JPS62159704A - Warming up method of steam turbine - Google Patents

Warming up method of steam turbine

Info

Publication number
JPS62159704A
JPS62159704A JP130186A JP130186A JPS62159704A JP S62159704 A JPS62159704 A JP S62159704A JP 130186 A JP130186 A JP 130186A JP 130186 A JP130186 A JP 130186A JP S62159704 A JPS62159704 A JP S62159704A
Authority
JP
Japan
Prior art keywords
steam
rotor
temperature
turbine
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP130186A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Okada
岡田 宣好
Yasushi Shimotsuma
下妻 康史
Shinai Koizumi
小泉 信愛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP130186A priority Critical patent/JPS62159704A/en
Publication of JPS62159704A publication Critical patent/JPS62159704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To aim at shorten of starting time, by heating the rotor of a steam turbine by direct injection of a steam in the outside system or that in the inside system so that the time required for temperature elevation of the rotor up to a temperature not less than a specified level is shortened. CONSTITUTION:In the case of a high speed warming up operation of a steam turbine, the steam in the outside system supplied from an outside system steam source 8 such as a boiler, etc., passes through steam supply lines 9a, 9b and is supplied into the turbine from steam inlet parts 5, 6, while, the steam introduced into a seal steam header 29 after being subjected to a temperature reduction at a desuperheater 28 is supplied to the final stage portion in the steam turbine through a steam supply line 31 and a pressure control valve 33. And the steam is directly injected to a rotor 2 at the final stage from an air bleeding opening portion 7. By this, the heating of an entire rotor 2 difficult to be performed up to a temperature of not less than the brittle fracture piece transition temperature, can be carried out remarkably quicker than that in a conventional method, thus, quick starting of a steam turbine can be achieved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は蒸気タービンの暖機方法に関し、詳しくは、系
外蒸気あるいは系内蒸気を使ってロータを加熱するよう
にしたものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for warming up a steam turbine, and more specifically, to a method for heating a rotor using external steam or internal steam.

〈従来の技術〉 停止状態にある蒸気タービンを起動させて稼動させろ場
合、最初から蒸気入口より高温蒸気を送り込んで運転さ
せると、ロータが低l温脆性破壊を起こすことがあり、
危険であるのて、暖機運転を行なっている。即ち、一般
に蒸気タービンのロータの脆性破壊遷移温度は80℃程
度であるので、この温度以上にロータがあたたまるまで
暖機運転を行なうのである。又、停止状態にある蒸気タ
ービンのロータにあって(才、ロータが自重により歪ん
でいるため、この歪を矯正するため遅い回転でクーユン
グ運転を起動し同時に行なってし)ろ。
<Prior art> When starting a steam turbine that is in a stopped state and operating it, if high-temperature steam is pumped in from the steam inlet from the beginning, the rotor may suffer low-temperature brittle fracture.
Warm-up operation is being carried out because it is dangerous. That is, since the brittle fracture transition temperature of the rotor of a steam turbine is generally about 80° C., warm-up operation is performed until the rotor warms up to above this temperature. Also, when the rotor of a steam turbine is in a stopped state (the rotor is distorted due to its own weight, in order to correct this distortion, a cooling operation is started at a slow rotation speed and performed at the same time).

よって、従来では、蒸気を供給しないて々−ニング運転
(例えば、300へ600rpm)した後、蒸気を送り
込むと共に高速回転(例えば、2000〜2500rp
ml させろ高速暖機運転と行ない、ロータを脆性破壊
遷移温度以上にあたため、その後、定格運転(例えば、
3000〜36’OOr pm)に入るようにしている
Therefore, conventionally, after a gearing operation (e.g., 300 to 600 rpm) without supplying steam, steam is fed and the machine is rotated at high speed (e.g., 2,000 to 2,500 rpm).
ml Perform high-speed warm-up operation to warm the rotor above the brittle fracture transition temperature, then perform rated operation (e.g.
3000 to 36'OOr pm).

〈発明が解決しようとする問題点〉 しかしながら、蒸気の出口側は復水器につながっており
、最終段雰囲気は低温(35℃くらい)となっているの
で、最終段部におけるロータ温度を脆性破壊遷移温度以
上にあたためるには相当の時間を要していた。つまり、
通常運転に入る前の起動時間が相当に長く(5〜6時間
)なっていたのである。
<Problems to be solved by the invention> However, since the steam outlet side is connected to a condenser and the final stage atmosphere is at a low temperature (about 35°C), the rotor temperature in the final stage cannot be reduced to brittle fracture. It took a considerable amount of time to warm up above the transition temperature. In other words,
The startup time before starting normal operation was quite long (5 to 6 hours).

本発明は、上記状況にかんがみてなされたもので、最終
段部におけるロータをす早くあたためろことができるよ
うにして、蒸気ターピノの起動に要する時間を短縮する
ことを目的とする。
The present invention has been made in view of the above-mentioned situation, and an object of the present invention is to shorten the time required to start a steam turpino by making it possible to quickly warm up the rotor in the final stage.

く問題点を解決するための手段〉 上記目的を達成する本発明の構成は、蒸気タービンにお
けるロータに系外蒸気あるいは系内蒸気を直接噴射して
ロータを加熱すること乞特徴とする。
Means for Solving Problems> The configuration of the present invention that achieves the above object is characterized in that the rotor of a steam turbine is heated by directly injecting external steam or internal steam to the rotor.

く実 施 例〉 第1図には本発明の一実施例を適用する蒸気タービン及
びその蒸気供給系の概略構成を示しである。
Embodiments FIG. 1 shows a schematic configuration of a steam turbine and its steam supply system to which an embodiment of the present invention is applied.

1は当該蒸気タービンのケージングであり・2はケーシ
ング1に支持されたロータ、3はロータ2に取付けられ
た回転S翼であり、ケーシング1側に取付けられた静翼
は図示省略しである。
1 is a casing of the steam turbine, 2 is a rotor supported by the casing 1, 3 is a rotary S blade attached to the rotor 2, and the stationary blade attached to the casing 1 side is not shown.

ケーシング1には蒸気入口部4,5.6のほかに最終段
部には開口部(抽気口あるいは漏洩蒸気回収口)7が設
けられており、本実施例ては、通常運転時にはヒータに
送るための蒸気を抽気する開口部7に起動運転時にはロ
ータ2加熱のための系外蒸気あるいは系内蒸気を噴き込
むようにしているのである。
In addition to the steam inlets 4, 5.6, the casing 1 is provided with an opening (bleeding port or leaked steam recovery port) 7 at the final stage, and in this embodiment, during normal operation, steam is sent to the heater. During start-up operation, steam outside the system or steam inside the system for heating the rotor 2 is injected into the opening 7 through which steam is extracted.

8がボイラ等の系外蒸気源であり、その蒸気供給#9は
減温器10を経た後蒸気供給路9a、9bに分岐し、一
方の蒸気供給路9aは切換弁11を経て、蒸気入口側に
おけるケーシング1とロータ2とのグランドシール部1
2及び蒸気入口部5に接続されている。又、もう一方の
蒸気供給路9bは切換弁13,14及び低圧蒸気加減弁
15を経て蒸気入口部6に接続されている。尚、グラン
ドシール部12にはここに供給され、シールに供された
後の蒸気を導く蒸気供給路16,17.18が接続され
ており、蒸気供給路16は蒸気入口部6の手前側におい
て蒸気供給路9bに接続され、蒸気供給路17は蒸気出
口側におけるケーシング1とロータ2とのグランドシー
ル部19に接続され、蒸気供給路18はグランド復水器
20に接続されている。又、系内における高圧蒸気源2
1は蒸気供給$22により高温蒸気加減弁2.3を経て
蒸気入口部4に接続されている。系内における低圧蒸気
源24ば蒸気供給路25により切換弁26を経て蒸気供
給路9bにおける切換弁13.14と低圧蒸気加減弁1
5との間に接続すれている。
8 is an external steam source such as a boiler, the steam supply #9 is branched into steam supply paths 9a and 9b after passing through a desuperheater 10, and one steam supply path 9a passes through a switching valve 11 and is connected to a steam inlet. Gland seal part 1 between casing 1 and rotor 2 on the side
2 and the steam inlet section 5. The other steam supply path 9b is connected to the steam inlet section 6 via switching valves 13, 14 and a low pressure steam control valve 15. Incidentally, steam supply paths 16, 17, and 18 are connected to the gland seal section 12 to guide steam after being supplied to the seal, and the steam supply path 16 is connected to the steam supply path 16 on the near side of the steam inlet section 6. The steam supply path 17 is connected to a grand seal portion 19 between the casing 1 and the rotor 2 on the steam outlet side, and the steam supply path 18 is connected to a grand condenser 20. In addition, the high pressure steam source 2 in the system
1 is connected to the steam inlet section 4 via a high temperature steam control valve 2.3 by a steam supply $22. The low pressure steam source 24 in the system passes through the switching valve 26 via the steam supply path 25, and then the switching valve 13, 14 and the low pressure steam control valve 1 in the steam supply path 9b.
It is connected between 5 and 5.

一方、前記系外蒸気源8は切換弁27、減温器28を経
てシールスチームヘッド29に接続されており、このヘ
ッダ29からの蒸気供給路30は、前記蒸気入口側のグ
ランドシール部12から蒸気出口側のグランドシール部
19につながる蒸気供給路17に接続されている。ヘッ
ダ29からのもう一つの蒸気供給路31は、起動運転時
にロータ2を加熱するための蒸気を最終段部に供給する
ためのもので、圧力スイッチ32を備えた圧力制御弁3
3を経て抽気開口部7に接続されている。
On the other hand, the external steam source 8 is connected to a seal steam head 29 via a switching valve 27 and a desuperheater 28, and a steam supply path 30 from the header 29 is connected to the gland seal section 12 on the steam inlet side. It is connected to a steam supply path 17 that connects to a grand seal section 19 on the steam outlet side. Another steam supply path 31 from the header 29 is for supplying steam to the final stage for heating the rotor 2 during startup operation, and is connected to a pressure control valve 3 equipped with a pressure switch 32.
3 to the bleed opening 7.

圧力制御弁33は蒸気供給路31内の圧力がある値以上
になると圧力スイッチ32の作用により閉鎖される。図
中、34は切換弁、35はメイン復水器である。
The pressure control valve 33 is closed by the action of the pressure switch 32 when the pressure in the steam supply path 31 exceeds a certain value. In the figure, 34 is a switching valve, and 35 is a main condenser.

上記蒸気タービンにおいて、高速暖機運転時には、系外
蒸気が蒸気供給路9a、9bを通り且つそれぞれ圧力調
整1、温度調整されて、蒸気入口部5,6からタービン
内に供給される一方、減温されてヘッダ29に入った蒸
気が更に蒸気供給路31を経且つ圧力制御弁33により
圧力制御されて、油気開口部7より蒸気タービン内の最
終段部に供給され、最終段部におけるロータ2に直接噴
き付けられる。加熱しにくいロータ2の最終段部に直接
蒸気を噴射して加熱するのでローフ2全体の脆性破壊遷
移温度以上への加熱は従来に比べ格段の早さでなされろ
ことになる。
In the steam turbine described above, during high-speed warm-up operation, external steam passes through the steam supply paths 9a and 9b, and is subjected to pressure adjustment 1 and temperature adjustment, respectively, and is supplied into the turbine from the steam inlets 5 and 6. The heated steam that has entered the header 29 further passes through the steam supply path 31 and is pressure-controlled by the pressure control valve 33, and is supplied from the oil opening 7 to the final stage in the steam turbine, where it is fed to the rotor in the final stage. 2 can be sprayed directly. Since the final stage of the rotor 2, which is difficult to heat, is heated by directly injecting steam, the entire loaf 2 can be heated to the brittle fracture transition temperature or higher much more quickly than in the past.

ロータ2が規定値以上に加熱された状態では、タービン
は通常運転に移行している状態であるので、タービン内
の圧力上昇と共に、蒸気供給路31内の圧力の上昇し、
それが圧力スイッチ32で検出されて、圧力制御弁33
が閉じられ、加熱用の蒸気の供給は遮断される。勿論、
この操作はロータ2の@機終了等を検知することにより
手動で弁操作するようにしてもよい。
When the rotor 2 is heated above the specified value, the turbine is in normal operation, so as the pressure inside the turbine increases, the pressure inside the steam supply path 31 also increases.
It is detected by the pressure switch 32 and the pressure control valve 33
is closed and the supply of steam for heating is cut off. Of course,
This operation may be performed by manually operating the valve by detecting the end of the rotor 2 or the like.

タービンが運転され、系内蒸気が生じると系外蒸気は除
々に系内蒸気に切換えられ、ついには系内蒸気のみによ
る運転に移行される系外蒸気から系内蒸気への移行は、
切換弁1113.14を操作することによりなされる。
When the turbine is operated and in-system steam is generated, the out-of-system steam is gradually switched to in-system steam, and finally operation is shifted to only in-system steam.The transition from out-of-system steam to in-system steam is as follows:
This is done by operating the switching valves 1113.14.

尚、前述したように、起動運転時に蒸気入口部5,6に
供給される蒸気の温度、及び抽気開口部7に供給される
蒸気の温度はそれぞれ圧力調整されると共に温度調整さ
れ、加熱されるロータ2の軸方向において大きな温度差
が生じないように配慮される。
As described above, during startup operation, the temperature of the steam supplied to the steam inlets 5 and 6 and the temperature of the steam supplied to the bleed opening 7 are respectively pressure-adjusted, temperature-adjusted, and heated. Care is taken to prevent large temperature differences from occurring in the axial direction of the rotor 2.

蒸気実施例は、ロータ最終段部の加熱に系外蒸気を使っ
たものであるが、系内蒸気も同様にして使うことができ
る。
Although the steam embodiment uses steam outside the system to heat the final stage of the rotor, steam within the system can be used in the same way.

〈発明の効果〉 本発明に係る蒸気タービンの暖機方法によれば、系外蒸
気あるいは系内蒸気を直接ロータ最終段部に噴射してロ
ータを加熱するようにしたので、ロータの規定温度以上
への加熱昇温時間が短縮され、その結果、起動時間が短
縮され、蒸気タービンの急速起動が可能となる。
<Effects of the Invention> According to the method for warming up a steam turbine according to the present invention, external steam or internal steam is directly injected into the final stage of the rotor to heat the rotor. As a result, the startup time is shortened and the steam turbine can be started quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る蒸気タービン暖機方法の一実施例
を適用した蒸気タービン及びその蒸気供給系をスケント
ル的に表わした概略図である。 図面中、1はケーシング、2はロータ、3は回転動翼、
4,5.6は蒸気入口部、7は抽気開口部、8は系外蒸
気源、33は圧力制御弁である。
FIG. 1 is a schematic diagram illustrating a steam turbine and its steam supply system to which an embodiment of the steam turbine warm-up method according to the present invention is applied. In the drawing, 1 is a casing, 2 is a rotor, 3 is a rotary blade,
4, 5.6 are steam inlets, 7 is a bleed opening, 8 is an external steam source, and 33 is a pressure control valve.

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンにおけるロータに系外蒸気あるいは系内蒸
気を直接噴射してロータを加熱することを特徴とする蒸
気タービンの暖機方法。
A method for warming up a steam turbine, the method comprising heating the rotor by directly injecting external steam or internal steam to the rotor of the steam turbine.
JP130186A 1986-01-09 1986-01-09 Warming up method of steam turbine Pending JPS62159704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP130186A JPS62159704A (en) 1986-01-09 1986-01-09 Warming up method of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP130186A JPS62159704A (en) 1986-01-09 1986-01-09 Warming up method of steam turbine

Publications (1)

Publication Number Publication Date
JPS62159704A true JPS62159704A (en) 1987-07-15

Family

ID=11497651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP130186A Pending JPS62159704A (en) 1986-01-09 1986-01-09 Warming up method of steam turbine

Country Status (1)

Country Link
JP (1) JPS62159704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517550A (en) * 2009-02-10 2012-08-02 シーメンス アクティエンゲゼルシャフト Turbine shaft heating method
WO2017169537A1 (en) * 2016-03-31 2017-10-05 三菱日立パワーシステムズ株式会社 Dehydrogenation processing method for turbine blades
US10227898B2 (en) 2013-03-27 2019-03-12 Mitsubishi Heavy Industries Compressor Corporation Multi-valve steam valve and steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517550A (en) * 2009-02-10 2012-08-02 シーメンス アクティエンゲゼルシャフト Turbine shaft heating method
US10227898B2 (en) 2013-03-27 2019-03-12 Mitsubishi Heavy Industries Compressor Corporation Multi-valve steam valve and steam turbine
WO2017169537A1 (en) * 2016-03-31 2017-10-05 三菱日立パワーシステムズ株式会社 Dehydrogenation processing method for turbine blades
US11066715B2 (en) 2016-03-31 2021-07-20 Mitsubishi Power, Ltd. Dehydrogenation processing method for turbine blades

Similar Documents

Publication Publication Date Title
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
KR100284392B1 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant.
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
WO2015041346A1 (en) Gas turbine, gas-turbine control device, and gas turbine operation method
JP4657057B2 (en) Reheat steam turbine plant
JP2010090816A (en) Gas turbine and its starting operation method
JPS62159704A (en) Warming up method of steam turbine
JP4229579B2 (en) Combined cycle power plant and method for supplying steam for heating and cooling combined cycle power plant
JP3776564B2 (en) Combined cycle power generation system
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPH04148002A (en) Prewarming method for steam turbine
JPH06323162A (en) Steam-cooled gas turbine power plant
GB2193764A (en) Starting a steam turbine from cold
JPH1162619A (en) Steam cooling type gas turbine composite plant and its operation control method
JP2667699B2 (en) Single-shaft combined plant and start-up method thereof
JP3586539B2 (en) Combined cycle power plant
JP2003083004A (en) Gas turbine, method for operating the same, and gas turbine combined power generating plant
JPH0734810A (en) Method for starting of single-shaft type combined cycle generating equipment
JP2001342808A (en) Combined plant and starting method therefor
JP3617661B2 (en) Method for controlling shaft seal steam temperature of steam turbine
JPH08189308A (en) Single-shaft type combined cycle electric power plant
JP2004278338A (en) Steam turbine plant and prewarming method of steam turbine
JPS5912105A (en) Starting system of reheat condensing steam turbine
JPS60119304A (en) Steam turbine
JP3019678B2 (en) Bleed mixed pressure steam turbine