JPS62152421A - Self-propelling cleaner - Google Patents

Self-propelling cleaner

Info

Publication number
JPS62152421A
JPS62152421A JP29523385A JP29523385A JPS62152421A JP S62152421 A JPS62152421 A JP S62152421A JP 29523385 A JP29523385 A JP 29523385A JP 29523385 A JP29523385 A JP 29523385A JP S62152421 A JPS62152421 A JP S62152421A
Authority
JP
Japan
Prior art keywords
self
moving surface
speed sensor
light
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29523385A
Other languages
Japanese (ja)
Inventor
秀隆 藪内
小林 保道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29523385A priority Critical patent/JPS62152421A/en
Publication of JPS62152421A publication Critical patent/JPS62152421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、清掃機能と移動機能とを備え、床面の清掃
を行なう自走式掃除機に関するものである0 従来の技術 従来より、掃除機に移動機能を付加して清掃時の操作性
の向上を図った掃除機が開発されている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a self-propelled vacuum cleaner that is equipped with a cleaning function and a moving function and that cleans floors. 2. Description of the Related Art Vacuum cleaners have been developed that have a moving function added to improve operability during cleaning.

特に最近では、これにマイクロコンピュータト各種セン
サ類を搭載することにより、清掃場所の移動を自分で判
断しつつ清掃を行なう、いわゆる自立誘導型の自走式掃
除機の開発も行なわれている。
Particularly recently, self-propelled vacuum cleaners of the so-called self-guided type have been developed, which are equipped with various microcomputer sensors to perform cleaning while determining the movement of the cleaning area on their own.

この種の自走式掃除機では、左右の走行輪にロータリエ
ンコーダ等を接続して走行輪の回転数から移動速度およ
び移動距離を計測するととも、移動方向を決定し、本体
周囲に超音波等を利用した障害物検知上ンサを備えて障
害物回避を行なっているのが通常である。・また、移動
方向の計測をより確実にするためにガスレートジャイロ
等のジャイロセンサを付加しているものもある。
In this type of self-propelled vacuum cleaner, a rotary encoder or the like is connected to the left and right running wheels to measure the moving speed and distance from the number of rotations of the running wheels. Usually, obstacles are avoided using an obstacle detection sensor.・Also, some models are equipped with a gyro sensor such as a gas rate gyro to more reliably measure the direction of movement.

発明が解決しようとする問題点 しかし、このような方式のものでは移動距離の計測を走
行輪の回転数のみに頼っているため、走竹輪と移動面と
のすべりによる計測誤差は避けられないものであった。
Problems to be Solved by the Invention However, with this type of system, measurement of the distance traveled relies solely on the number of rotations of the running wheels, so measurement errors due to slippage between the running bamboo wheels and the moving surface are unavoidable. Met.

したがって、本来直進すべきコースを徐々に左右にずれ
て移動したり、移動距離が長くなると誤差が累積して位
置判断ができなくなり清掃のやり残しや誤動作を行なう
という問題があった。特に自走式掃除機の場合、清掃用
の回転ブラシ等による外力を受けやすい上、移動面が限
定されないため、例えば、ワックスがけをした床面や凹
凸のあるじゅうたん面では走行輪のすべりが大きく、自
立誘導による移動はほとんど不可能であった。また、走
行輪にかかる重力荷重を大きくしたり、走行輪に凹凸を
設けて接地抵抗を大きくして走行輪のすべりを抑えて移
動距離の計測誤差を小さくする方法も考えられるが、移
動面によっては畳やじゅうたん等のように傷付きやすい
ものがあり、これにも限界があった。
Therefore, if the machine gradually deviates from the course it should normally travel to the left or right, or if the moving distance becomes long, errors will accumulate, making it impossible to judge the position, resulting in unfinished cleaning or malfunctions. Particularly in the case of self-propelled vacuum cleaners, they are susceptible to external forces from rotating cleaning brushes, etc., and the surface on which they move is not limited. , self-guided locomotion was almost impossible. In addition, methods can be considered to increase the gravitational load applied to the running wheels or provide unevenness on the running wheels to increase the ground resistance to suppress slipping of the running wheels and reduce the error in measuring the distance traveled, but depending on the moving surface. However, there were materials that were easily damaged, such as tatami mats and carpets, and there were limits to this as well.

そこで、本発明はいかなる移動面においても、走行輪の
すべりに関係なく自立誘導によって移動し、移動面をく
まなく清掃できるとともに移動面を傷付けることのない
自走式掃除機を提供するものである。
Therefore, the present invention provides a self-propelled vacuum cleaner that can move on any moving surface by self-guided guidance regardless of the slippage of the running wheels, can thoroughly clean the moving surface, and does not damage the moving surface. .

問題点を解決するだめの手段 上記問題点を解決する本発明の技術的手段は、移動方向
を検知するジャイロセンサと、移動面からの反射光を受
光して移動面との相対速度を検知する速度センサとを具
備し、上記速度センサは移動面と平行な平面内の本体左
右中央部に1個とを設けるとともに、さらに上記ジャイ
ロセンサと速度センサからの信号を処理して操舵装置に
信号を出力する操舵制御回路を配設したものである。
Means for Solving the Problems Technical means of the present invention for solving the above problems include a gyro sensor that detects the direction of movement, and a gyro sensor that detects the relative speed with the moving surface by receiving reflected light from the moving surface. and a speed sensor, one of which is provided at the left and right center of the main body in a plane parallel to the plane of movement, and further processes signals from the gyro sensor and speed sensor to send a signal to the steering device. It is equipped with a steering control circuit that outputs output.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、ジャイロセンサによって移動方向を、また速
度センサによって移動面との相対速度を検知することに
より掃除機の位置と方向を計測するものであり、左右の
走行輪の回転数から間接的に位置と方向を計測するので
はなく直接的にしかも非接触でこれらを計測できるため
、走行輪のすべりは位置判断とは無関係になる。また、
速度センサは移動面と平行な平面内の本体左右中央部に
備えることにより、方向転換時および方向修正時の移動
距離の計測誤差は最小になる。従って、例え走行輪のす
べりやすい移動面であっても自立誘導によって移動して
くまなく清掃することができる。
In other words, the position and direction of the vacuum cleaner are measured by detecting the direction of movement using a gyro sensor and the relative speed to the moving surface using a speed sensor. Rather than measuring direction, these can be measured directly and without contact, so wheel slippage is irrelevant to position determination. Also,
By providing the speed sensor at the center of the left and right sides of the main body in a plane parallel to the plane of movement, errors in measuring the moving distance during direction changes and direction corrections are minimized. Therefore, even if the running wheels are on a slippery moving surface, they can be moved and thoroughly cleaned by self-guided guidance.

実施例 以下、その実施例を添付図面にもとづいて説明する0 第1〜4図において、1は自走式掃除機の本体、2は電
動送風機、3はその吸引側に配設したフィルタで、集塵
室4内に位置させである。この集塵室4はホース6を介
して本体1の下方に設けたノズル6と接続している。ノ
ズル6には吸込ロアが設けられ、その前部には移動面A
のゴミを吸込ロアへかき込む回転ブラシ8が、後部には
固定ブラシ9がそれぞれ取付けられている。また、本体
1の両側で、しかもノズル6の左右に位置してサイドブ
ラシ10L、10Rが取付けられており、回転して本体
1左右の床面のゴミf吸込ロアへ導くようになっている
。11L、11Rはそれぞれ本体1左右に設けられた走
行輪で、それぞれ左右の駆動モータ12L、12Rと連
結している。13は本体1の底面に回動自在に取付けら
れた補助輪である。14は蓄電池等の電源、16は操舵
制御回路である。16は本体1の底面の走行輪11Lと
11Rを結ぶ線上の中央部に取付けられた速度センサで
、移動面Aからの反射光を受光する受光体を有し操舵制
御回路15と接続している。17゜ぞれ本体1の前面、
左右側面に2個ずつ取付けられた障害物検知セ/すで、
超音波送受信素子または発光体と受光体等からなり障害
物の有無または障害物までの距離を検知する。20は本
体1内に取付けられたジャイロスコープ、ガスレートジ
ャイロ、振動型ジャイロ等のジャイロセンサで、方向変
換時の角度変位を検知する。また、各種センサ16〜2
0および駆動モータ12L、12Rは第4図に示すよう
に操舵制御回路16と接続して本体1の移動制御を行な
っている。
EXAMPLES Below, the examples will be explained based on the attached drawings. In Figures 1 to 4, 1 is the main body of a self-propelled vacuum cleaner, 2 is an electric blower, 3 is a filter disposed on the suction side, It is located inside the dust collection chamber 4. This dust collection chamber 4 is connected via a hose 6 to a nozzle 6 provided below the main body 1. The nozzle 6 is provided with a suction lower, and a moving surface A is provided in front of the lower suction lower.
A rotary brush 8 is attached to the rear part of the rotary brush 8 to sweep dirt into the suction lower, and a fixed brush 9 is attached to the rear part. Further, side brushes 10L and 10R are attached to both sides of the main body 1, and located on the left and right sides of the nozzle 6, so that they rotate and guide dirt f on the floor surface on the left and right sides of the main body 1 to the suction lower. 11L and 11R are running wheels provided on the left and right sides of the main body 1, respectively, and are connected to left and right drive motors 12L and 12R, respectively. 13 is an auxiliary wheel rotatably attached to the bottom surface of the main body 1. 14 is a power source such as a storage battery, and 16 is a steering control circuit. A speed sensor 16 is attached to the center of the bottom of the main body 1 on a line connecting the running wheels 11L and 11R, and has a light receiving body for receiving reflected light from the moving surface A, and is connected to the steering control circuit 15. . 17° each on the front of main body 1,
Two obstacle detection units are installed on the left and right sides.
It consists of an ultrasonic transmitting/receiving element or a light emitter and a photoreceptor, etc., and detects the presence or absence of an obstacle or the distance to the obstacle. A gyro sensor 20, such as a gyroscope, a gas rate gyro, or a vibration type gyro, is installed in the main body 1 and detects angular displacement during direction change. In addition, various sensors 16 to 2
0 and drive motors 12L and 12R are connected to a steering control circuit 16 to control the movement of the main body 1, as shown in FIG.

ここで、速度センサ16は例えば可視光、赤外光等の発
光体と、移動面Aからの反射光を受光するレンズ(また
は光ファイバー)と、受光体とからなるいわゆる空間フ
ィルタ速度センサであって、大きく分類すると光学式と
レーザ式の2方式がある。
Here, the speed sensor 16 is a so-called spatial filter speed sensor consisting of a light emitter of visible light, infrared light, etc., a lens (or optical fiber) that receives reflected light from the moving surface A, and a light receiver. Broadly speaking, there are two types: optical type and laser type.

第6図は光学式速度上ンサを示し、21はランプ、LE
D等の発光体、22はレンズ、23はフォトダイオード
、太陽電池等の受光体、24は周波数分析回路、25は
速度演算回路である。このものでは、発光体21の発光
によって移動面Aの像がレンズ22を介して受光体23
上に結像される。このとき速度センサ16がBの方向へ
移動すると、その移動によって受光体23上の像も移動
するため、受光体23からはこの移動に応じた信号が出
力される。この出力信号の周波数を周波数分析回路26
で分析して得られたピーク周波数が移動速度に比例する
ことから速度演算回路26によって移動速度としての出
力が得られるものである。
Figure 6 shows an optical velocity sensor, 21 is a lamp, LE
22 is a lens, 23 is a photoreceptor such as a photodiode or solar cell, 24 is a frequency analysis circuit, and 25 is a speed calculation circuit. In this device, the image of the moving surface A is transmitted through the lens 22 to the photoreceptor 23 by the light emission from the light emitter 21.
imaged on top. At this time, when the speed sensor 16 moves in the direction B, the image on the photoreceptor 23 also moves, and the photoreceptor 23 outputs a signal corresponding to this movement. The frequency of this output signal is determined by the frequency analysis circuit 26.
Since the peak frequency obtained by analysis is proportional to the moving speed, the speed calculating circuit 26 can obtain an output as the moving speed.

第6図はレーザ式速度センサの概略構成図で、26は半
導体レーザ等のレーザ発光体、27はこれと接続して移
動面Aにレーザ光を誘導して照射する発光側光ファイバ
ー、28は移動面Aで反射したレーザ光を受光する複数
の光ファイバーからなる光フアイバー列、29.30は
光フアイバー列28と1本おきに接続して移動面Aから
の反射レーザ光を受光するフォトダイオード等の受光体
、31は差動増幅器、32は速度演算回路である。
FIG. 6 is a schematic configuration diagram of a laser speed sensor, in which 26 is a laser light emitting body such as a semiconductor laser, 27 is a light emitting side optical fiber that is connected to this and guides and irradiates a laser beam to the moving surface A, and 28 is a moving side optical fiber. An optical fiber array 29.30 is composed of a plurality of optical fibers that receive the laser beam reflected from the surface A, and 29.30 is a photodiode or the like that is connected every other fiber to the optical fiber array 28 and receives the reflected laser beam from the moving surface A. 31 is a differential amplifier, and 32 is a speed calculation circuit.

この場合は、レーザ発光体26で発光したレーザ光は光
ファイバー27を介して移動面Aに照射される。このと
き、移動面A上には照射光と移動面Aからの乱反射光と
によってレーザ光特有の干渉模様(スペックルパターン
)が生じる。この干渉模様を光フアイバー列28でピッ
クアップするとともに、2つの受光体29.30に誘導
する。この干渉模様は、例えば速度センサ16がBの方
向へ移動すると光フアイバー列28から見るとBと反対
方向へ移動する。したがって、速度センサ16の移動に
応じた信号が受光体29.30から出力され、これを差
動増幅器31全通してその出力パルス数を速度演算回路
32でカウントすることにより移動速度としての出力が
得られる。
In this case, the laser light emitted by the laser emitter 26 is irradiated onto the moving surface A via the optical fiber 27. At this time, an interference pattern (speckle pattern) unique to laser light is generated on the moving surface A by the irradiated light and the diffusely reflected light from the moving surface A. This interference pattern is picked up by the optical fiber array 28 and guided to two photoreceptors 29 and 30. For example, when the speed sensor 16 moves in the direction B, this interference pattern moves in the direction opposite to B when viewed from the optical fiber array 28. Therefore, a signal corresponding to the movement of the speed sensor 16 is output from the photoreceptor 29, 30, which is passed through the differential amplifier 31, and the number of output pulses is counted by the speed calculation circuit 32, thereby outputting the movement speed. can get.

以上、2例の速度センサについて述べたが、要は、移動
面Aの結像の移動か、移動面A上に生じた干渉模様の移
動かの差はあるが、移動面Aからの反射光を受光体によ
って受光し移動速度を演算するという基本原理は同一で
あり、具体的な構成はこの他にもいくつかの方式がある
The two examples of speed sensors have been described above, but the point is that the reflected light from the moving surface A is different from the movement of the image formed on the moving surface A and the movement of the interference pattern generated on the moving surface A. The basic principle of receiving light by a photoreceptor and calculating the moving speed is the same, but there are several other concrete configurations.

以上のように構成された自走式掃除機について、以下そ
の動作を説明する。
The operation of the self-propelled vacuum cleaner configured as above will be described below.

例えば、第7図に示すような掃除場所に本発明の自走式
掃除機を置いたとすると、まず、本体1の前面、左右側
面に取付けられた障害物検知セン周囲壁Ci検知しなが
ら矢印りに示すように、周囲壁Cに沿って移動面A上を
移動しつつ清掃を行なう。このとき、本体1の左右中央
部に取付けられた速度センサ16によって移動面Aに対
する相対速度を検知することにより移動距離を、またジ
ャイロセンサ2oによって移動方向を計測すると同時に
操舵制御回路15に設けられた記憶回路に順次記憶して
いく。したがって、周囲壁Cに沿って一周し、もとの場
所へ戻ったときには掃除場所の形状と大きさが記憶され
ている。また1、たとえ移動面Aがすべりやすぐ走行輪
11L、11Rがすべりながら移動したとしても、位置
と方向の計測は走行輪11L、11Rとは無関係であり
、計測誤差が大きくなることはない。
For example, if the self-propelled vacuum cleaner of the present invention is placed at a cleaning place as shown in FIG. As shown in the figure, cleaning is performed while moving on the moving surface A along the surrounding wall C. At this time, the speed sensor 16 attached to the left and right center portions of the main body 1 detects the relative speed to the moving surface A to measure the moving distance, and the gyro sensor 2o measures the moving direction. The information is sequentially stored in the memory circuit. Therefore, when the robot goes around the surrounding wall C and returns to the original location, the shape and size of the cleaning location is memorized. Further, 1. Even if the moving surface A slides or the running wheels 11L and 11R move while sliding, the measurement of the position and direction is unrelated to the running wheels 11L and 11R, and the measurement error will not become large.

このように周囲壁Cに沿って一周しもとの場所・\戻る
と、次は第8図に示すように、対向壁C1に向って直進
し、対向壁C1と一定の距離まで接近すると矢印Eに示
すように90°方向変換を2回行ない、再び次の対向壁
C2に向って直進する。
After going around the surrounding wall C in this way and returning to the original location, the next step is to move straight towards the opposing wall C1, as shown in Figure 8, and when you get close to the opposing wall C1 at a certain distance, the arrow As shown in E, the vehicle makes two 90° direction changes and then moves straight again toward the next opposing wall C2.

この直進時および90°方向変換時はジャイロセンサ2
0によって方向制御されるため、たとえ走行輪11L、
11Rがすべっても方向を誤ることはない。掃除機が次
の対向壁C2と一定距離まで接近すると再び矢印Fに示
すように90°方向変換を2回行ない以下上記の動作を
繰返し、第9図の矢印Gが示すように掃除場所全く壕な
く清掃することができる。
When traveling straight and changing direction by 90°, gyro sensor 2
Since the direction is controlled by 0, even if the running wheels 11L,
Even if 11R slips, it will not lead you in the wrong direction. When the vacuum cleaner approaches the next opposing wall C2 to a certain distance, it changes direction twice by 90 degrees as shown by arrow F, and then repeats the above operation until the cleaning area is completely dug out as shown by arrow G in Figure 9. It can be cleaned without any problems.

また、上記に述べたジャイロセンサ20による一 方向制御は、一般に使用されるガスレートジャイロや振
動型ジャイロでは時間や温度による基準点のドリフトが
大きいため、本実施例では、直進移動に移る直前と90
°方向変換に移る直前に一時停止してジャイロセンサ2
0の基準点の較正を行なうようにして計測誤差の累積を
防止している。
Furthermore, in the one-way control by the gyro sensor 20 described above, since the commonly used gas rate gyros and vibration-type gyros have large drifts in the reference point due to time and temperature, in this embodiment 90
° Just before moving on to direction change, pause and press gyro sensor 2.
The zero reference point is calibrated to prevent measurement errors from accumulating.

なお、以上述べた移動手順そのものは一例であり、要は
移動方向を検知するジャイロセンサ20と本体1の左右
中央部に取付けた速度センサ16とによって、たとえ移
動面Aがすべりやすく走行輪11Lまたは11Rがすべ
ったとしても方向と位置の判断が可能になるものであり
移動手順はどんな方法であっても良い。
The movement procedure described above is just an example, and the point is that the gyro sensor 20 that detects the direction of movement and the speed sensor 16 attached to the left and right center portions of the main body 1 are used even if the moving surface A is slippery and the running wheels 11L or Even if 11R slips, the direction and position can be determined, and any movement procedure may be used.

発明の効果 以上のように本発明は、移動方向を検知するジャイロセ
ンサと2移動面からの反射光を受光して移動面との相対
速度を検知する速度センナとを具備し、この速度センサ
は移動面と平行な平面内の本体左右中央部に1個備える
とともに、上記ジャイロセンサと速度センサからの信号
を処理して操舵装置に信号を出力する操舵制御回路全備
えることにより、たとえ移動面がワックスがけをした床
面や凹凸のあるじゅうたん面等のすべりやすい面であっ
ても、走行輪のすべりに関係なく自立誘導によって移動
し、移動面を〈壕なく清掃し、しかも移動面を傷付ける
ことのない自走式掃除機が提供できるものである。
Effects of the Invention As described above, the present invention includes a gyro sensor that detects the direction of movement and a speed sensor that receives reflected light from two moving surfaces to detect the relative speed with the moving surface. One is provided at the left and right center of the main body in a plane parallel to the moving surface, and the steering control circuit that processes the signals from the gyro sensor and speed sensor and outputs the signal to the steering device is equipped, so even if the moving surface is Even on slippery surfaces such as waxed floors or uneven carpet surfaces, the machine moves by self-guided guidance regardless of the slippage of the running wheels, cleaning the moving surface without any grooves and damaging the moving surface. It is possible to provide a self-propelled vacuum cleaner without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の自走式掃除機の側断面図、
第2図は同平面図、第3図は同底面図、第4図は同自走
式掃除機の各部分の接続を示すブロック図、第5図は光
学式速度センサの概略構成図、第6図はレーザ式速度セ
ンサの概略構成図、第7〜9図は同自走式掃除機の移動
手順の一例を示す説明図である。 1・・・・・本体、11L、11R,12L、12R・
・・・・駆動装置、操舵装置(走行輪、駆動モータ)、
16・・・・・・操舵制御回路、16・・・・・・速度
センサ、2Q・・・・・・ジャイロセンサ、21.26
・・印・発光体、22・・・・・レンズ、23,29.
30・・−受光体、28・・・・・光ファイバー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
 図             /一本体11F−−−
゛走行輪 1−−一本体 20−一−ジャイU11!ンサ 第3図 第5図 I6−−−速度センサ 21−  発九体 z6−−−レーナ発光俸 第7図 Δ 第8図 第9図
FIG. 1 is a side sectional view of a self-propelled vacuum cleaner according to an embodiment of the present invention;
Fig. 2 is a plan view of the same, Fig. 3 is a bottom view of the same, Fig. 4 is a block diagram showing the connection of each part of the self-propelled vacuum cleaner, Fig. 5 is a schematic configuration diagram of the optical speed sensor, FIG. 6 is a schematic configuration diagram of the laser speed sensor, and FIGS. 7 to 9 are explanatory diagrams showing an example of the movement procedure of the self-propelled vacuum cleaner. 1...Main body, 11L, 11R, 12L, 12R・
・・・・Drive device, steering device (running wheels, drive motor),
16... Steering control circuit, 16... Speed sensor, 2Q... Gyro sensor, 21.26
...Mark/Light emitter, 22...Lens, 23, 29.
30...-photoreceptor, 28... optical fiber. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure / Main body 11F ---
゛Running wheel 1--1 body 20-1-Jai U11! Sensor Fig. 3 Fig. 5 I6 --- Speed sensor 21 - Emission body z6 --- Lena light emission figure Fig. 7 Δ Fig. 8 Fig. 9

Claims (2)

【特許請求の範囲】[Claims] (1)本体を移動させる駆動装置と、移動方向を変える
操舵装置と、清掃装置と、電源と、移動方向を検知する
ジャイロセンサとを有し、移動面からの反射光を受光し
て移動面との相対速度を検知する速度センサとを具備し
、この速度センサは移動面と平行な平面内の本体左右中
央部に1個設けるとともに、さらに上記ジャイロセンサ
と速度センサからの信号を処理して操舵装置に信号を出
力する操舵制御回路を配設した自走式掃除機。
(1) It has a drive device that moves the main body, a steering device that changes the direction of movement, a cleaning device, a power source, and a gyro sensor that detects the direction of movement. and a speed sensor that detects the relative speed with respect to the gyro sensor, and one speed sensor is provided at the left and right center of the main body in a plane parallel to the moving surface, and further processes signals from the gyro sensor and the speed sensor. A self-propelled vacuum cleaner equipped with a steering control circuit that outputs signals to the steering device.
(2)速度センサは、可視光または赤外光を発光する発
光体と、移動面からの反射光を受光するレンズまたは光
ファイバーと、受光体とからなる特許請求の範囲第1項
記載の自走式掃除機。
(2) The speed sensor is self-propelled according to claim 1, which comprises a light emitter that emits visible light or infrared light, a lens or optical fiber that receives reflected light from a moving surface, and a light receiver. Vacuum cleaner.
JP29523385A 1985-12-25 1985-12-25 Self-propelling cleaner Pending JPS62152421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29523385A JPS62152421A (en) 1985-12-25 1985-12-25 Self-propelling cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29523385A JPS62152421A (en) 1985-12-25 1985-12-25 Self-propelling cleaner

Publications (1)

Publication Number Publication Date
JPS62152421A true JPS62152421A (en) 1987-07-07

Family

ID=17817934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29523385A Pending JPS62152421A (en) 1985-12-25 1985-12-25 Self-propelling cleaner

Country Status (1)

Country Link
JP (1) JPS62152421A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Similar Documents

Publication Publication Date Title
JPS62109528A (en) Self-propelling type cleaner
JPS62152421A (en) Self-propelling cleaner
JPS62152424A (en) Self-propelling cleaner
US6124694A (en) Wide area navigation for a robot scrubber
EP1368715B1 (en) Method and device for determining position of an autonomous apparatus
US6389329B1 (en) Mobile robots and their control system
EP3167341B1 (en) Method for detecting a measurement error in a robotic cleaning device
JPH0732751B2 (en) Self-propelled vacuum cleaner
US20060080802A1 (en) Self-propelled cleaner charging-type travel system and charging-type travel system
US20020120364A1 (en) Mobile robots and their control system
DK2764812T3 (en) Cleaning Robot.
US20200031226A1 (en) Estimating wheel slip of a robotic cleaning device
JP2006516771A (en) Autonomous machine
JPH0732752B2 (en) Self-propelled vacuum cleaner
US8049902B2 (en) Mobile vehicle
JP2020010982A (en) Self-propelled cleaner
WO2019087378A1 (en) Self-propelled vacuum cleaner
JP3079686B2 (en) Mobile work robot
JP3314469B2 (en) Self-propelled vacuum cleaner
JP3227710B2 (en) Mobile work robot
JP3189317B2 (en) Mobile work robot
JP3191334B2 (en) Mobile work robot
KR950012988B1 (en) Method of controlling running of auto-run cleaner
JP3632618B2 (en) Mobile work robot
KR100504861B1 (en) Supersnic senser handling method of moving robot