laser wavelength Pc: Oscillation power nsp: Carrier density of spontaneous emission C: Speed of light β: Loss coefficient L in the resonator: Resonator length R: Anti-IA rate n of the mirror :Refractive index Therefore, compared to the L of a single semiconductor laser, which is approximately 0.3 mm, the above configuration allows L to be greater than 100 mm.
The oscillation spectrum linewidth can be easily reduced.
.

また、回折によるドツプラシフトが相殺されているので
、共振が安定でスペクトル線幅も狭くできる。
Furthermore, since the Doppler shift due to diffraction is canceled out, resonance is stable and the spectral linewidth can be narrowed.

また音響光学効果を用いているのでM!電気的な#1t
llが可能となり、応答が速く、経時変化も少ない。
Also, since it uses an acousto-optic effect, M! electrical #1t
ll, the response is fast, and there is little change over time.

なお上記の実施例では音響光学手段として音響光学素子
を2つ用いているが、これに限らず任意の偶数個の音響
光学素子を用いることができる。
In the above embodiment, two acousto-optic elements are used as the acousto-optic means, but the present invention is not limited to this, and any even number of acousto-optic elements can be used.

また上記の実施例では+1次回折光と一1次回折光によ
るドツプラシフトを相殺しているが、これに限らず符号
の逆な任意の次数の回折光を利用できる。
Further, in the above embodiment, the Doppler shift caused by the +1st-order diffracted light and the 11st-order diffracted light is canceled out, but the present invention is not limited to this, and diffracted light of any order with opposite signs can be used.

また、ミラーM2の代りに回折格子を用いてもよい。Further, a diffraction grating may be used instead of the mirror M2.

第3図は本発明の第2の実施例を示すための構成ブロッ
ク図である。第1図と同一の部分には同じ記号を付して
説明を省略する。R1,、1は無反射コート部11から
出射する光を平行光とするロッドレンズ、M3はこのロ
ッドレンズRLIの一端に設けられ前記平行光を反射す
るミラーコーティング部、R(−2は無反射コート部1
2から出射する光を平行光とするロッドレンズ、(J 
M 3はこのロッドレンズRL2を山川する光が入射す
るラマン・ナス型音響光学素子、RL3はこの音響光学
素子U M 3からの+1次回折光を入射するロッドレ
ンズ、RL4は同じく一1次回折光を入射する[1ツト
レンズ、FBlは前記ロッドレンズRL3と1114を
接続し前記ミラーM3との間でレーザ共振器を構成する
光)7・イバである。音響光学素子UM3は音響光学手
段を構成し、ロッドレンズRL3.RL4おJ、び光フ
ァイバ「I31は光学手段を構成する。
FIG. 3 is a block diagram showing a second embodiment of the present invention. The same parts as in FIG. 1 are given the same symbols and their explanations will be omitted. R1,, 1 is a rod lens that converts the light emitted from the non-reflection coated part 11 into parallel light, M3 is a mirror coating part provided at one end of this rod lens RLI and reflects the parallel light, R(-2 is a non-reflection coat part 1
A rod lens (J
M3 is a Raman-Nath type acousto-optic element into which the light passing through the rod lens RL2 is incident, RL3 is a rod lens into which the +1st-order diffracted light from this acousto-optic element U M3 is incident, and RL4 is the 11st-order diffracted light. Incoming light is incident on the 1st lens (FB1 is the light that connects the rod lenses RL3 and 1114 and forms a laser resonator with the mirror M3). The acousto-optic element UM3 constitutes an acousto-optic means, and the rod lens RL3. RL4 and the optical fiber I31 constitute optical means.

上1.Cのような構成の装置の動作を次に説明する。Top 1. The operation of the device configured as shown in C will now be described.

半導体レーザ1−Dlの無反射コート部11から出射し
た光はレンズRL1で平行光となり、ミラーコーディン
グ部M3で反射される。ミラーコーティング部M3から
の反射光は光路を元に戻って再び半導体レーザL D 
1に入射する。無反射コート部12から出射した周波数
f、の光はレンズRL2で平行光とされ、音響光学素子
UM3に入rAffる。ラマン・ナス型音響光学素子で
は入射光方向を中心に両側に高次の回折が同時に起こる
。周波数を十Fだけドツプラシフトされた+1次回折光
はロッドレンズR1−3に入射して光ファイバFB1を
伝搬し、ロッドレンズRL4から再び音響光学索子LJ
M3に入a・1シて周波数を−Fドツプラシフトされて
もとの周波数fo″r″光増幅部LD1に戻る。同様に
周波数を−Fだ番ノドップラシフトされた一1次回折光
はロッドレンズRL4に入用して光ファイバFB1を伝
搬し、ロッドレンズRi−3から再び音響光学索子UM
3に入射して周波数を十Fドツプラシフトされてもとの
周波数1゛oに戻る。以上の結果ドツプラシフトの影響
が相殺され、周波数fのの杖振状態が安定に持続するこ
とになる。第1図の場合と同様、超音波周波数Fを変化
することにより共振周波数f。を変化さVることできる
The light emitted from the non-reflection coating part 11 of the semiconductor laser 1-Dl becomes parallel light by the lens RL1, and is reflected by the mirror coding part M3. The reflected light from the mirror coating part M3 returns to the original optical path and enters the semiconductor laser LD again.
1. Light with a frequency f emitted from the anti-reflection coating portion 12 is converted into parallel light by the lens RL2, and enters the acousto-optic element UM3 rAff. In a Raman Nass type acousto-optic element, high-order diffraction occurs simultaneously on both sides of the incident light direction. The +1st-order diffracted light whose frequency has been Doppler-shifted by 10F enters the rod lens R1-3, propagates through the optical fiber FB1, and returns from the rod lens RL4 to the acousto-optic cable LJ.
After entering M3, the frequency is shifted by -F Doppler and returns to the original frequency fo"r" optical amplification section LD1. Similarly, the first-order diffracted light whose frequency has been Doppler-shifted by -F enters the rod lens RL4, propagates through the optical fiber FB1, and returns from the rod lens Ri-3 to the acousto-optic cable UM.
3, the frequency is Doppler shifted by 10F and returns to the original frequency of 1゛o. As a result of the above, the influence of the Doppler shift is canceled out, and the oscillating state of the frequency f continues stably. As in the case of FIG. 1, the resonant frequency f can be adjusted by changing the ultrasonic frequency F. can be changed.

このような構成の可変波長レーナ光源は第1の実施例と
同様の特長を備えている。
The variable wavelength laser light source having such a configuration has the same features as the first embodiment.

なお上記の実施例ではラマン・ナス型音費光学素子にお
いて生じる+1次回折先と一1次回折光によるドツプラ
シフトを相殺しているが、これに限らず符号の逆な任意
の次数の回折光を利用してもよい。
In the above embodiment, the Doppler shift caused by the +1st-order diffracted light and the 11th-order diffracted light that occurs in the Raman-Nath type optical element is canceled out, but this is not limited to this, and diffracted light of any order with the opposite sign can be used. You may.

また上記の実施例において光増幅部LD1の左側端面に
ミラーコーチインクしてもよく、この場合にはロッドレ
ンズRL 1 J5よびミラーM3を不要にできる。
Further, in the above embodiment, a mirror coach ink may be applied to the left end surface of the optical amplification section LD1, and in this case, the rod lens RL 1 J5 and the mirror M3 can be made unnecessary.

また光学手段として、ロッドレンズとファイバの代りに
ミラーを組合せて構成してもよい。
Further, the optical means may be constructed by combining a mirror instead of a rod lens and a fiber.

また上記の各実施例は個別素子を用いて構成しているが
、光導波路や表面弾性波を利用した、先導波路中の光の
回折を用いれば、容易にモノリシック構成とすることが
できる。
Further, although each of the above embodiments is constructed using individual elements, a monolithic construction can be easily achieved by using diffraction of light in a guiding waveguide using an optical waveguide or a surface acoustic wave.

(発明の効果) 以上jホベたにうに本発明によれば、応答が良好で、経
時変化に強く、発振スペクトル幅の狭い可変波長レーザ
光源を簡単な構成で実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a tunable wavelength laser light source that has good response, is resistant to changes over time, and has a narrow oscillation spectrum width with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成ブロック図、第2
図は第1図装置の動作を説明するための動作説明図、第
3図は本発明の第2の実施例を示す構成ブロック図、第
4図、第5図は従来の可変波長レーザ光源を示ずための
原yJ!説明図である。 LDl・・・光増幅部、UMl、UM2.UM3・・・
音響光学手段、M2.RL3.RL4.FBI・・・光
学手段。
FIG. 1 is a configuration block diagram showing one embodiment of the present invention, and FIG.
Figure 1 is an operation explanatory diagram for explaining the operation of the device, Figure 3 is a block diagram showing a second embodiment of the present invention, and Figures 4 and 5 are diagrams showing a conventional tunable wavelength laser light source. Hara yJ for showing! It is an explanatory diagram. LDl... optical amplification section, UMl, UM2. UM3...
Acousto-optic means, M2. RL3. RL4. FBI...optical means.

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ共振器内に光増幅部の出力光に関連する光
が入射する音響光学手段とこの音響光学手段の出射光を
入射して前記音響光学手段に戻す光学手段とを備え、音
響光学手段において光の回折を複数回行い回折で生じる
ドップラシフトによる影響を相殺するように構成したこ
とを特長とする可変波長レーザ光源。
(1) An acousto-optic means into which light related to the output light of the optical amplification section enters into a laser resonator, and an acousto-optic means into which light emitted from the acousto-optic means enters and returns it to the acousto-optic means; A variable wavelength laser light source characterized in that the means is configured to diffract light multiple times to cancel out the influence of Doppler shift caused by the diffraction.
(2)音響光学手段を複数の音響光学素子で構成し、光
学手段をミラーで構成した特許請求の範囲第1項記載の
可変波長レーザ光源。
(2) The tunable wavelength laser light source according to claim 1, wherein the acousto-optic means is constituted by a plurality of acousto-optic elements, and the optical means is constituted by a mirror.
(3)音響光学手段で発生する互いに逆符号の回折光同
士を光学手段で接続した特許請求の範囲第1項記載の可
変波長レーザ光源。
(3) A tunable wavelength laser light source according to claim 1, wherein diffracted lights of opposite signs generated by an acousto-optic means are connected by an optical means.
JP61015087A 1986-01-27 1986-01-27 Variable wavelength laser light source Granted JPS62172777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015087A JPS62172777A (en) 1986-01-27 1986-01-27 Variable wavelength laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015087A JPS62172777A (en) 1986-01-27 1986-01-27 Variable wavelength laser light source

Publications (2)

Publication Number Publication Date
JPS62172777A true JPS62172777A (en) 1987-07-29
JPH0476517B2 JPH0476517B2 (en) 1992-12-03

Family

ID=11879058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015087A Granted JPS62172777A (en) 1986-01-27 1986-01-27 Variable wavelength laser light source

Country Status (1)

Country Link
JP (1) JPS62172777A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469259A2 (en) * 1990-08-01 1992-02-05 Hewlett-Packard Company Optical oscillator sweeper
US5263037A (en) * 1990-08-01 1993-11-16 Hewlett-Packard Company Optical oscillator sweeper
JPH1082858A (en) * 1996-07-15 1998-03-31 Hiromasa Ito Optical range finder
CN102570273A (en) * 2010-12-31 2012-07-11 上海微电子装备有限公司 Double-frequency laser device
CN103022881A (en) * 2012-12-20 2013-04-03 中国科学技术大学 Device and method for generating triple-frequency laser
CN107005019A (en) * 2014-09-18 2017-08-01 费哈激光技术有限责任公司 Tune Q CO with acousto-optic modulator2Laser materials processing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654458B2 (en) * 1995-10-31 2005-06-02 アークレイ株式会社 Light source device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191481A (en) * 1982-04-21 1983-11-08 シエブロン・リサ−チ・コンパニ− Electromagnetic radiation frequency deviation cavity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191481A (en) * 1982-04-21 1983-11-08 シエブロン・リサ−チ・コンパニ− Electromagnetic radiation frequency deviation cavity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469259A2 (en) * 1990-08-01 1992-02-05 Hewlett-Packard Company Optical oscillator sweeper
US5263037A (en) * 1990-08-01 1993-11-16 Hewlett-Packard Company Optical oscillator sweeper
JPH1082858A (en) * 1996-07-15 1998-03-31 Hiromasa Ito Optical range finder
CN102570273A (en) * 2010-12-31 2012-07-11 上海微电子装备有限公司 Double-frequency laser device
CN103022881A (en) * 2012-12-20 2013-04-03 中国科学技术大学 Device and method for generating triple-frequency laser
CN107005019A (en) * 2014-09-18 2017-08-01 费哈激光技术有限责任公司 Tune Q CO with acousto-optic modulator2Laser materials processing system

Also Published As

Publication number Publication date
JPH0476517B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US3905676A (en) Coupling device for optical waveguide
US7426223B2 (en) Coherent light source and optical device
JPH0669582A (en) Short wavelength light source
US5295019A (en) Method and apparatus for color separation with an optical slab and roof prism
EP0725307A2 (en) Wavelength conversion device employing non-diffracting beam
CN110989182A (en) Beam combination light source device
US4085335A (en) Optical parametric device
US5448398A (en) Diffraction grating unit and second-harmonic generator employing the same
CN205141361U (en) Exocoel tuned laser
JPS62172777A (en) Variable wavelength laser light source
JPH04107536A (en) Second harmonic generation device
CN105119142B (en) A kind of External cavity tunable lasers
JPH0381318B2 (en)
JPH07152055A (en) Short wavelength light source and variable wavelength laser beam source
JP2000261086A (en) Wavelength variable light source
US5173915A (en) Semiconductor laser device
JP4766775B2 (en) Terahertz light generation device and terahertz light generation method
US5235456A (en) Tunable pulsed single longitudinal mode optical parametric oscillator
Saikan Automatically tunable second-harmonic generation of dye lasers
JP2900703B2 (en) Narrow band laser device
JP2002287193A (en) Wavelength conversion element, wavelength conversion device and laser device
JP3633045B2 (en) Wavelength filter
JP2002076509A (en) Laser light source
JP7385158B2 (en) Tunable laser diode
JPH11326971A (en) Sum frequency generating device