JPS62164019A - Optical directional coupling element - Google Patents

Optical directional coupling element

Info

Publication number
JPS62164019A
JPS62164019A JP729186A JP729186A JPS62164019A JP S62164019 A JPS62164019 A JP S62164019A JP 729186 A JP729186 A JP 729186A JP 729186 A JP729186 A JP 729186A JP S62164019 A JPS62164019 A JP S62164019A
Authority
JP
Japan
Prior art keywords
semiconductor
optical waveguide
semiconductor optical
quantum well
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP729186A
Other languages
Japanese (ja)
Inventor
Akira Ajisawa
味澤 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP729186A priority Critical patent/JPS62164019A/en
Publication of JPS62164019A publication Critical patent/JPS62164019A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3133Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve an extinction ratio and to make size smaller and electrification lower by disposing the 2nd semiconductor optical waveguide including a waveguide layer consisting of a multiple quantum well layer to the 1st semiconductor optical waveguide in such a manner that light can be coupled between both. CONSTITUTION:This element is constituted by contg. the 1st semiconductor optical waveguide 7a for incidence of the light to be modulated, the 2nd semiconductor optical waveguide 7b contg. the waveguide layer consisting of the multiple quantum well layer 3 alternately laminated with the multiple quantum well layers consisting of the 1st semiconductor and the barrier layers consisting of the 2nd semiconductor having the forbidden band width larger than the forbidden band width of the 1st semiconductor, and electrodes to impress voltages respectively independently to the 1st and 2nd semiconductor optical waveguides 7a, 7b. A sharp exciton peak by exciton absorption is observed near the absorption end even at an ordinary temp. in the absorption spectra of the multiple quantum well layer 3 and there are Kramers-Kronig relations between the absorption and refractive index. The extinction ratio is thereby improved and the low voltage operation is made possible with the smaller size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光方向性結合素子に関し、特に光通信。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD The present invention relates to an optical directional coupling device, and particularly to optical communication.

光情報処理の分野において、光伝送路における光信号の
開閉を行なう光スイ・ソチに関する。
In the field of optical information processing, this field relates to optical switches that open and close optical signals in optical transmission lines.

〔−従来の技術〕[-Conventional technology]

半導体光スィッチは、超高速切換可能、低電圧動作、小
型で集積化が容易といった可能性をらち、将来の光通信
システムに用いられる光デバイスとして重要である。そ
の中で2本の光導波路間の結合状態を電界によって制御
する方向性結合器型光スイッチがある。ここではその説
明を行なう。
Semiconductor optical switches are important as optical devices for use in future optical communication systems because of their potential for ultra-high-speed switching, low-voltage operation, small size, and easy integration. Among these, there is a directional coupler type optical switch that controls the coupling state between two optical waveguides using an electric field. This will be explained here.

十分近接して平行に配置された2つの光導波路に光を通
すと、光導波路間の光学的結合のため、光エネルギーが
光導波路間でやりとりされる。光導波路が電気光学効果
を有する物質で作られている場合、先導波路を電界中に
置くと光導波路の屈折率がその電界によって変化し、結
合状態ら変化するので電界により先導波路間の光のエネ
ルギーのやりとりを制御することができる。一本の先導
波路に注目すると、その出力光は電界の変動によって変
化する。従ってこの効果を用いることにより、電界を制
御手段とした光変調器若しくはスイ・・lチを構成する
ことができる。
When light is passed through two optical waveguides that are arranged sufficiently close to each other in parallel, optical energy is exchanged between the optical waveguides due to optical coupling between the optical waveguides. When an optical waveguide is made of a material that has an electro-optic effect, when a leading waveguide is placed in an electric field, the refractive index of the optical waveguide changes due to the electric field, and the coupling state changes, so the electric field causes light to flow between the leading waveguides. It is possible to control the exchange of energy. When focusing on one leading waveguide, its output light changes due to fluctuations in the electric field. Therefore, by using this effect, it is possible to construct an optical modulator or a switch using an electric field as a control means.

その一つにInGaAsP光方向性結合素子(電子通信
学会技術報告 0QE84−51巻、1984年、第1
01頁°に記載)というのが報告されている。
One of them is the InGaAsP optical directional coupling device (IEICE technical report, Vol. 0QE84-51, 1984, No. 1).
(described on page 01°) has been reported.

第3L/1に従来の先方向性績き素子の一例の斜硯図を
示す、素子製産プロセスは以下のとおりである。 n’
 −1nP  (ドーパントはSn、不純物濃度は1.
2\′10 ”cm−’、禁制帯幅は波長表示で^6−
11.927.z m )からなる基板11上にn ’
 −1nGaAsP(TPドープ、1.2  X 10
 ”cm−’、λ、=1,2 μm)からなるn゛−ク
ラッド層12、n−1nGaAsP(ノン・ドープo、
95y、 10 ”〜I X 1017cm−3、λ□
=]、2μrn)からなる導波層13、P ’ −rn
GaAsP(Zn  ドープ1.+1 X 1018c
m−’、λ+v = 1.I4μm )からなる1〕”
−クラッド層14を順次液相エピタキシアル成長により
形成した。それぞれ゛n+−クラット層12は1.5μ
m、n−導波層13は1.3μm、p+−クラッド層1
4は1.4μrnの厚さとした。n側電極15はAu−
Ge−Niを用い、又ρ側電極16はAu−Zn/^U
を用いてリフトオフ法によりストライプ電極を形成した
。また、素子長は7 in 。
An oblique view of an example of a conventional directional firing element is shown in 3L/1, and the manufacturing process of the element is as follows. n'
-1nP (Dopant is Sn, impurity concentration is 1.
2\'10 ``cm-', forbidden band width is expressed in wavelength ^6-
11.927. n' on the substrate 11 consisting of
-1nGaAsP (TP doped, 1.2 x 10
n-cladding layer 12 consisting of n-1nGaAsP (non-doped o,
95y, 10”~I x 1017cm-3, λ□
=], 2 μrn), P′ −rn
GaAsP (Zn doped 1.+1 x 1018c
m-', λ+v = 1. 1]”
- The cladding layer 14 was sequentially formed by liquid phase epitaxial growth. Each n+-crat layer 12 has a thickness of 1.5μ
m, n-waveguide layer 13 is 1.3 μm, p+-cladding layer 1
4 had a thickness of 1.4 μrn. The n-side electrode 15 is made of Au-
Ge-Ni is used, and the ρ side electrode 16 is made of Au-Zn/^U.
Striped electrodes were formed using the lift-off method. Also, the element length is 7 inches.

2本の先導波路間隔は3μm、光導波路幅は3μmであ
る。
The interval between the two leading waveguides is 3 μm, and the width of the optical waveguide is 3 μm.

この素子の一本の光導波路に注目した場合のスイ・ソチ
ング特性について述べる。ここでは電気光学効果による
スイッチング現象に加えて、フランツ・ケルディシュ効
果による光吸収の効果ら併用されている。ここではスイ
ッチインク電圧5■の時消光比8 、6 d Bが得ら
れている。
We will discuss the SWITCHing characteristics when focusing on a single optical waveguide of this device. Here, in addition to the switching phenomenon due to the electro-optic effect, the effect of light absorption due to the Franz Keldysch effect is also used. Here, an extinction ratio of 8.6 dB was obtained when the switch ink voltage was 5.

一般に、この様な位相の同期した2本の光導波路間の光
のエネルギーのやりとりを行なう光方向性結合素子にお
いて、一本の光導波路に入射した光のエネルギーが完全
に他の光導波路に結合する長さ、完全結合長LOは、そ
の光導波路の偶モード、奇モードの伝搬定数をそれぞれ
β。、β。とするとLo・π、・′(βや一β(、)か
ら求めることができる7素子長が完全結合長に等しい場
合、100%の変調に必要な位相不整合を起こさせるた
めの一方の光導波路の伝搬定数変化Δβから求まる屈折
率変化δnとLOの関係はその時の波数を1((lとす
るとL o =π、”(ko ・Sn)で表わされる。
Generally, in optical directional coupling devices that exchange optical energy between two phase-synchronized optical waveguides, the energy of the light incident on one optical waveguide is completely coupled to the other optical waveguide. The length and complete coupling length LO are the propagation constants of the even mode and odd mode of the optical waveguide, respectively. ,β. Then, if the 7-element length that can be found from Lo・π,・′(β and -β(, ) is equal to the complete coupling length, one optical guide should be used to create the phase mismatch required for 100% modulation. The relationship between the refractive index change δn found from the wavepath propagation constant change Δβ and LO is expressed as LO = π, where the wave number at that time is 1 ((l), ``(ko · Sn).

、従来の光方向性結合素子の制御手段である電気光学効
果による屈折率変化δnは、電界強度をE、電気光学定
数をr、E=[)の時の屈折率をn (+とすると、S
n = rlo 3r E/’ 2で表わされる。また
電界強度Eは印加電圧■に比例するとすると完全結合長
L (+と■は、L(+:’ご■=一定という関係にな
る。ここで光導波層となる厚さ1μrnの空乏層に5V
印加した場合分考えると、E=5×in’ V、/’C
l11.r = 1.4 X 1O−10(+a、、”
V、n、、==31 〜3.5 、Sn = 1.3 
〜1.5:<川0−4として、L0〜51mとなる。従
来例に示したものにおいてら素′f艮71mでスイッチ
ング電圧5v(゛上界強度E=4×lθ’ V / c
m )となっているが、これはスイッチング状態が不完
全であるため100%変調のスイ・ンチング電圧はもっ
と高いと思われる。高い消光比を得るためにフランツ・
ケルディシュ効果を併用しているが、それでも消光比と
してはIl、6dBであり、十分な値は得られていない
, the refractive index change δn due to the electro-optic effect, which is a control means of a conventional optical directional coupling element, is as follows: Let E be the electric field strength, r be the electro-optic constant, and let n (+) be the refractive index when E=[). S
It is expressed as n = rlo 3r E/'2. Also, assuming that the electric field strength E is proportional to the applied voltage ■, the perfect coupling length L (+ and 5V
Considering the case where the voltage is applied, E=5×in' V, /'C
l11. r = 1.4 X 1O-10(+a,,”
V, n, ==31 ~ 3.5, Sn = 1.3
~1.5:<River 0-4, L0~51m. In the conventional example, the switching voltage is 5 V (upper field strength E = 4 x lθ' V / c
m), but this is because the switching state is incomplete, so the switching voltage for 100% modulation is thought to be higher. To obtain a high extinction ratio, Franz
Although the Keldysh effect is also used, the extinction ratio is still 6 dB, which is not a sufficient value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の光方向性結合素子は電気光学効果を用い
ているので、実用的な電界強度による屈折率変化δnが
高々10−4のオーダであるために、素子長としては数
龍程度に小さくするのが限界であり、低電圧化(< 5
 V )と小型化(<lnm)を同時に満足するのは不
可能であるという問題がある、 本発明の目的は、小型で低電圧動作か可能な光方向性績
き素子を提供することにある。
Since the conventional optical directional coupling device described above uses the electro-optic effect, the refractive index change δn due to practical electric field strength is on the order of 10-4 at most, so the device length is as small as several dragons. There is a limit to lower voltage (< 5
There is a problem in that it is impossible to simultaneously satisfy V) and miniaturization (<lnm).An object of the present invention is to provide an optical directional element that is compact and capable of low voltage operation. .

C問題点を解決するための手段1 本発明の光方向性結合素子は、被変調光入射用の第1の
半導体光導波路と、第1の半導体からなる量子井戸層と
前記第1の半導体より大きな禁制帯幅の第2の半導体か
らなる障壁層とが交互に積層された多重量子井戸層から
なる導波層を含む°第2の半導体光導波路と、前記第1
.第2の半導体先導波路にそれぞれ独立に電圧を印加す
る電極とを含む構成を有している。
Means for Solving Problem C 1 The optical directional coupling device of the present invention includes a first semiconductor optical waveguide for inputting modulated light, a quantum well layer made of a first semiconductor, and a quantum well layer made of the first semiconductor. a second semiconductor optical waveguide including a waveguide layer made of a multi-quantum well layer in which barrier layers made of a second semiconductor having a large forbidden width are alternately laminated;
.. It has a configuration including electrodes that independently apply voltages to the second semiconductor guided waveguides.

[作用〕 多重量子井戸層の吸収スペクトルには常温においても吸
収端の近傍で励起子吸収による鋭いエキシトンピークが
見られる、また吸収と屈折率の間にはクラーマース・ク
ローニヒの関係があり、エキシI・ンピークの存在によ
って屈折率スペクトルはエキシトンピーク波長付近で大
きな変化を示す。
[Function] In the absorption spectrum of a multi-quantum well layer, a sharp exciton peak due to exciton absorption can be seen near the absorption edge even at room temperature, and there is a Kramers-Kronig relationship between absorption and refractive index, and exciton・Due to the presence of the exciton peak, the refractive index spectrum shows a large change near the exciton peak wavelength.

第2図(a)、(b)はそれぞれ多重量子井戸層の吸収
スペクトルと屈折率スペクトルの様子を示す特性図であ
る。
FIGS. 2(a) and 2(b) are characteristic diagrams showing the absorption spectrum and refractive index spectrum of the multiple quantum well layer, respectively.

次に、多重量子井戸層に電界を作用させた場合の吸収と
屈折率について述べる。
Next, we will discuss absorption and refractive index when an electric field is applied to the multiple quantum well layer.

多重量子井戸層に電界を作用させるとエキシトンピーク
は長波長側l\移動し、その半値幅は広がる。そのエキ
シトンビークの長波長側l\の移動に伴って屈折率スペ
ク1〜ルも長波長側へ移動する。
When an electric field is applied to the multiple quantum well layer, the exciton peak shifts to the longer wavelength side and its half-width widens. With the movement of the long wavelength side l\ of the exciton beak, the refractive index spectrum 1~ also moves to the long wavelength side.

第2図(c>、(d)はそれぞれ量子井戸層に電界を作
用させたときの吸収スペクトルと屈折率スペクトルの様
子を示す特性図である。
FIGS. 2(c) and 2(d) are characteristic diagrams showing the absorption spectrum and refractive index spectrum when an electric field is applied to the quantum well layer, respectively.

電界がない場合のエキシトンピーク波長の長波長側の波
長λ3において、電界を作用させることにより吸収係数
、及び屈折率に相当の増加が見られる。
At a wavelength λ3 on the longer wavelength side of the exciton peak wavelength in the absence of an electric field, the absorption coefficient and refractive index are significantly increased by applying an electric field.

従って、第1の半導体光導波路に入射する被変調光の波
長が、量子井戸層のエキシトンピーク波長よりやや大き
い(第2図のλ3)ときは、第2の半導体光導波路に電
圧を印加することにより、導波路間の結合状態を有効に
制御できる。
Therefore, when the wavelength of the modulated light incident on the first semiconductor optical waveguide is slightly larger than the exciton peak wavelength of the quantum well layer (λ3 in FIG. 2), a voltage cannot be applied to the second semiconductor optical waveguide. Accordingly, the coupling state between the waveguides can be effectively controlled.

すなわち、第2の半導体光導波路に電圧が印加されてい
ない場合は、第1の半導体光導波路に入射した光は第1
と第2の半導体光導波路を位相同期させることにより第
2の半導体光導波路より出射される。第2の半導体光導
波路に電界が印加されるとそれによって前述したように
屈折率が増加し、第1と第2の半導体光導波路の位相同
期条件がくずれ第2の半導体光導波路へは光は結合しな
くなる。
That is, when no voltage is applied to the second semiconductor optical waveguide, the light incident on the first semiconductor optical waveguide is
By phase-synchronizing the two semiconductor optical waveguides, the light is emitted from the second semiconductor optical waveguide. When an electric field is applied to the second semiconductor optical waveguide, the refractive index increases as described above, and the phase synchronization condition between the first and second semiconductor optical waveguides is broken, so that light does not reach the second semiconductor optical waveguide. It will no longer be combined.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の斜視図である。FIG. 1 is a perspective view of one embodiment of the present invention.

この実施例は、被変調光入射用の第1の半導体光導波路
7aと、厚さ85人のn−GaAsからなる量子井戸層
と厚さ95人のn−−、へe o−5aao、+;^S
からなる障壁層とが交互に45層宛積層されたn −−
GaAs、−’ Ae g、5Gao−;^S多重量子
井戸層3からなる導波層を含む第2の半導体光導波路7
bと、第1.第2の半導体光導波路7a、7bにそれぞ
れ独立に電圧を印加するn側電極6a及びp I!Il
電極6bとを含む構成を有している。
This embodiment includes a first semiconductor optical waveguide 7a for inputting modulated light, a quantum well layer made of n-GaAs with a thickness of 85 mm, and n--, e o-5aao, + with a thickness of 95 mm. ;^S
barrier layers consisting of 45 layers are alternately stacked n --
A second semiconductor optical waveguide 7 including a waveguide layer made of GaAs, -' Ae g, 5Gao-;^S multiple quantum well layer 3
b, and 1st. The n-side electrode 6a and pI! apply voltage independently to the second semiconductor optical waveguides 7a and 7b, respectively. Il
It has a configuration including an electrode 6b.

n−GaAs、/’ :へff。、5Gao、5^s多
重量子井戸層3からなる導波層の一方の側には、厚さ1
〜2μmのn ”   Aff (1,3Gan、7^
Sクラツド層2がへテロ接合を形成して設けられており
、他方の側には厚さ0.2μmのn−−^ffo、3G
a(1−7^Sクラツド層4がへテロ接合を形成して設
けられている。更にn−一入e o、)(iag、7A
sクラ・・lド層・1の上には、厚さ1〜2μm、幅8
 jj、 m、長さ300 )t rnのメサスl−ラ
イブ状のp−−^e、)、3Gan、7^Sクラ・・I
ド層5a。
n-GaAs, /': ff. , 5Gao, 5^s multi-quantum well layer 3 has a thickness of 1 on one side.
~2μm n”Aff (1,3Gan, 7^
An S cladding layer 2 is provided to form a heterojunction, and on the other side there are 0.2 μm thick n--^ffo, 3G
a(1-7^S cladding layer 4 is provided to form a heterojunction.Furthermore, n-1 e o,)(iag, 7A
On top of the layer 1, there is a layer with a thickness of 1 to 2 μm and a width of 8
jj, m, length 300) trn's mesus l-live-like p--^e,), 3Gan, 7^S Kura...I
De layer 5a.

5I′)が、10μInの間隔をしって配置され、p゛
−^e11.3GaO,7^Sクラッド層5a、5bの
表面にはそれぞれp側型i6a、6bが設けられている
。なお、1はn”−1iaAs基板、8はn側電極であ
る。
5I') are arranged at intervals of 10 .mu.In, and p-side type i6a, 6b are provided on the surfaces of the p-^e11.3GaO,7^S cladding layers 5a, 5b, respectively. Note that 1 is an n''-1iaAs substrate and 8 is an n-side electrode.

垂直方向にはn −GaAs、/ 、’+e rl、、
、1Gan、5^s 、g重駁子井戸層3の等測的屈折
率とその両側にあるタララド層との屈折率の差、水平方
向にはメサストライア状のp゛−〜(! n 、 % 
G a o 、7^Sクラツドら&。
In the vertical direction, n -GaAs, / , '+erl, ,
, 1Gan, 5^s, the difference in the refractive index between the isometric refractive index of the g-weighted well layer 3 and the Talarado layer on both sides, in the horizontal direction there is a mesa stria-like p゛-~(!n, %
G ao , 7^S Kratsud et al.

5bを設けたことによる等測的な屈折率差によって近接
した2本の位相整合したリブ型の3次元導波路が構成さ
れているわけである。
Two closely spaced, phase-matched rib-type three-dimensional waveguides are constructed due to the isometric refractive index difference caused by the provision of the waveguide 5b.

次に、この実施例の製造方法の1例について説明する、 n”=GaAs基板1の上に分子線エピタキシアル 。Next, one example of the manufacturing method of this example will be explained. n” = Molecular beam epitaxial on GaAs substrate 1.

法(MBE法)により、n+−^(! 1) 、 3 
G a r+ 、 7^Sクラッド層2を1〜2μmの
厚さに形成する。次に、同じ<、 M B E法により
厚さ85人のn−GaAs量子井戸層と厚さ95人のn
 −ke O,’1tia0.5^S障壁層をそれぞれ
交互に45層宛成長してn−−Ga^s/、へ!!g、
、;Ga、1.5^S′5重量子井戸層3を形成する。
By the method (MBE method), n+-^(! 1), 3
G a r+ , 7^S cladding layer 2 is formed to a thickness of 1 to 2 μm. Next, an 85-thick n-GaAs quantum well layer and a 95-thick n-GaAs quantum well layer were formed using the same <, MBE method.
-ke O,'1tia0.5^S barrier layers are grown alternately to 45 layers each to n--Ga^s/,! ! g,
, ;Ga, 1.5^S'5 quantum well layer 3 is formed.

次に、MBE法により、厚さ0.2μmのn−−Ae 
+1−3 G a +) 、 7^Sクラッド層4及び
厚さ1〜2μmのp+−へ42’ o、3Gao、7A
sクラッド層を形成する。次に、^u −Z n Hと
7M択的に形成してストライブ状のp側電極りa、6b
を設け、このp側電極をマスクにしてp”−、he。、
3Gan、フAsクラ・ソド層を選択的エツチングによ
り除去するが、このとき、n−一 、へ!。、3Ga(
1,7^Sクラッド層も11.1 μmの深さに除去す
る。最後に^u−Ge膜を裏側につけてn側電極8を設
ける。
Next, by the MBE method, a 0.2 μm thick n--Ae
+1-3 Ga +), 7^S cladding layer 4 and 1-2 μm thick p + - 42'o, 3Gao, 7A
Form a cladding layer. Next, stripe-shaped p-side electrodes a, 6b are formed selectively with ワu-ZnH and 7M.
is provided, and using this p-side electrode as a mask, p''-, he.
3Gan, the As-clad layer is removed by selective etching, but at this time, n-1, to! . , 3Ga(
The 1,7^S cladding layer is also removed to a depth of 11.1 μm. Finally, a u-Ge film is attached to the back side and an n-side electrode 8 is provided.

なお、MBE法に限らず有機金属化合物を用いたC V
 D法やその池の気相成長法を用いてもよい。
Note that not only the MBE method but also C V using organometallic compounds
The D method or the pond vapor phase growth method may be used.

次に、この実施例の動作について説明する。まず、多重
量子井戸層を含んでなる第1の半導体光導波路7aにエ
キシトンピーク波長の長波長側近傍の波長を6つ被変調
光9を入射させる。素子長を完全結合長の整数倍に合わ
せておくと、p側電極6bとn側電極8の間に逆バイア
ス電圧を加えない時、即ちn −−GaAs/ke n
、i+Gau、qAs多重量子井戸層を含んでなる第2
の光導波路7bに電界の影響がない場合、第1の半導体
光導波路7aへ入射する被変調光りの光エネルギーは第
2の半導体光導波路7bに完全に結合し第2の半導体光
導波路7bからの変調光10として取出せる。第2の半
導体光導波路7bに逆バイアス電圧が印加された場合は
そのn −−GaAs/ Ae O,5(iafl、5
As多重量子井戸層のエキシトンピークの移動に伴って
平均的な屈折率が大きくなり、2本の第1.第2の半導
体光導波路7a、7bの位相同期条件がくずれ、第1の
半導体光導波路7aに入射された光のエネルギーは第2
の半導体光導波路7bへは結合しなくなる。
Next, the operation of this embodiment will be explained. First, modulated light 9 having six wavelengths near the long wavelength side of the exciton peak wavelength is made incident on the first semiconductor optical waveguide 7a including a multi-quantum well layer. If the element length is set to an integral multiple of the complete bond length, when no reverse bias voltage is applied between the p-side electrode 6b and the n-side electrode 8, that is, n --GaAs/ken
, i+Gau, a second layer comprising a qAs multiple quantum well layer.
When the optical waveguide 7b is not affected by an electric field, the optical energy of the modulated light incident on the first semiconductor optical waveguide 7a is completely coupled to the second semiconductor optical waveguide 7b, and the optical energy from the second semiconductor optical waveguide 7b is It can be extracted as modulated light 10. When a reverse bias voltage is applied to the second semiconductor optical waveguide 7b, its n −-GaAs/Ae O,5(iafl,5
As the exciton peak of the As multi-quantum well layer moves, the average refractive index increases, and the two first... The phase synchronization condition of the second semiconductor optical waveguides 7a and 7b collapses, and the energy of the light incident on the first semiconductor optical waveguide 7a is transferred to the second semiconductor optical waveguide 7a.
is no longer coupled to the semiconductor optical waveguide 7b.

また、第2の半導体光導波路7bにおける吸収係数の値
はエキシトンピークの移動に伴ない非常に大きくなるの
で、第1の半導体光導波路7aからのクロストークは第
2の半導体光導波路7bにおいて十分に消光され、被変
調光9と変調光10の間では電圧印加の前後で非常に大
きな消光比が得られることになる。この様に多重量子井
戸層の電界による大きな屈折率変化と大きな吸収係数変
化を併用することにより低電圧で大きな消光比の光グー
1〜スイツチ作用を有する光方向性結合素子を得ること
ができる。
Further, since the value of the absorption coefficient in the second semiconductor optical waveguide 7b becomes extremely large as the exciton peak moves, the crosstalk from the first semiconductor optical waveguide 7a is sufficiently suppressed in the second semiconductor optical waveguide 7b. The light is extinguished, and a very large extinction ratio is obtained between the modulated light 9 and the modulated light 10 before and after voltage application. In this way, by combining a large change in refractive index and a large change in absorption coefficient due to the electric field of the multi-quantum well layer, it is possible to obtain an optical directional coupling element having an optical switch function and a large extinction ratio at a low voltage.

更に、このスイッチ作用について第2図を用いて光源の
波長、屈折率変化、吸収係数変化、及び素子長、動作電
圧について詳しく説明する。
Further, this switching action will be explained in detail with reference to FIG. 2 regarding the wavelength of the light source, changes in refractive index, changes in absorption coefficient, element length, and operating voltage.

第2図(a>の吸収スペクトルにおいて、入射光の波長
をλ3=l]、84μm(石ω= 1.47eV)とす
る9前述したn −−GaAs、Ae o、5Gao、
5As−多重量子井戸層では基底順位のエレクトロンと
ヘビーホール間の遷移波長をλ1、エキシトンピーク波
長を^2とするとそれらは入射光の波長λ3の短波長近
傍にあるそれぞれλl〜0 、112μm、λ2〜0゜
83μmとなる。波長λ3においてはこの多重量子井戸
層はλ1なる吸収を受けるがλ1の吸収はエキシトンピ
ークによる吸収に比べれば十分に小さい。またこの組成
においては波長λ3に対して多重量子井戸層の平均的な
屈折率はn1=3.48であり、またその上下のクラッ
ド層の屈折率は3.4である。従って電界が印加されて
いない場合はこの光方向性結合素子の素子長を完全結合
長にしておけば第1の半導体光導波路7aに入射した被
変調光9は光導波路内でα1なる小さい吸収を受けるだ
けで第2の半導体光導波路7bに結合し変調光10とし
て取出される。
In the absorption spectrum of Fig. 2 (a>), the wavelength of the incident light is λ3 = l], 84 μm (stone ω = 1.47 eV)9.
In the 5As-multi-quantum well layer, if the transition wavelength between ground order electrons and heavy holes is λ1 and the exciton peak wavelength is ^2, they are λl~0, 112 μm, and λ2, respectively, which are near the short wavelength of the incident light wavelength λ3. ~0°83 μm. At wavelength λ3, this multi-quantum well layer experiences absorption λ1, but the absorption at λ1 is sufficiently small compared to the absorption due to the exciton peak. Further, in this composition, the average refractive index of the multi-quantum well layer with respect to wavelength λ3 is n1=3.48, and the refractive index of the cladding layers above and below it is 3.4. Therefore, when no electric field is applied, if the element length of this optical directional coupling element is set to the perfect coupling length, the modulated light 9 incident on the first semiconductor optical waveguide 7a will undergo a small absorption α1 within the optical waveguide. Just by receiving the light, it is coupled to the second semiconductor optical waveguide 7b and extracted as modulated light 10.

次に、多重量子井戸層を含む第2の半導体光導波路7b
に電圧が印加された場合について述べる。
Next, a second semiconductor optical waveguide 7b including a multiple quantum well layer
We will discuss the case where a voltage is applied to.

その時の吸収スペクトルを第2図(c)に示す、この場
合、逆バイアス電圧として5V程度とすると電界強度は
〜5 X 104V 、−”cmとなり、その時エキシ
トンピークはλ2〜11 、83μmから^4〜111
15μm’\約20nm、エネルギーに換算して30・
〜40meV低エネルギー側へ移動する。従って被変調
光9の波長λ、 〜0.84μmに対する吸収係数α2
はα、に比べて非常に大きくなりU2〜】0・+cm−
1程度となる。電圧印加によってエキシ1〜ンピークを
きめた吸収スペタトル全体が長波長側l\移動するのに
伴って第2図(dンに示した様に屈折率スベクl〜ルも
長波長側へ移動する。従って、波長λ、=+lJ4μm
での多重量子井戸層を含む第2の半導体光導波路7bの
平均的な屈折率は電圧が印加されてない場きのn、=’
J43であったのに対して、電圧が印加された場合はn
2=L55と大きくなる。この時の電界による屈折率変
化はδn−11,07であり、この変化から位相不整合
が完全に起る素子長即ち完全結合長を求めると10μm
以下となる。実際に実用的な素子長を考えL o ” 
300μmとした場合に必要な屈折率変化はδn=]、
4 x 10−3となり、この程度の変化ならば5V以
下の印加電圧で十分可能である。従って300 ノtm
の素子長で5V以下の電圧において第1の半導体光導波
路7aに入射された被変調光は近接して配置された第2
の半導体光導波路7bに結合しなくなる。
The absorption spectrum at that time is shown in Figure 2(c). In this case, if the reverse bias voltage is about 5V, the electric field strength will be ~5 x 104V, -"cm, and the exciton peak will be λ2~11, from 83μm to ^4 ~111
15μm'\approximately 20nm, converted to energy 30.
It moves to the lower energy side by ~40meV. Therefore, the absorption coefficient α2 for the wavelength λ of the modulated light 9, ~0.84 μm
is very large compared to α, U2~】0・+cm−
It will be about 1. As the entire absorption spectrum with its excin peak moves to the longer wavelength side by applying a voltage, the refractive index spectrum also moves to the longer wavelength side, as shown in FIG. 2 (d). Therefore, the wavelength λ, = +lJ4μm
The average refractive index of the second semiconductor optical waveguide 7b including the multiple quantum well layer is n,=' when no voltage is applied.
J43, whereas when voltage is applied n
2=L55. The refractive index change due to the electric field at this time is δn-11,07, and from this change, the element length at which phase mismatching occurs completely, that is, the complete bond length, is 10 μm.
The following is true. Considering the practical element length, L o ”
The necessary refractive index change when the thickness is 300 μm is δn=],
4 x 10-3, and a change of this magnitude can be sufficiently achieved with an applied voltage of 5V or less. Therefore 300 knots
The modulated light incident on the first semiconductor optical waveguide 7a at a voltage of 5V or less with an element length of
is no longer coupled to the semiconductor optical waveguide 7b.

更に結合が不完全な場きに生ずるクロス1−りにおいて
ら第2の半導体先導波路71つにおいてはその吸収係数
が非常に大きいので変調光10としてはほとんど取出す
ことはできず高い消光比を得ることができる。
Furthermore, since the absorption coefficient of the second semiconductor guiding waveguide 71 is so large that almost no modulated light 10 can be extracted from the cross-over that occurs when the coupling is incomplete, a high extinction ratio is obtained. be able to.

以上、リブ型の半導体光導波路の例をあげて説明したが
、リブ型に限らず、基板に渦を掘りその上に光導波層、
クラ・ソド層等をエピタキシアル成長させた埋込み型で
もよい。又、2つの半導体先導波路が位相同期するよう
に製作した場合を示したが、それぞれの半導体光導波路
に適当な電界を作用させて位相向!tJi染件を満足さ
れることができればそれでもよい。更に、被変調光を入
射させる半導体光導波路は特に多重量子井戸層にする・
必要はない。更に、又半導体材料に関しても、GaAs
z^12 GaAs系に限らず、Inl’、/′川用G
aAsP 、 1nGaAs。
The above explanation has been given using the example of a rib-type semiconductor optical waveguide, but it is not limited to rib-type semiconductor optical waveguides.
A buried type in which a Kurasod layer or the like is epitaxially grown may also be used. Also, although we have shown a case in which two semiconductor optical waveguides are fabricated so that they are phase synchronized, by applying an appropriate electric field to each semiconductor optical waveguide, the phase alignment can be achieved! As long as you can satisfy the tJi requirements, that's fine. Furthermore, the semiconductor optical waveguide into which the modulated light enters is made of a multi-quantum well layer.
There's no need. Furthermore, regarding semiconductor materials, GaAs
zz^12 Not limited to GaAs system, Inl', /'G
aAsP, 1nGaAs.

InAj’^Sなどの材料を用いてもよい。A material such as InAj'^S may also be used.

r発明の効果〕 以上説明したように本発明は、被変調光を入射させる第
1の半導体先導波路に、多重量子井戸層からなる導波層
を含む第2の半導体導波路を両者の間で光結合可能なよ
うに配置することにより、光方向性結合素子の消光比の
改善、小型化及び低電化ができるという効果がある。
[Effects of the Invention] As explained above, the present invention provides a first semiconductor waveguide into which modulated light is incident, and a second semiconductor waveguide including a waveguide layer made of a multiple quantum well layer between the two. By arranging them so that they can be optically coupled, the optical directional coupling element has the effect of improving its extinction ratio, making it smaller, and using less electricity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図(εL)、
(+))はそれぞれ多重量子井戸層の吸収スペクI〜ル
及び屈折率スペクトルの様子を示す特性図、第2図(c
)、(d>はそれぞれ量子井戸層に電界を作用させたと
きの吸収スペクトル及び屈折率スベクI・ルの様子を示
す特性図、第3図は従来の先方向性結合素子の一例の斜
視図である。 1− n ”  IEaAs基板、2 、、、 n ’
 −^e1.HaGal+、7Asクラヴド層、3−n
 −−−1iaAs −′  へe n 、 q(ia
、1 、 +;^S−2重巽子井戸層、4− n −A
e 、+、d:an、7クラーyド層、53− 、 5
1〕−1) ’   AI! n、tGan、7^Sク
ラ−’/ド層、6a、+)l)・・・n側電極、7a・
・・第1の半導体先導波路、7b・・・第2の半導体先
導波路、8・・・n側電極、11−=n’−1nP基板
、12−・・n4−InGaAsPクラッド層、15・
 n側電極、16−n側電極。 茅10 Sθ、、fp:pl−飛a、36p、7ΔSクフツ)屑
争2図 入、入、λ1:ttuλ2人)
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 (εL),
(+)) is a characteristic diagram showing the absorption spectrum I~ and refractive index spectrum of the multi-quantum well layer, respectively, and Fig. 2 (c
), (d> are characteristic diagrams showing the absorption spectrum and refractive index deviation when an electric field is applied to the quantum well layer, respectively. Figure 3 is a perspective view of an example of a conventional directional coupling element. 1-n'' IEaAs substrate, 2,...n'
-^e1. HaGal+, 7As crusted layer, 3-n
---1iaAs −′ to en, q(ia
, 1, +; ^S-2 double Yoshiko well layer, 4-n-A
e, +, d: an, 7 clad layer, 53-, 5
1]-1) 'AI! n, tGan, 7^S Cla-'/de layer, 6a, +)l)... n-side electrode, 7a.
. . . 1st semiconductor guided wave path, 7b . . . 2nd semiconductor guided wave path, 8 .
n-side electrode, 16-n side electrode. Kaya 10 Sθ,, fp: pl-fly a, 36p, 7ΔS Kufutsu) 2 pictures included, λ1: ttuλ2 people)

Claims (1)

【特許請求の範囲】[Claims] 被変調光入射用の第1の半導体光導波路と、第1の半導
体からなる量子井戸層と前記第1の半導体より大きな禁
制帯幅の第2の半導体からなる障壁層とが交互に積層さ
れた多重量子井戸層からなる導波層を含む第2の半導体
光導波路と、前記第1、第2の半導体光導波路にそれぞ
れ独立に電圧を印加する電極とを含んでなることを特徴
とする光方向性結合素子。
A first semiconductor optical waveguide for inputting modulated light, a quantum well layer made of a first semiconductor, and a barrier layer made of a second semiconductor having a larger forbidden band width than the first semiconductor are laminated alternately. A light direction comprising: a second semiconductor optical waveguide including a waveguide layer made of a multi-quantum well layer; and electrodes that independently apply a voltage to the first and second semiconductor optical waveguides. Sexually coupled element.
JP729186A 1986-01-16 1986-01-16 Optical directional coupling element Pending JPS62164019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP729186A JPS62164019A (en) 1986-01-16 1986-01-16 Optical directional coupling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP729186A JPS62164019A (en) 1986-01-16 1986-01-16 Optical directional coupling element

Publications (1)

Publication Number Publication Date
JPS62164019A true JPS62164019A (en) 1987-07-20

Family

ID=11661928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP729186A Pending JPS62164019A (en) 1986-01-16 1986-01-16 Optical directional coupling element

Country Status (1)

Country Link
JP (1) JPS62164019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191822A (en) * 1986-02-18 1987-08-22 Nippon Telegr & Teleph Corp <Ntt> Quantum well type optical modulator and its production
JPH01134430A (en) * 1987-11-20 1989-05-26 Oki Electric Ind Co Ltd Distributed coupling type optical switch
JPH024209A (en) * 1988-06-21 1990-01-09 Matsushita Electric Ind Co Ltd Waveguide and photodetector
JPH03119311A (en) * 1989-10-03 1991-05-21 Nec Corp Optical modulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537349A (en) * 1976-07-09 1978-01-23 Mitsubishi Electric Corp Semiconductor device
JPS59181317A (en) * 1983-03-31 1984-10-15 Sumitomo Electric Ind Ltd Optical modulating element
JPS60252329A (en) * 1984-05-29 1985-12-13 Hitachi Ltd Optical switch
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
JPS6285227A (en) * 1985-10-09 1987-04-18 Tokyo Inst Of Technol Optical circuit function element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537349A (en) * 1976-07-09 1978-01-23 Mitsubishi Electric Corp Semiconductor device
JPS59181317A (en) * 1983-03-31 1984-10-15 Sumitomo Electric Ind Ltd Optical modulating element
JPS60252329A (en) * 1984-05-29 1985-12-13 Hitachi Ltd Optical switch
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
JPS6285227A (en) * 1985-10-09 1987-04-18 Tokyo Inst Of Technol Optical circuit function element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191822A (en) * 1986-02-18 1987-08-22 Nippon Telegr & Teleph Corp <Ntt> Quantum well type optical modulator and its production
JPH01134430A (en) * 1987-11-20 1989-05-26 Oki Electric Ind Co Ltd Distributed coupling type optical switch
JPH024209A (en) * 1988-06-21 1990-01-09 Matsushita Electric Ind Co Ltd Waveguide and photodetector
JPH03119311A (en) * 1989-10-03 1991-05-21 Nec Corp Optical modulator

Similar Documents

Publication Publication Date Title
JP2754957B2 (en) Semiconductor light control element and method of manufacturing the same
US4778235A (en) Optical switch
JP2814906B2 (en) Optical semiconductor device and method of manufacturing the same
JPH07302952A (en) Manufacture of semiconductor device
JPH08146365A (en) Semiconductor mach-zehnder modulation device and its production
US5105240A (en) Light-controlled semiconductor light coupler and modulator
JPS62164019A (en) Optical directional coupling element
US5608566A (en) Multi-directional electro-optic switch
JPH0786624B2 (en) Directional coupler type optical switch
US5490226A (en) Zero holding power digital optical switches
JP2503558B2 (en) Optical switch
JPS6247620A (en) Waveguide type optical switch
US5537497A (en) Optimized electrode geometries for digital optical switches
JP2707610B2 (en) Nonlinear semiconductor optical directional coupler
JPH025029A (en) Non-linear optical directional coupler
JPH025028A (en) Non-linear optical directional coupler
JPS6330821A (en) Optical modulator and its manufacture
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JP2901321B2 (en) Optical demultiplexer
JP2907890B2 (en) Light modulator
JPH0232322A (en) Optical switch
JPS6381305A (en) Optical integrated circuit
JPH01118817A (en) Optical modulator
JPH024231A (en) Optical switch and its manufacture
JP2677222B2 (en) Light switch