JPS62155696A - Remote supervisory and controlling equipment - Google Patents

Remote supervisory and controlling equipment

Info

Publication number
JPS62155696A
JPS62155696A JP60296626A JP29662685A JPS62155696A JP S62155696 A JPS62155696 A JP S62155696A JP 60296626 A JP60296626 A JP 60296626A JP 29662685 A JP29662685 A JP 29662685A JP S62155696 A JPS62155696 A JP S62155696A
Authority
JP
Japan
Prior art keywords
station
signal
transmission
master station
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60296626A
Other languages
Japanese (ja)
Other versions
JPH0632518B2 (en
Inventor
Takeo Toda
武男 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60296626A priority Critical patent/JPH0632518B2/en
Priority to KR1019860011383A priority patent/KR910000699B1/en
Priority to AU67035/86A priority patent/AU573998B2/en
Publication of JPS62155696A publication Critical patent/JPS62155696A/en
Publication of JPH0632518B2 publication Critical patent/JPH0632518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/02Arrangements for interconnection not involving centralised switching involving a common line for all parties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Small-Scale Networks (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To reduce the restriction for the distance of a transmission path and the number of branches of the transmission path by presetting the frequency of a signal transmitting from a master station to a slave station and the frequency of a signal transmitting from the slave station to the master station to different values and forming a transmission request signal based on a received signal by the master station when the master station receives the signal from the salve station. CONSTITUTION:In the case of the constitution of a pair of transmission paths as shown in the drawing, a modulating frequency is allocated to f1 (master station) and f2 (slave station) so as to discriminate whether it is the signal from the master station 10 to the slave stations 11, 12 or the signal from the salve stations 11, 21 to the master station 10. When the master station 10 detects the modulating wave f2 from the salve stations 11, 21 by a demodulator 102, it transmits the modulating wave f1 (modulating wave on which a specific signal is not mounted) to the respective slave stations 11, 21 through a modulator 101 of its own station. As a means therefore,the master station has a constitution for inputting the OR signal RSO' of the transmission request signal RSO from a transmitter T in its own station and the carrier detection signal CDO of the modulating wave f2 signal from the slave station which is detected through the demodulator 102 as the transmission request signal of the modulator 101.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は遠方監視制御装置、特に1個所の制御装置(以
下親局と云う)から複数個所の被制御所装置(以下子局
と云う)を制御する遠方監視制御装置に関するものであ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a remote monitoring and control device, in particular, to a remote monitoring and control device that controls devices at multiple locations (hereinafter referred to as slave stations) from a control device at one location (hereinafter referred to as a master station). This invention relates to a remote monitoring and control device.

〔発明の技術的背景〕[Technical background of the invention]

遠方監視制御システムにおいて、1個所の親局から複数
個所の子局を制御する方式を一般に、1:N構成制御方
式と呼んでおり、第4図がこの方式の構成列である。そ
して、この構成は配電線に設けられた柱上開閉器又は地
下開閉器を遠方監視制御する際採用されることが多い。
In a remote monitoring control system, a method for controlling a plurality of slave stations from one master station is generally called a 1:N configuration control method, and FIG. 4 shows the configuration sequence of this method. This configuration is often employed when remotely monitoring and controlling a pole switch or an underground switch installed on a power distribution line.

また、この構成の特徴は1対又は2対の伝送路が途中で
マルチドロップ方式に分岐し、この分岐した伝送路に各
子局が接続される構成を有している。即ち、親局10か
らの伝送路L0は複数の伝送路り、、L。
Further, this configuration is characterized in that one or two pairs of transmission lines are branched in the middle in a multi-drop manner, and each slave station is connected to this branched transmission line. That is, the transmission path L0 from the master station 10 is a plurality of transmission paths.

・・・Lkに分岐し、この分岐された各伝送路L1.L
、。
...Lk, and each branched transmission line L1. L
,.

Lkに、各子局11・・・11.21・・・2m、〜に
エ ・・・knが接続されている。
Each slave station 11...11.21...2m is connected to Lk, and E...kn is connected to ~.

この場合、親局10から送信される信号は、分岐された
各伝送路を介して全子局に正常な受信レベルで受信され
る必要があシ、一方、各子局からの信号も正常な受信レ
ベルで親局に受信される必要がある。
In this case, the signal transmitted from the master station 10 must be received at a normal reception level by all the slave stations via each branched transmission path, and on the other hand, the signal from each slave station must also be received at a normal reception level. It must be received by the master station at the receiving level.

この種の構成に採用される伝送方式は、一般にポーリン
グ方式である。そしてポーリング方式は親局が子局に対
して順番に「送信許可」を与え、許可を受けた唯1つの
子局がデータの送信を行い一方、親局が子局に送信した
い時は前記の子局からの送信が終了した後、送信データ
を子局へ送信する方式である。したがって伝送路上での
混信を防ぐことができる。しかし子局から親局に対して
通知したい情報が発生しても、子局に対して親局からの
呼び出しがあるまでは、親局への情報の送信ができない
欠点がある。この場合、一つの伝送路に接続される子局
の数が多ければ、それに比例して呼び出し周期が遅くな
るため、情報の応答時間も遅く彦る。
The transmission method employed in this type of configuration is generally a polling method. In the polling method, the master station gives "transmission permission" to the slave stations in turn, and the only slave station that receives permission transmits data.On the other hand, when the master station wants to transmit data to the slave stations, the master station gives "transmission permission" to the slave stations in turn. This is a method in which the transmission data is sent to the slave station after the transmission from the slave station is completed. Therefore, interference on the transmission path can be prevented. However, even if the slave station generates information that it wants to notify to the master station, there is a drawback that the information cannot be transmitted to the master station until the slave station receives a call from the master station. In this case, if the number of slave stations connected to one transmission path is large, the paging cycle becomes slow in proportion to the number of slave stations, and the response time for information also becomes slow.

これを解決する一方法としてコンテンション(Cont
ention )又はC3MA/ CD (Carri
er SenseMultl−Acesss/ Co1
1 talon Detector )方式と呼ばれる
ものがある。
One way to solve this problem is to use contention (Cont.
) or C3MA/CD (Carri
er SenseMultl-Acesss/Co1
There is a method called 1 talon detector) method.

この方式は、情報を送信したいと希望している親局を含
む各局が、伝送路に他局の信号(キャリア)がないこと
を条件として送信権を得、その結果送信を開始する方式
である。この場合、複数局が同時に送信を開始したとす
ると、受信局側では受信不良となる。したがって受信局
から送信局に対し、正しく受信したことを示す「受信可
能信号」が返送されないため、既に送信していた各局は
再度送信を行なう。この際前記各複数局は送信時間をず
らすようにしている。即ち、一番早く送信を開始した局
が送信権をとって送信を開始し、その送信が終了した後
に、残りの局が順次同じ手順で送信権を得て送信がなさ
れる。
In this method, each station that wishes to transmit information, including the master station, obtains the right to transmit on the condition that there is no other station's signal (carrier) on the transmission path, and then begins transmission. . In this case, if multiple stations start transmitting at the same time, poor reception will occur on the receiving station side. Therefore, since the receiving station does not return a "receivable signal" indicating that the data has been correctly received to the transmitting station, each station that has already transmitted transmits again. At this time, the transmission times of the plurality of stations are staggered. That is, the station that starts transmission earliest obtains the right to transmit and starts transmitting, and after that transmission is completed, the remaining stations sequentially obtain the right to transmit and transmit using the same procedure.

要するにC8MA/CD方式では、伝送路に自局以外の
局の信号が伝送中であるか否かを各局それぞれが検出で
きる必要がある。
In short, in the C8MA/CD system, each station needs to be able to detect whether or not a signal from a station other than its own station is being transmitted on the transmission path.

この検出のだめの従来方法を第5図を用いて説明する。The conventional method for this detection will be explained with reference to FIG.

なお、第5図では説明を簡単にするため、親局10に対
して2つの子局がある場合を示し、これら各子局は2つ
に分岐して接続された1対の伝送路り、、L、及びり、
にそれぞれ接続された構成とする。
In addition, in order to simplify the explanation, FIG. 5 shows a case where there are two slave stations for the master station 10, and each of these slave stations is connected to a pair of transmission paths that are branched into two, , L, Andori,
The configuration is such that they are connected to each other.

各局には送信/受信器104,114,214、変調器
101,111,211、復調器102゜112.21
2、伝送路と結合するトランス103゜113.213
を有する基本構成とし、また各局には受信側に自動ゲイ
ン制御器AGC105、115゜215を備えている。
Each station includes a transmitter/receiver 104, 114, 214, a modulator 101, 111, 211, a demodulator 102, 112, 21
2. Transformer 103゜113.213 connected to transmission line
Each station is equipped with automatic gain controllers AGC105 and 115°215 on the receiving side.

また第6図は局構成の変形例で、変調器11、復調器1
2、トランス13、送信/受信器14にキャリア検出器
16を備えたものである。
FIG. 6 shows a modified example of the station configuration, with a modulator 11, a demodulator 1
2. A transformer 13, a transmitter/receiver 14, and a carrier detector 16 are provided.

そして送信/受信器と変調器、復調器との間は送信側は
変調入力信号SD 、 SDO、SDI 、 Sn2と
送信要求信号R8、R8O、R8I 、 R82が入力
され、受信側は復調信号RD 、 RDO、RDI 、
 RD2とキャリア検出信号CD 、 CDO、CDI
 、 CD2が受渡される。
And between the transmitter/receiver and the modulator and demodulator, modulated input signals SD, SDO, SDI, Sn2 and transmission request signals R8, R8O, R8I, R82 are inputted on the transmitting side, and demodulated signals RD, R82 are inputted on the receiving side. RDO, RDI,
RD2 and carrier detection signals CD, CDO, CDI
, CD2 is delivered.

次に子局11が送信を開始する場合を説明する。Next, a case where the slave station 11 starts transmission will be described.

子局11は復調器112からのキャリア検出信号CDI
無しの条件、即ち、自局以外の他局が送信中でないとの
認識のもとに、変調器111の送信要求信号R8Iを出
力する。次に変調入力信号SDIによシ自局のキャリア
を変調し、トランス113を介して規定レベルで伝送路
L1に出力する。この時、子局11以外の親局10及び
他の子局21は、前記子局11からの伝送路の距離に応
じて減衰した信号を、トランス103,213を介して
受信し、これをAGC105、215に入力する。受信
した信号は減衰しているため、AGCによって規定レベ
ルまで増幅され、復調器102.212に入力される。
The slave station 11 receives the carrier detection signal CDI from the demodulator 112.
The transmission request signal R8I of the modulator 111 is output under the condition that there is no transmission, that is, with the recognition that no other station other than the own station is transmitting. Next, the carrier of the own station is modulated by the modulated input signal SDI, and outputted to the transmission line L1 at a specified level via the transformer 113. At this time, the master station 10 other than the slave station 11 and the other slave stations 21 receive the signal attenuated according to the distance of the transmission path from the slave station 11 via the transformers 103 and 213, and send it to the AGC 105. , 215. Since the received signal is attenuated, it is amplified to a specified level by the AGC and input to the demodulator 102.212.

復調器102,212からはキャリア検出信号CDO、
CD2が出力され、復調出力SDO。
From the demodulators 102 and 212, carrier detection signals CDO,
CD2 is output and demodulated output SDO.

SO2が出力される。SO2 is output.

一方、送信/受信器104,214は、前記したキャリ
ア検出信号有と復調出力SDO、SO2有を条件に、そ
れぞれ受信処理を行なう。
On the other hand, the transmitter/receiver 104 and 214 respectively perform reception processing on the condition that the carrier detection signal is present and the demodulated outputs SDO and SO2 are present.

ここで親局10について考えると、子局11から受信し
た情報が自局へのものであるため、この情報を正しく受
信したことを示す認識信号を変調器101、トランス1
03を介して全子局へ送信する。また子局21は他局が
送信中であることを認識して何の処理も行なわない。
Considering the master station 10, since the information received from the slave station 11 is directed to the own station, a recognition signal indicating that this information has been correctly received is sent to the modulator 101 and the transformer 1.
03 to all slave stations. Furthermore, the slave station 21 recognizes that another station is transmitting and does not perform any processing.

一方、子局11は親局10からの前記認識信号を受信す
ると、自局からの情報が正しく親局へ伝送されたと理解
し、伝送処理を終了する。また子局11が親局10から
の認識信号を正しく受信できなかった場合には、子局1
1は再度伝送処理を行なう。以上が基本的動作の説明で
ある。
On the other hand, when the slave station 11 receives the recognition signal from the master station 10, it understands that the information from itself has been correctly transmitted to the master station, and ends the transmission process. In addition, if the slave station 11 cannot correctly receive the recognition signal from the master station 10, the slave station 11
1 performs the transmission process again. The above is an explanation of the basic operation.

〔背景技術の問題点〕[Problems with background technology]

上記構成を有する従来装置の場合、各局の接続位置に応
じて受信レベルに差が発生する。即ち、伝送路の末端に
接続された子局から送信される信号は、別の伝送路の末
端に接続された子局と途中に接続された子局及び親局で
の受信レベルが著しく異なる。その対策として各局にA
GOを設けて自動調整しなければならず、技術的に難か
しい。この場合、信号の受信レベルが小さ過ぎると伝送
路中の雑音との差が小さくなシ、その結果正しく信号が
受信できなくなる。要するに従来装置では伝送距離に限
界がある。
In the case of the conventional device having the above configuration, a difference occurs in the reception level depending on the connection position of each station. That is, the reception level of a signal transmitted from a slave station connected to the end of a transmission path is significantly different between a slave station connected to the end of another transmission path and a slave station and a master station connected in the middle. As a countermeasure, each station has
This requires setting up a GO and automatically adjusting, which is technically difficult. In this case, if the reception level of the signal is too low, the difference from noise in the transmission path will be small, and as a result, the signal cannot be received correctly. In short, there is a limit to the transmission distance with conventional devices.

また第6図では各局にあるAGCを省略し、その代シに
キャリアのみを検出するキャリア検出器16を復調器1
2に並列接続している。
In addition, in FIG. 6, the AGC in each station is omitted, and in its place a carrier detector 16 that detects only the carrier is installed in the demodulator 1.
2 are connected in parallel.

この場合は、他局が送信中であるか否かをキャリア検出
器16によるキャリア検出信号CD’の存否によって判
定しているが、前記同様に伝送距離に限界がある。
In this case, whether or not another station is transmitting is determined based on the presence or absence of the carrier detection signal CD' by the carrier detector 16, but as described above, there is a limit to the transmission distance.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決するためになされたものであ
り、伝送路の距離及び伝送路の分岐数の制限を少なくし
た遠方監視制御装置を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a remote monitoring and control device in which restrictions on the distance of a transmission line and the number of branches of a transmission line are reduced.

〔発明の概要〕[Summary of the invention]

本発明では、親局から子局へ伝送する信号の周波数と、
子局から親局へ伝送する信号の周波数を変えて予め設定
し、親局が子局からの信号を受信した場合に、親局はこ
の受信信号を再生増幅することによシ、親局に劇画てら
れた周波数を使って全子局に送信し、特定子局が送信中
であることを認識させるようにしたものである。
In the present invention, the frequency of the signal transmitted from the master station to the slave station,
The frequency of the signal transmitted from the slave station to the master station is changed and set in advance, and when the master station receives a signal from the slave station, the master station regenerates and amplifies this received signal. It transmits to all slave stations using the designated frequency, making them aware that a particular slave station is transmitting.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第1図は本発明
による遠方監視制御装置の一笑施例の構成図である。第
1図において第5図と同一部分については同一符号を付
して説明を省略する。
Examples will be described below with reference to the drawings. FIG. 1 is a block diagram of a simple embodiment of a remote monitoring and control device according to the present invention. In FIG. 1, the same parts as in FIG. 5 are designated by the same reference numerals, and the explanation thereof will be omitted.

本実施例と第5図に示す従来構成との差異は、親局を含
む各局10,11.21内からAGCを削除したこと、
第1図図示の1対の伝送路構成の場合、親局lOから子
局11,21への信号か、子局10.21から親局10
への信号かを区別できるように、変調周波数をftc親
局)、f、C子局)に割当たこと、また親局10は復調
器102にて子局11,21からの変調波f、を検出し
たとき、自局にある変調器101を介して各子局11.
21に変調波f□(特定信号の乗っていない変調波)を
送出し得る構成を有している。このための手段として親
局では、自局にある送信/受信器104からの送信要求
信号R8Oと復調器102を介して検出された子局から
の変調波f、倍信号キャリア検出信号CDOとの論理和
信号R8O’を変調器101の送信要求信号として入力
する構成としている。その他の構成は第5図と同様であ
る。
The difference between this embodiment and the conventional configuration shown in FIG. 5 is that AGC is removed from each station 10, 11.21 including the master station;
In the case of the pair of transmission path configuration shown in FIG.
In order to be able to distinguish between the signals from the slave stations 11 and 21, the modulation frequency is assigned to the FTC master station), f, and C slave station). is detected, each slave station 11 .
It has a configuration that can send out a modulated wave f□ (modulated wave on which no specific signal is carried) to 21. As a means for this purpose, the master station uses the transmission request signal R8O from the transmitter/receiver 104 in its own station, the modulated wave f from the slave station detected via the demodulator 102, and the double signal carrier detection signal CDO. The configuration is such that the OR signal R8O' is input as a transmission request signal to the modulator 101. The other configurations are the same as in FIG. 5.

第2図は動作を説明するタイムチャートであシ、1点鎖
線の左側が子局から親局へ、又右側は親局から子局への
データの伝送を行うときの状態を示す。
FIG. 2 is a time chart for explaining the operation, in which the left side of the dashed-dotted line shows the state when data is transmitted from the slave station to the master station, and the right side shows the state when data is transmitted from the master station to the slave station.

先ず子局11から親局10に対して送信情報が発生した
場合を説明する。子局11は復調器112からのキャリ
ア検出信号CD1により伝送路に他局からのキャリアな
しを確認し、時刻t0において送信要求信号R8Iを出
力する■。これにより伝送路には変調波CRf、が現わ
れる[相]。親局10は時刻tlにて子局11からの変
調波CRf、を復調器102のキャリア検出信号CDO
によって認識し■、直ちにOR回路106によシ送信要
求信号R8O’を出力し■、変調波CRf 1仕送路に
出力する0゜この後子局11は変調入力信号SDIによ
って変調し、親局10に対して信号を伝送する■。この
場合送信中の子局11と送信状態にない子局21は、夫
々親局10からの変調波CRf 、を受信し、子局11
はキャリア検出信号CDIを出力し■、子局21はキャ
リア検出信号CD2を出力する■。この際送信中の子局
11はそのまま送信を継続するが、送信状態にない子局
21は他局が送信中であるこkを認識する。時刻t、に
おいて子局11が送信を終了すると@、親局10のキャ
リア検出信号CDOがOFFとなり、したがって送信要
求信号R8O’もOFFとなって、親局10からの変調
波CR/□の出力も停止する。
First, a case where transmission information is generated from the slave station 11 to the master station 10 will be described. The slave station 11 confirms that there is no carrier from another station on the transmission path using the carrier detection signal CD1 from the demodulator 112, and outputs the transmission request signal R8I at time t0. As a result, a modulated wave CRf appears on the transmission path [phase]. At time tl, the master station 10 converts the modulated wave CRf from the slave station 11 into the carrier detection signal CDO of the demodulator 102.
The slave station 11 then modulates the signal by the modulation input signal SDI, and immediately outputs the transmission request signal R8O' to the OR circuit 106. ■Transmit a signal to 10. In this case, the slave station 11 that is transmitting and the slave station 21 that is not in the transmitting state each receive the modulated wave CRf from the master station 10, and the slave station 11
outputs the carrier detection signal CDI (2), and the slave station 21 outputs the carrier detection signal CD2 (2). At this time, the slave station 11 that is currently transmitting continues to transmit, but the slave station 21 that is not in the transmitting state recognizes that another station is transmitting. When the slave station 11 finishes transmitting at time t, the carrier detection signal CDO of the master station 10 turns OFF, so the transmission request signal R8O' also turns OFF, and the modulated wave CR/□ is output from the master station 10. will also stop.

次に親局10から所定の子局又は全子局に対して送信す
る場合を説明する。
Next, the case where the master station 10 transmits to a predetermined slave station or all slave stations will be explained.

親局10は復調器102がらのキャリア検出信号CDO
により伝送路に他局からのキャリアなしを確認し、時刻
t0において親局1oの送信/受信器104から送信要
求信号R8Oを出力し■、これがOR回路106を介し
てR8O’が出力される■。その結果、親局10からの
変調波CR八が変調器101よシ伝送路へ出力される。
The master station 10 receives the carrier detection signal CDO from the demodulator 102.
It is confirmed that there is no carrier from another station on the transmission path, and at time t0, the transmitter/receiver 104 of the master station 1o outputs a transmission request signal R8O, and this is outputted as R8O' via the OR circuit 106. . As a result, the modulated wave CR8 from the master station 10 is outputted from the modulator 101 to the transmission path.

時刻t、において各子局11,21はこのキャリア検量
信号CDI 、 CD2を出力し■、Q1自局が送信中
でない伯仲で、他局が送信中であることを認識する。続
いて時刻t。
At time t, each slave station 11, 21 outputs the carrier calibration signals CDI, CD2 and recognizes that Q1's own station is not transmitting and that the other station is transmitting. Then time t.

にて、親局10からの変調入力信号SDOによシ変調さ
れた信号を各子局11,21は受信する。そして時刻t
、にて親局10からの送信が終了すれば、伝送路には全
くキャリアが存在しなくなる。
At , each slave station 11, 21 receives a signal modulated by the modulated input signal SDO from the master station 10. and time t
When the transmission from the master station 10 ends at , there is no carrier at all on the transmission path.

上記説明から明らかなように、親局10に対して簡単な
回路の付加のみで、AGC回路が省略でき、キャリア検
出回路も不要となる。又、各子局の送信レベルは同一受
信レベルになるよう予め半固定的に調整される。この場
合親局の送信レベルは最大レベルで送出され、しかも各
子局は途中のロスに従った受信レベルに半固定的に調整
することができるため、保守が容易となシ、又、ノイズ
等による誤動作を防止できる。
As is clear from the above description, by simply adding a circuit to the master station 10, the AGC circuit can be omitted, and the carrier detection circuit can also be omitted. Further, the transmission level of each slave station is semi-fixedly adjusted in advance so that the reception level is the same. In this case, the transmission level of the master station is sent out at the maximum level, and each slave station can be semi-fixedly adjusted to the reception level according to the loss on the way, so maintenance is easy and noise can be reduced. This can prevent malfunctions due to

第2図(b)は変調入力信号の詳細図であシ、パルス信
号の内部は当然のことながら中心周波数fに対してf1
+Δf又はfl−Δfとなっている。
FIG. 2(b) is a detailed diagram of the modulated input signal, and the inside of the pulse signal is naturally f1 with respect to the center frequency f.
+Δf or fl−Δf.

第3図は親局の他の実施ブリの構成図である。FIG. 3 is a block diagram of another implementation of the master station.

本実施列では子局から受信した復調出力RDOをもOR
回路107により、再生増幅するようにしたものである
。したがってどの局においても他局の信号が正しく受信
できる。
In this implementation sequence, the demodulated output RDO received from the slave station is also ORed.
A circuit 107 performs regenerative amplification. Therefore, any station can correctly receive signals from other stations.

上記実施例では1対の伝送路によって親局を子局とを接
続し、親局と子局とに異周波を夫々割当てるように説明
したが、これに限定されるものではなく、別々の4対の
伝送路を使用すれば同一周波数で使用することが可能で
あるばかシか、結合用のトランスも不要となる。
In the above embodiment, the master station and the slave station are connected through a pair of transmission paths, and different frequencies are assigned to the master station and the slave station, respectively. However, the present invention is not limited to this. By using a pair of transmission lines, it is possible to use the same frequency, and a coupling transformer is not required.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば親局から子局又は子
局から親局への伝送周波数を変えて割当て、子局からの
信号を受信した親局が再生増幅することによシ、他の子
局へ伝送するように構成したので、樹枝状の伝送網であ
っても応動速度が極めて速く、シかも伝送路との受渡回
路は従来一般的に使用されている半固定の送信又は受信
レベルに調整可能であって、従来のポーリング方式と同
等の信頼性を有する遠方監視制御装置を提供できる。
As explained above, according to the present invention, the transmission frequency is changed and assigned from the master station to the slave station or from the slave station to the master station, and the master station that receives the signal from the slave station regenerates and amplifies the signal. Because it is configured to transmit to slave stations, the response speed is extremely fast even in a dendritic transmission network, and the transfer circuit between the transmission line and the transmission line is the same as the conventionally commonly used semi-fixed transmission or reception circuit. It is possible to provide a remote monitoring and control device that can be adjusted to the desired level and has reliability equivalent to that of the conventional polling method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による遠方監視制御装置の一実施例の構
成図、第2図は動作説明のタイムチャート、第3図は親
局の他の実施例の構成図、第4図は親局と子局との接続
関係を示す系統図、第5図は従来の遠方監視制御装置を
説明する一構成例図、第6図は一つの局の構成別図であ
る。 10・・・親局      11〜1t・・・子局21
〜2m・・・子局   kユ〜kn・・・子局101.
114.214・・・送信/受信器101.111,2
11・・・変調器 102.112,212・・・復調器 105.115,215・・・AGC 103,113,213・・・結合トランス106.1
07・・・OR回路 特許出願人  株式会社 東  芝 代理人弁理士   石  井  紀  男箆1図 子局−親局    親局−テ局 菟2図(b) 第4図 幣6図 手続補正書輸幻 昭和62年2 月2日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和60年 特許願 第296626号2、発明の名称 情報伝送システム 3、補正をする者 事件との関係  特許出願人 住所   神奈川県用崎市幸区堀用町72番地4、代理
人 住 所  〒106  東京都港区麻布台1丁目1番2
0号Te1. (03) 586−5556  ”’、
’、、、 ’ ;5、補正命令の日付 全文補正明細書 10発明の名称 情報伝送システム 2、特許請求の範囲 (1)制御所装置と複数の被制御所装置とを伝送路で接
続し、前記各被制御所装置が伝送路に対して分岐方式で
接続され、前記制御所装置及び被制御所装置は送信信号
を送出する送信器と、送信信号を変調する変調器と、伝
送されてきた信号を復調する復調器と、復調信号を受信
する受信器とを少なくとも備えた情報伝送システムにお
いて、前記制御所装置の送信器からの送信要求信号と前
記各被制御所装置からの変調信号を受信し友とき発生す
るキャリア検出信号とを入力する論理和手段を設け、こ
の論理和手段の出力を制御所装置の変調器に対して新た
な送信要求信号として与え、前記被制御所装置からの変
調信号を制御所装置で受信したとき、制御所装置は全て
の被制御所装置に対してキャリア信号を送信し、送信を
していない他の被制御所装置が送信を開始するときに前
記キャリア信号の有無を検出し、キャリア信号が伝送路
になければ送信を開始し、キャリア信号があれば他局が
送信中であると認識し、前記条件のもとに被制御装置が
送信を開始し次後は、前記キャリア信号の有無に拘らず
送信を継続することを特徴とする情報伝送システム。 (2)  前記したものと異なるもう一組の論理和回路
を設け、その論理和回路の入力として、制御所装置の送
信器からの変調パルス入力信号および被制御所装置から
復調器を介して受信し念復調パルス出力信号を与えるこ
とにより、生じる、前記論理和回路の出力を復調器のス
調パルス入力として与えることを特徴とする特許請求の
範囲第1項記載の情報伝送システム。 (3)伝送路が1対であるとき、制御所側と被制御所側
の各変調周波数を変えたことを特徴とする特許請求の範
囲第1項記載の情報伝送システム。 (4)親局の送信レベルは最大レベルとしたことを特徴
とする特許請求の範囲第1項記載の情報伝送システム。 (5)各子局の送信レベルは半固定的調整手段によって
調整されることを特徴とする特許請求の範囲第1項記載
の情報伝送システム。 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は情報伝送システム、特に1個所の制御所装置(
以下親局と云う)から複数個所の被制御所装置(以下子
局と云う)を制御する情報伝送システムに関するもので
ある。 (従来の技術) たとえば、監視制御システムにおいて、1個所の親局か
ら複数個所の子局を制御する方式を一般に、1:N構成
制御方式と呼んでおり、第4図がこの方式の構成例であ
る。そして、この構成は配It線に設けられた柱上開閉
器又は地下開閉器を監視制御する際採用されることが多
い。また、この構成の特徴は1対又は2対の伝送路が途
中でマルチドロップ方式に分岐し、この分岐した伝送路
に各子局が接続される構成を有している。即ち、親局1
0からの伝送路り。は複数の伝送路り、 、 L。 ・・・Lkに分岐し、この分岐された各伝送路1’1 
m ’Q sLkに、各子局11・・・1t、21・・
・2m、〜に、・・・knが接続されている。 この場合、親局10から送信される信号は、分岐された
各伝送路を介して全子局に正常な受信レベルで受信され
る必要があり、一方、各子局からの信号も正常な受信レ
ベルで親局に受信される必要がある。 この種の構成に採用される伝送方式は、一般にポーリン
グ方式である。そしてポーリング方式は親局が子局に対
して順番に「送信許可」を与え、許可を受けた唯1つの
子局がデータの送信を行い、−万、親局が子局に送信し
たい時は前記の子局からの送信が終了した後、送信デー
タを子局へ送信する方式である。し九がって伝送路上で
の混信を防ぐことかできる。しかし子局から親局に対し
て通知したい情報が発生しても、子局に対して親局から
の呼び出しがあるまでは、−親局への情報の送信ができ
ない欠点がある。この場合、一つの伝送路に接続される
子局の数が多ければ、それに比例して呼び出し周期が長
くなるため、情報の応答時間も長くなる。 これを解決する一方法としてコンテンシ璽ン(Cont
ention )又はC8MA/CD (Carrla
r 5ense、 Multi−Access/Co1
1ision Dstector )方式と呼ばれるも
のがある。 この方式は、情報を送信したいと希望している親局を含
む各局が、伝送路に他局の信号(キャリア)がないこと
を条件として送信権を得、その結果送信を開始する方式
である。この場合、複数局が同時に送信tl−開始した
とすると、受信局側では受信不良となる。したがって受
信局から送信局に対し、正しく受信し九ことを示す「受
信可能信号」が返送されないため、既に送信していた各
局は再度送信を行なう。この際前記各複数局は送信時間
をずらすようにしている。即ち、一番早く送信を開始し
た局が送信権をとって送信を開始し、その送信が終了し
た後に、残りの局が順次同じ手順で送信権を得て送信が
なされる。 要するにC8MA/CD方式では、伝送路に自局以外の
局の信号が伝送中であるか否かを各局それぞれが検出で
きる必要がある。 この検出の友めの従来方法を第5図を用いて説明する。 なお、第5図では説明を簡単にするため、親局10に対
して2つの子局がある場合を示し、これら各子局は2つ
に分岐して接続された1対の伝送路L6 s Ll及び
Ltにそれぞれ接続された構成とする。 各局には送信器104T、受信器104R,114T。 114R,214T、214R,変調器101,111
゜211、復調器102,112,212、伝送路と結
合する分岐器たとえばトランス103,113゜213
を有する基本構成とし、また各局には受信側に自動ゲイ
ン制御器ACC105,115,215を備えている。 ま念第6図は局構成の変形例で、変調器311、復調器
312、トランス313、送信器314T、受信器31
4Rにキャリア検出器316を備えたものである。 第5図の構成において送信/受信器と変調器、復調器と
の間は送信側は変調入力信号SDO、SDI。 Sn2と送信要求信号R8O、R8I 、 R82が入
力され、受信側は復調さn次信号RDO、RDI 、 
RD2とキャリア検出信号CDO、CDI 、 CD2
が受渡される。キャリア検出信号CDO、CDI 、 
CD2は送信器104T。 114T、214Tにも入力される。 次に子局11が送信を開始する場合を説明する。 子局11の送信器114Tは復調器112からのキャリ
ア検出信号CDI無しの条件、即ち、自局以外の他局が
送信中でないとの認識のもとに、変調器111へ送信要
求信号R8Iを出力する。次に変調入力信号SDIによ
り自局11のキャリアを変調し、トランス113を介し
て規定レベルで伝送路L1に出力する。この時、子局1
1以外の親局10及び他の子局21は、前記子局11か
らの伝送路の距離に応じて減衰した信号を、トランス1
03゜213に、介して受信し、これをACC105,
215に入力する。受信した信号は減衰している念め、
AGCによって規定レベルまで増幅され、復調器102
.212に入力される。復調器102゜212からはキ
ャリア検出信号CDO、CD2が出力され、復調出力S
DO、Sn2も同時に出力される。 一方、受信器104R,214Rは、前記したキャリア
検出信号有と復調出力SDO、Sn2有を条件に、それ
ぞれ受信処理を行なう。 ここで親局10について考えると、子局11から受信し
た情報が自局へのものである次め、この情報を正しく受
信したことを示す認識信号を変調器101、トランス1
03を介して全子局へ送信する。1次子局21は他局が
送信中であることを認識して何の処理も行なわない。 一方、子局11は親局10からの前記認識信号を受信す
ると、自局からの情報が正しく親局へ伝送されたと認識
し、伝送処理を終了する。こnに対し子局11が親局1
0からの認識信号を正しく受信できなかった場合には、
子局11は再度伝送処理を行なう。この情報伝送方式で
は、キャリアの検出遅れが原因となって親局と子局との
間、子局同士の間ではほぼ同時に伝送路にキャリアがな
いことを検出することがある。この検出に基づいて2局
が送信を開始すると、伝送路上で送信信号同士が衝突す
ることになる。このときは受信側で正しく受信できない
から上記の動作が繰返されて再度の送信処理を行なう。 この再送時に各送信局は予め定められた時間差で送信を
開始するため再び衝突することはない。以上が基本的動
作の説明である。 (発明が解決しようとする問題点) 上記構成を有する従来装置の場合、各局の接続位置に応
じて受信レベルに差が発生する。即ち、伝送路の末端に
接続された子局から信号が伝送される場合、別の伝送路
の末端に接続された子局と途中に接続された子局及び親
局での受信レベルが著しく異なる。その対策として各局
にAGCを設けて自動調整しなければならず、技術的に
難かしい。 この場合、信号の受信レベルが小さ過ぎると伝送路中の
雑音との差が小さくなシ、その結果正しく信号が受信で
きなくなる。要するに従来装置では伝送距離に限界があ
る。 また第6図では各局にあるAGCを省略し、七の代シに
中ヤリアのみを検出するキャリア検出器316を復調器
312に並列接続している。 この場合は、他局が送信中であるか否かをキャリア検出
器316から出力されるキャリア検出信号CD’の存否
によって判定しているが、前記同様に伝送距離に限界が
ある。 本発明は上記問題点を解決するためになされ念ものであ
り、伝送路の距離及び伝送路の分岐数の制限を少なくし
た情報伝送システムを提供することを目的としている。 〔発明の構成〕 (問題点を解決する念めの手段及び作用)本発明では、
親局から子局へ伝送する信号の周波数と、子局から親局
へ伝送する信号の周波数とを異なったものとして予め設
定しておき、親局が子局からの信号を受信した場合に、
親局はこの受信信号に基いて送信要求信号を形成し、こ
の送信要求信号を変調器に与えて親局に割当てられた周
波数を使って全子局に送信し、特定子局が送信中である
ことを認識させるようにしたものである。 (実施例) 以下図面を参照して実施例を説明する。第1図は本発明
による情報伝送システムの一実施例の構成図である。第
1図において第5図と同一部分については同一符号を付
して説明全省略する。 本実施例と第5図に示す従来構成との差異は、親局を含
む各局10,11.21内からAGCi削除したこと、
第1図図示の1対の伝送路構成の場合、親局10から子
局11.21への信号か、子局11,21から親局10
への信号かを区別できるように、変調周波数を11 (
親局)−fz(子局)に割当たこと、ま九親局10は復
調器102にて子局11.21からの変調波f、を検出
したとき、自局にある変調器101を介して各子局11
.21に変調波f1 (特定信号の乗っていない変調波
)を送出し得る構成を有している。このための手段とし
て親局では、自局にある送信器104Tからの送信要求
信号R8Oと復調器102を介して検出された子局から
の変調波f、倍信号午ヤリア検出信号CDOとの論理和
信号R8O’を変調器101の送信要求信号として入力
する構成としている。その他の構成は第5図と同様であ
る。 第2図は動作を説明するタイムチャートであり、1点鎖
線の左側が子局から親局へ、又右側は親局から子局への
データの伝送を行うときの状態を示す。 先ず子局11から親局10に対して送信情報が発生した
場合を説明する。子局11は時刻t0以前に復調器11
2からのキャリア検出信号CDIにより伝送路に他局か
らのキャリアなしを確認すると、時刻t0において送信
要求信号R8Iを出力する■。これにより伝送路には変
調器111にて生じ結合器11ぎを介して変調波CRf
、が現わnる◎。 次いで親局10は時刻t、にて子局11からの変調波C
Rf、を復調器102のキャリア検出信号CDOによっ
て認識し■、直ちにOR回路106により送信要求信号
R8O’を出力し■、これに基き変調器101から変調
波CRf1を伝送路に出力する■。この後子局11では
送信器114Tからの変調入力信号SDIによって変調
器111が変調波OR/、を形成し、親局10に対して
この変調波を伝送する■。 この場合送信中の子局11と送信状態にない子局21は
、夫々親局10からの変調波CR/1を受信し、時刻t
、において子局11はキャリア検出信号CDIを出力し
■、子局21はキャリア検出信号CD2 ’に出力する
@。この際送信中の子局11はそのまま送信を継続する
が、送信状態にない子局21は他局が送信中であること
を認識して自局の送信を行なわない。時刻t、において
子局11が送信を終了すると0、親局10のキャリア検
出信号CDOがOFF’となり、したがって送信要求信
号R8O’もOFFとかって、親局10からの変調波C
Rf1の出力も停止する。 次に親局10から所定の子局又は全子局に対して送信す
る場合を説明する。 親局10は時刻t6以前に復調器102からのキャリア
検出信号CDOにより伝送路に他局からのキャリアがな
いことを確認すると、時刻t6において親局10の送信
器104Tから送信要求信号R8Oを出力し■、これが
OR回路106を介して送信要求信号88σとして変調
器101に向けて出力される■。その結果、親局10か
らの変調波cl、が変調器101より結合器103′を
介して伝送路へ出力される。時刻t、において各子局1
1゜21はこのキャリア検出信号CDI 、 CD2 
を出力し■、@、また送信器114T、214Tは内蔵
の図示しないシーケンス回路により自局が送信中でない
条件つまり送信要求信号R81’EたはR82がないと
いう条件によって、他局が送信中であることを認識して
自局の送信を行なわない。続いて時刻t?にて、親局1
0からの変調入力信号SDOにより変調された信号を各
子局11,21は受信する。そして時刻t、にて親局1
0からの送信が終了すれば、伝送路には全くキャリアが
存在しなくなる。 上記説明から明らかなように、親局10に対して簡単な
回路の付加のみで、AGC回路が省略でき、キャリア検
出回路も不要となる。又、各子局の送信レベルは同一受
信レベルになるよう予め半固定的に調整される。この場
合親局の送信レベルは最大レベルで送出さ才り、シかも
各子局は途中のロスに従った受信レベルに半固定的に調
整することができるため、保守が容易となり、又、ノイ
ズ等による誤動作を防止できる。 第2図価)は変調入力信号の詳細図であり、/ぐルス信
号の内部は轟然のことながら中心周波数fに対してf+
+Δf又は!+−Δfとなっている。 第3図は親局の他の実施例の構成図である。 本実施例では子局から受信した復調出力RDO、キャリ
ア検出信号CDOをもOR回路107,108によシ検
出して変調器101に送信要求信号R8O’またはSD
O’として与えるようにし念ものである。 し九がってどの局においても他局の信号が正しく受信で
きる。 上記実施例では1対の伝送路によって親局と子局とを接
続し、親局と子局とに異同波を夫々側車てるように説明
したが、これに限定されるものではない。 本発明は電気信号路のみならず光信号路による情報伝送
システムにも適用できる。 また上記実施例におけるOR回路は、一般のMODEM
が入力2端子、出力2端子構成であるために設けられ九
ものであり、MODEM f:、別のものとすれば省略
してもよい。 〔発明の効果〕 以上説明した如く、本発明によれば親局から子局又は子
局から親局への伝送周波数を変えて割当て、子局からの
信号を受信した親局が親局の周波数を用いて送信するこ
とにより、他の子局へ伝送するように構成したので、樹
枝状の伝送網であっても応動速度が極めて速く、しかも
伝送路との受渡回路は従来一般的に使用されている半固
定の送信又は受信レベルに調整可能であって、従来のポ
ーリング方式と同等の信頼性を有する情報伝送システム
を提供できる。 4、図面の簡単な説明 第1図は本発明による情報伝送システムの一実施例の構
成図、第2図は動作説明のタイムチャート、第3図は親
局の他の実施例の構成図、第4図は親局と子局との接続
関係を示す系統図、第5図は従来の情報伝送システムを
説明する一構成例図、第6図は一つの局の構成側図であ
る。 10・・・親局      11〜1t・・・子局21
〜2m・・・子局   k1〜kn・・・子局104T
、114T、214T・・・送信器104R,114R
,214R・・・受信器101.111.211・・・
変調器 102.112.212・・・復調器 103’、113’、213’・・・分岐器106.1
07・・・OR回路 特許出願人  株式会社 東 芝 代理人弁理士  石  井  紀  男第1図 第3図 第6図 箔5図
Fig. 1 is a block diagram of one embodiment of the remote monitoring and control device according to the present invention, Fig. 2 is a time chart for explaining the operation, Fig. 3 is a block diagram of another embodiment of the master station, and Fig. 4 is a block diagram of the main station. FIG. 5 is a diagram illustrating a configuration example of a conventional remote monitoring and control device, and FIG. 6 is a diagram illustrating the configuration of one station. 10...Master station 11-1t...Slave station 21
~2m...Slave station kyu~kn...Slave station 101.
114.214... Transmitter/receiver 101.111,2
11...Modulator 102.112,212...Demodulator 105.115,215...AGC 103,113,213...Coupling transformer 106.1
07...OR circuit patent applicant Toshiba Corporation Patent attorney Nori Ishii Figure 1 Figure 1 Child station - Master station Parent station - Te station Figure 2 (b) Figure 4 Figure 6 Import of procedural amendments Illusion February 2, 1980 Commissioner of the Japan Patent Office Black 1) Akio Yu 1, Display of the case 1985 Patent Application No. 296626 2, Name of invention information transmission system 3, Relationship with the amendment person case Patent application Personal address: 72-4 Horiyo-cho, Saiwai-ku, Yozaki-shi, Kanagawa Prefecture Agent address: 1-1-2 Azabudai, Minato-ku, Tokyo 106 Japan
No. 0 Te1. (03) 586-5556 ”',
',,, '; 5. Date of amendment order Full text of the amendment specification 10 Name of the invention Information transmission system 2. Claims (1) A control center device and a plurality of controlled center devices are connected by a transmission path, Each of the controlled station devices is connected to the transmission path in a branching manner, and the control center device and the controlled station device include a transmitter that sends out a transmission signal, and a modulator that modulates the transmission signal, and the transmission path is transmitted. In an information transmission system comprising at least a demodulator that demodulates a signal and a receiver that receives the demodulated signal, the information transmission system receives a transmission request signal from a transmitter of the control center device and a modulated signal from each of the controlled center devices. A logical sum means is provided for inputting the carrier detection signal generated when the signal is transmitted, and the output of the logical sum means is provided as a new transmission request signal to the modulator of the control center equipment, and the output of the logical sum means is provided as a new transmission request signal to the modulator of the control center equipment. When the control center device receives the signal, the control center device transmits the carrier signal to all the controlled center devices, and when the other controlled center devices that are not transmitting start transmitting, the control center device transmits the carrier signal. If there is a carrier signal on the transmission path, the controlled device starts transmitting, and if there is a carrier signal, it recognizes that another station is transmitting, and the controlled device starts transmitting based on the above conditions. After that, the information transmission system continues to transmit regardless of the presence or absence of the carrier signal. (2) Another set of OR circuits different from those described above is provided, and as inputs to the OR circuit, modulated pulse input signals from the transmitter of the control center equipment and signals received from the controlled center equipment via the demodulator are provided. 2. The information transmission system according to claim 1, wherein the output of said OR circuit, which is generated by providing a demodulated pulse output signal, is provided as a modulated pulse input to a demodulator. (3) The information transmission system according to claim 1, characterized in that when there is a pair of transmission paths, the modulation frequencies on the control center side and the controlled station side are different. (4) The information transmission system according to claim 1, wherein the transmission level of the master station is set to the maximum level. (5) The information transmission system according to claim 1, wherein the transmission level of each slave station is adjusted by semi-fixed adjustment means. 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to an information transmission system, particularly a control center device (
The present invention relates to an information transmission system in which a plurality of controlled station devices (hereinafter referred to as slave stations) are controlled from a master station (hereinafter referred to as a master station). (Prior art) For example, in a supervisory control system, a method of controlling multiple slave stations from one master station is generally called a 1:N configuration control method, and Fig. 4 shows an example of the configuration of this method. It is. This configuration is often employed when monitoring and controlling a pole switch or an underground switch installed on the It line. Further, this configuration is characterized in that one or two pairs of transmission lines are branched in the middle in a multi-drop manner, and each slave station is connected to this branched transmission line. That is, master station 1
Transmission path from 0. is multiple transmission paths, ,L. ...branched to Lk, and each branched transmission line 1'1
m'Q sLk, each slave station 11...1t, 21...
・2m,...kn are connected to... In this case, the signal transmitted from the master station 10 must be received by all slave stations at a normal reception level via each branched transmission path, and the signal from each slave station must also be received normally. level and must be received by the master station. The transmission method employed in this type of configuration is generally a polling method. In the polling method, the master station gives "transmission permission" to the slave stations in turn, and the only slave station that receives permission transmits data. This is a method in which the transmission data is transmitted to the slave station after the transmission from the slave station is completed. As a result, interference on the transmission path can be prevented. However, even if the slave station generates information that it wants to notify to the master station, there is a drawback that the information cannot be transmitted to the master station until the slave station receives a call from the master station. In this case, if the number of slave stations connected to one transmission path is large, the paging cycle becomes proportionally longer, and the response time for information also becomes longer. One way to solve this problem is to use content
) or C8MA/CD (Carrla
r 5ense, Multi-Access/Co1
There is a method called 1ision detector) method. In this method, each station that wishes to transmit information, including the master station, obtains the right to transmit on the condition that there is no other station's signal (carrier) on the transmission path, and then begins transmission. . In this case, if multiple stations start transmitting tl at the same time, poor reception will occur on the receiving station side. Therefore, since the receiving station does not return a "receivable signal" to the transmitting station indicating that the signal has been correctly received, each station that has already transmitted will transmit again. At this time, the transmission times of the plurality of stations are staggered. That is, the station that starts transmission earliest obtains the right to transmit and starts transmitting, and after that transmission is completed, the remaining stations sequentially obtain the right to transmit and transmit using the same procedure. In short, in the C8MA/CD system, each station needs to be able to detect whether or not a signal from a station other than its own station is being transmitted on the transmission path. A conventional method for this detection will be explained with reference to FIG. In order to simplify the explanation, FIG. 5 shows a case where there are two slave stations for the master station 10, and each of these slave stations is connected to a pair of transmission lines L6s branched into two. The configuration is such that they are connected to Ll and Lt, respectively. Each station has a transmitter 104T and receivers 104R and 114T. 114R, 214T, 214R, modulator 101, 111
゜211, demodulators 102, 112, 212, branchers coupled to the transmission line, such as transformers 103, 113゜213
Each station is equipped with automatic gain controllers ACC105, 115, and 215 on the receiving side. Please note that Fig. 6 shows a modified example of the station configuration, which includes a modulator 311, a demodulator 312, a transformer 313, a transmitter 314T, and a receiver 31.
4R is equipped with a carrier detector 316. In the configuration shown in FIG. 5, modulated input signals SDO and SDI are used on the transmitting side between the transmitter/receiver and the modulator and demodulator. Sn2 and transmission request signals R8O, R8I, R82 are input, and the receiving side receives demodulated n-order signals RDO, RDI,
RD2 and carrier detection signals CDO, CDI, CD2
is delivered. Carrier detection signals CDO, CDI,
CD2 is the transmitter 104T. It is also input to 114T and 214T. Next, a case where the slave station 11 starts transmission will be described. The transmitter 114T of the slave station 11 sends a transmission request signal R8I to the modulator 111 under the condition that there is no carrier detection signal CDI from the demodulator 112, that is, based on the recognition that no other station other than the local station is transmitting. Output. Next, the carrier of the local station 11 is modulated by the modulated input signal SDI, and outputted to the transmission path L1 at a specified level via the transformer 113. At this time, slave station 1
The master station 10 other than 1 and the other slave stations 21 transmit the signal attenuated according to the distance of the transmission path from the slave station 11 to the transformer 1.
03°213, and sends this to ACC105,
215. Just in case the received signal is attenuated,
It is amplified to a specified level by AGC and then sent to demodulator 102.
.. 212. The demodulator 102゜212 outputs carrier detection signals CDO and CD2, and the demodulated output S
DO and Sn2 are also output at the same time. On the other hand, the receivers 104R and 214R each perform reception processing on the condition that the carrier detection signal is present and the demodulated outputs SDO and Sn2 are present. Considering the master station 10, the information received from the slave station 11 is directed to the own station, and then a recognition signal indicating that this information has been correctly received is sent to the modulator 101 and the transformer 1.
03 to all slave stations. The primary slave station 21 recognizes that another station is transmitting and does not perform any processing. On the other hand, when the slave station 11 receives the recognition signal from the master station 10, it recognizes that the information from itself has been correctly transmitted to the master station, and ends the transmission process. In this case, slave station 11 becomes master station 1.
If the recognition signal from 0 cannot be received correctly,
The slave station 11 performs the transmission process again. In this information transmission system, the absence of a carrier on the transmission path may be detected almost simultaneously between the master station and the slave stations, or between the slave stations, due to a carrier detection delay. When the two stations start transmitting based on this detection, the transmitted signals will collide with each other on the transmission path. In this case, the receiving side cannot receive the data correctly, so the above operation is repeated and the transmission process is performed again. During this retransmission, each transmitting station starts transmitting at a predetermined time difference, so there will be no collision again. The above is an explanation of the basic operation. (Problems to be Solved by the Invention) In the case of the conventional device having the above configuration, a difference occurs in the reception level depending on the connection position of each station. In other words, when a signal is transmitted from a slave station connected to the end of a transmission path, the reception level at the slave station connected to the end of another transmission path is significantly different from that at the slave stations and master station connected in the middle. . As a countermeasure, each station must be equipped with an AGC for automatic adjustment, which is technically difficult. In this case, if the reception level of the signal is too low, the difference from noise in the transmission path will be small, and as a result, the signal cannot be received correctly. In short, there is a limit to the transmission distance with conventional devices. Further, in FIG. 6, the AGC in each station is omitted, and a carrier detector 316 for detecting only the medium signal is connected in parallel to the demodulator 312 in seven generations. In this case, whether or not another station is transmitting is determined based on the presence or absence of the carrier detection signal CD' output from the carrier detector 316, but as described above, there is a limit to the transmission distance. The present invention has been devised to solve the above-mentioned problems, and it is an object of the present invention to provide an information transmission system in which restrictions on the distance of a transmission path and the number of branches of a transmission path are reduced. [Structure of the invention] (Means and effects for solving the problem) In the present invention,
The frequency of the signal transmitted from the master station to the slave station and the frequency of the signal transmitted from the slave station to the master station are set in advance to be different, and when the master station receives a signal from the slave station,
The master station forms a transmission request signal based on this received signal, gives this transmission request signal to the modulator, and transmits it to all slave stations using the frequency assigned to the master station. This is to make you aware of something. (Example) An example will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of an information transmission system according to the present invention. In FIG. 1, the same parts as in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted. The difference between this embodiment and the conventional configuration shown in FIG. 5 is that AGCi is deleted from each station 10, 11.21 including the master station;
In the case of the pair of transmission line configuration shown in FIG.
The modulation frequency was set to 11 (
When the master station 10 detects the modulated wave f from the slave station 11.21 at the demodulator 102, the master station Each slave station 11
.. It has a configuration that can send out a modulated wave f1 (a modulated wave on which no specific signal is carried) to 21. As a means for this purpose, the master station uses logic between the transmission request signal R8O from the transmitter 104T in its own station, the modulated wave f from the slave station detected via the demodulator 102, and the double signal signal and the signal detection signal CDO. The configuration is such that the sum signal R8O' is input to the modulator 101 as a transmission request signal. The other configurations are the same as in FIG. 5. FIG. 2 is a time chart for explaining the operation, in which the left side of the dashed-dotted line shows the state when data is transmitted from the slave station to the master station, and the right side shows the state when data is transmitted from the master station to the slave station. First, a case where transmission information is generated from the slave station 11 to the master station 10 will be described. The slave station 11 uses the demodulator 11 before time t0.
When it is confirmed by the carrier detection signal CDI from 2 that there is no carrier from another station on the transmission path, it outputs the transmission request signal R8I at time t0. As a result, a modulated wave CRf is generated in the modulator 111 and passed through the coupler 11 to the transmission path.
, will appear◎. Next, the master station 10 receives the modulated wave C from the slave station 11 at time t.
Rf, is recognized by the carrier detection signal CDO of the demodulator 102 (2), the OR circuit 106 immediately outputs the transmission request signal R8O' (2), and based on this, the modulated wave CRf1 is outputted from the modulator 101 to the transmission path (2). Thereafter, in the slave station 11, the modulator 111 forms a modulated wave OR/, based on the modulated input signal SDI from the transmitter 114T, and transmits this modulated wave to the master station 10. In this case, the slave station 11 that is transmitting and the slave station 21 that is not in the transmitting state each receive the modulated wave CR/1 from the master station 10, and at time t.
In , the slave station 11 outputs the carrier detection signal CDI (2), and the slave station 21 outputs the carrier detection signal CD2' @. At this time, the slave station 11 that is currently transmitting continues to transmit, but the slave station 21 that is not in the transmitting state recognizes that another station is transmitting and does not perform its own transmission. When the slave station 11 finishes transmitting at time t, the carrier detection signal CDO of the master station 10 turns OFF', and therefore the transmission request signal R8O' also turns OFF.
The output of Rf1 is also stopped. Next, the case where the master station 10 transmits to a predetermined slave station or all slave stations will be explained. When the master station 10 confirms that there is no carrier from another station on the transmission path using the carrier detection signal CDO from the demodulator 102 before time t6, the transmitter 104T of the master station 10 outputs a transmission request signal R8O at time t6. Then, this is outputted to the modulator 101 via the OR circuit 106 as a transmission request signal 88σ. As a result, the modulated wave cl from the master station 10 is output from the modulator 101 to the transmission path via the coupler 103'. At time t, each slave station 1
1°21 is the carrier detection signal CDI, CD2
Also, the transmitters 114T and 214T use a built-in sequence circuit (not shown) to detect when the other station is transmitting, depending on the condition that the own station is not transmitting, that is, there is no transmission request signal R81'E or R82. It recognizes that there is a problem and does not transmit from its own station. Then time t? At the master station 1
Each slave station 11, 21 receives a signal modulated by the modulated input signal SDO from SDO. Then, at time t, the master station 1
When transmission from 0 is completed, no carrier exists on the transmission path at all. As is clear from the above description, by simply adding a circuit to the master station 10, the AGC circuit can be omitted, and the carrier detection circuit can also be omitted. Further, the transmission level of each slave station is semi-fixedly adjusted in advance so that the reception level is the same. In this case, the transmission level of the master station is the maximum level, and each slave station can be semi-fixedly adjusted to the reception level according to the loss on the way, making maintenance easier and reducing noise. It is possible to prevent malfunctions caused by such factors. Figure 2) is a detailed diagram of the modulated input signal, and the inside of the /gus signal is f+ for the center frequency f.
+Δf or! +-Δf. FIG. 3 is a block diagram of another embodiment of the master station. In this embodiment, the demodulated output RDO and carrier detection signal CDO received from the slave station are also detected by the OR circuits 107 and 108, and sent to the modulator 101 as the transmission request signal R8O' or SD.
It is a good idea to give it as O'. As a result, any station can correctly receive signals from other stations. In the above embodiment, the master station and the slave station are connected by a pair of transmission paths, and different and identical waves are transmitted to the master station and the slave station, respectively, but the present invention is not limited to this. The present invention can be applied not only to electrical signal paths but also to information transmission systems using optical signal paths. Further, the OR circuit in the above embodiment is a general MODEM
Since MODEM has a 2-input and 2-output terminal configuration, 9 items are provided, and MODEM f: may be omitted if a different item is used. [Effects of the Invention] As explained above, according to the present invention, the transmission frequency is changed and assigned from the master station to the slave station or from the slave station to the master station, and the master station that receives the signal from the slave station uses the frequency of the master station. Since the structure is configured so that the transmission is transmitted to other slave stations by using It is possible to provide an information transmission system that can be adjusted to a semi-fixed transmission or reception level and has reliability equivalent to that of the conventional polling method. 4. Brief description of the drawings FIG. 1 is a block diagram of one embodiment of the information transmission system according to the present invention, FIG. 2 is a time chart for explaining the operation, and FIG. 3 is a block diagram of another embodiment of the master station. FIG. 4 is a system diagram showing the connection relationship between a master station and a slave station, FIG. 5 is a configuration example diagram illustrating a conventional information transmission system, and FIG. 6 is a side view of the configuration of one station. 10...Master station 11-1t...Slave station 21
~2m...Slave station k1~kn...Slave station 104T
, 114T, 214T... transmitters 104R, 114R
, 214R...Receiver 101.111.211...
Modulator 102.112.212...Demodulator 103', 113', 213'...Brancher 106.1
07...OR circuit patent applicant Toshiba Corporation Patent attorney Norio Ishii Figure 1 Figure 3 Figure 6 Foil Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)制御所装置と複数の被制御所装置とを1対又は2
対の伝送路で接続し、前記各被制御所装置が伝送路に対
してマルチドロップ方式で接続され、前記制御所装置及
び被制御所装置は送信信号を送出する送信器と、送信信
号を変調する変調器と、伝送されてきた信号を復調する
復調器と、復調信号を受信する受信器とを少なくとも備
えた遠方監視制御装置において、前記制御所装置の送信
器と変調器との間に論理和回路を設け、その論理和回路
の入力としては前記送信器からの送信要求信号と前記各
被制御所装置からの変調信号を復調器を介して受信した
キャリア検出信号とすると共に、前記論理和回路の出力
を変調器の新たな送信要求信号として接続し、前記被制
御所装置からの変調信号を制御所装置で受信したとき、
制御所装置は全ての被制御所装置に対してキャリア信号
を送信し、送信をしていない他の被制御所装置が送信を
開始するとき、前記キャリア信号の有無を検出し、キャ
リア信号が伝送路にないとき送信を開始し、キャリア信
号があるときは他局が送信中であると認識し、前記条件
のもとに被制御装置が送信を開始した後は、前記キャリ
ア信号の有無に拘らず送信を継続することを特徴とする
遠方監視制御装置。
(1) One or two pairs of control center equipment and multiple controlled equipment
Each of the controlled station devices is connected to the transmission path in a multi-drop manner, and the control center device and the controlled station device have a transmitter that sends out a transmission signal, and a transmitter that modulates the transmission signal. A remote monitoring and control device comprising at least a modulator that demodulates a transmitted signal, a demodulator that demodulates a transmitted signal, and a receiver that receives a demodulated signal. A sum circuit is provided, and the input to the OR circuit is a carrier detection signal received via a demodulator of the transmission request signal from the transmitter and the modulation signal from each of the controlled station devices, and When the output of the circuit is connected as a new transmission request signal of the modulator and the modulated signal from the controlled station device is received by the control station device,
The control center device transmits a carrier signal to all controlled center devices, and when another controlled center device that is not transmitting starts transmitting, it detects the presence or absence of the carrier signal, and the carrier signal is transmitted. The controlled device starts transmitting when there is no carrier signal, and recognizes that another station is transmitting when there is a carrier signal, and after the controlled device starts transmitting under the above conditions, regardless of the presence or absence of the carrier signal. A remote monitoring and control device characterized in that it continues transmitting without any interruption.
(2)前記したものと異なるもう一組の論理和回路を設
け、その論理和回路の入力は、制御所装置の送信器から
の変調パルス入力信号と、被制御所装置から復調器を介
して受信した復調パルス出力信号にすると共に、前記論
理和回路の出力を復調器の変調パルス入力として接続し
たことを特徴とする特許請求の範囲第1項記載の遠方監
視制御装置。
(2) Another set of OR circuits different from those described above is provided, and the inputs of the OR circuit are the modulated pulse input signal from the transmitter of the control center equipment and the input signal from the controlled center equipment via the demodulator. 2. The remote monitoring and control device according to claim 1, wherein the received demodulated pulse output signal is output, and the output of the OR circuit is connected as a modulated pulse input of a demodulator.
(3)伝送路が1対であるとき、制御所側と被制御所側
の各変調周波数を変えたことを特徴とする特許請求の範
囲第1項記載の遠方監視制御装置。
(3) The remote monitoring and control device according to claim 1, wherein when there is a pair of transmission paths, the modulation frequencies on the control center side and the controlled station side are different.
JP60296626A 1985-12-27 1985-12-27 Information transmission system Expired - Lifetime JPH0632518B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60296626A JPH0632518B2 (en) 1985-12-27 1985-12-27 Information transmission system
KR1019860011383A KR910000699B1 (en) 1985-12-27 1986-12-27 Data information transmission system
AU67035/86A AU573998B2 (en) 1985-12-27 1986-12-30 Information tx system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296626A JPH0632518B2 (en) 1985-12-27 1985-12-27 Information transmission system

Publications (2)

Publication Number Publication Date
JPS62155696A true JPS62155696A (en) 1987-07-10
JPH0632518B2 JPH0632518B2 (en) 1994-04-27

Family

ID=17835979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296626A Expired - Lifetime JPH0632518B2 (en) 1985-12-27 1985-12-27 Information transmission system

Country Status (3)

Country Link
JP (1) JPH0632518B2 (en)
KR (1) KR910000699B1 (en)
AU (1) AU573998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022920A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Plant monitoring system, plant monitoring device, data aggregating device thereof, and terminal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116974233B (en) * 2023-09-19 2024-01-19 西安热工研究院有限公司 Dual-channel Profibus-DP master station system and design method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642630A (en) * 1982-12-28 1987-02-10 At&T Bell Laboratories Method and apparatus for bus contention resolution
JPS6162263A (en) * 1984-09-04 1986-03-31 Toshiba Corp Information transmitting system
JPS61145995A (en) * 1984-12-20 1986-07-03 Toshiba Corp Line concentration and line distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022920A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Plant monitoring system, plant monitoring device, data aggregating device thereof, and terminal device

Also Published As

Publication number Publication date
AU6703586A (en) 1987-07-02
AU573998B2 (en) 1988-06-23
KR870006761A (en) 1987-07-14
KR910000699B1 (en) 1991-01-31
JPH0632518B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
JPS5899046A (en) Star-type communication network
JPS62155696A (en) Remote supervisory and controlling equipment
US4683471A (en) Data bus pilot tone
CN112583454A (en) Multi-antenna automatic selection system and method
JPS63187746A (en) Constituting method for radio local area network
KR960002844B1 (en) Signal transformation device for powerline communication
JPS61222344A (en) Waiting time setting device for data transmission system
JPH0513411B2 (en)
JPS61281729A (en) Receiver fauly decision circuit for radio relay device
JP2546984B2 (en) Wireless communication control system
JPH0671267B2 (en) Remote monitoring controller
JPS6367830A (en) Level adjustment system
JPS59132258A (en) Data communication system
JPS58130688A (en) Remote supervisory system
JPH066355A (en) Node interface equipment
JPS61270930A (en) Wireless transmission system
JPS611142A (en) Data transmission equipment
JPH0576071A (en) Remote controlling system
JPS5842327A (en) Controlling system for remote folding release
JPH0624329B2 (en) Data communication method
JPH0263237A (en) Data communication system
JPH0292041A (en) Frame collision preventing method
JPH05316161A (en) Transmission/reception method
JPH04336827A (en) Transceiver for transmission
JPS56103545A (en) Transmission output controlling system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term