JPS62148642A - System for analysis of living body signal - Google Patents

System for analysis of living body signal

Info

Publication number
JPS62148642A
JPS62148642A JP60289869A JP28986985A JPS62148642A JP S62148642 A JPS62148642 A JP S62148642A JP 60289869 A JP60289869 A JP 60289869A JP 28986985 A JP28986985 A JP 28986985A JP S62148642 A JPS62148642 A JP S62148642A
Authority
JP
Japan
Prior art keywords
polarity
detection
biological
signals
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60289869A
Other languages
Japanese (ja)
Inventor
本間 正尚
桜井 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP60289869A priority Critical patent/JPS62148642A/en
Publication of JPS62148642A publication Critical patent/JPS62148642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体現象の刊1υrに好適な、生体信号解析
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a biological signal analysis method suitable for the publication of biological phenomena.

〔発明の概要] 本発明は、複数の生体(,1号の時間的相関関係を同一
時点の各瞬時値が所定の極111となる組合せの出現率
等を用いて定量化することにより、生体の活→す」状態
を容易に判定し得るようにしたものである。
[Summary of the Invention] The present invention provides a method for quantifying the temporal correlation of a plurality of living organisms (, No. This makes it easy to determine whether the device is active or active.

(従来の技術〕 従来、心電図、脳波等のように、生体の活動電位を直接
に記録し、または、+111管内圧のような医学的諸量
を、適宜のトランスジユーザを介して、電気信号に変換
して記録して、この記録された生体信号を診断、検査等
に便用することが広く行われ(いる。また、このような
生体信号をコンピュータで演算処理して古拙のパラメー
タをf4? ζ、生体粘りυ)の解析、診1tl[を行
なうことも従来から行われている。
(Prior art) Conventionally, action potentials of a living body are directly recorded, such as electrocardiograms and electroencephalograms, or various medical quantities, such as +111 intraluminal pressure, are recorded as electrical signals through appropriate transusers. It is widely practiced to convert and record the recorded biological signals for diagnostics, examinations, etc. In addition, such biological signals are processed by a computer and the old parameters are converted to f4. ? ζ, biological viscosity υ) and diagnosis 1tl[ have been conventionally performed.

例えば、脳波計においCは、脳波を・\りトル量とし’
(1Jtiえ、その人きさや向きに応じ゛(、陰1・″
ル線・11而に色分は表ボするものが、特開昭6o−+
63t;a8号として提案されている。また、他の例と
し”Cは1脳波の振11モ1、周波数、各周波数のヒス
I−グラム及び振幅分布、平均振11Vj出現率等の各
種のパラメータを表ノIマするごとができるものが市1
坂されζいる。
For example, in an electroencephalograph, C is the amount of brain waves.
(1Jti, depending on the person's personality and direction゛(、英1・″
The line 11 is marked with a blank color, and is published in JP-A No. 6 o-+.
63t; proposed as No. a8. In addition, as another example, "C" can be used to display various parameters such as the amplitude of one brain wave, frequency, hiss I-gram and amplitude distribution of each frequency, and the appearance rate of average amplitude 11Vj. City 1
There is a slope.

史には、脳波を2つの′d1極で検出して、2つの信号
の相関関係から脳の解JJ+を行なうことも試ゐられて
いる。
Historically, attempts have been made to detect brain waves at two 'd1 poles and perform brain analysis JJ+ from the correlation between the two signals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、脳波の発生源はマルチダイポールと考えられ
るので、脳を容積導体として捉えて、ヘクI・ル的手法
により解析を行なうことは困難であった。また、多種多
様のパラメータから1脳の異常のイ1無等を判断するた
めには、商度の専門知識及び経験が必要であり、専門家
でない者にとって脳波の)W析は極め゛ζ困難であった
。史には、脳波はその周波数及び波形が一定していない
ため、相関関係を定厨的に1にえ、解析に自効なパラメ
ータを得ることが困難であった。
However, since the source of brain waves is thought to be a multi-dipole, it has been difficult to treat the brain as a volumetric conductor and analyze it using Heckler's method. In addition, in order to judge whether a brain is abnormal or not based on a wide variety of parameters, a certain level of specialized knowledge and experience is required, and it is extremely difficult for non-experts to analyze brain waves. Met. Historically, since the frequency and waveform of brain waves were not constant, it was difficult to set the correlation constant to 1 and obtain parameters that were effective for analysis.

か\る問題点に鑑め、本発明の目的は、複雑な生体(X
号を容易に解析するごとのできる生体fK号解析方式を
提供するとごろにある。
In view of these problems, the purpose of the present invention is to
We are about to provide a biological fK number analysis method that can easily analyze each issue.

〔問題点を解決゛」゛るための手段〕[Means for solving problems]

本発明は、所定の時間長の複数の生体信号からこの複数
の生体(バ号の同一時点における各瞬時(11°1が所
定の極性を有する組合せを分別し、ごの分別された極セ
ト組合せの少なくとも一方の出現率等によって複数の生
体信号の時間的相関関係を表すようにした生体信号解析
方式である。
The present invention separates combinations having a predetermined polarity at each instant (11° 1) at the same point in time from a plurality of biological signals of a predetermined length of time, and combines the separated polar set combinations. This is a biological signal analysis method that expresses the temporal correlation of a plurality of biological signals by the appearance rate of at least one of the following.

〔作用〕[Effect]

か\る本発明によれば、所定の極性組合せの出現率等を
用いて複数の生体信号の時間的相関関係が定量化される
According to the present invention, the temporal correlation of a plurality of biological signals is quantified using the appearance rate of a predetermined polarity combination.

〔実施例〕〔Example〕

以ト、第1図〜第5図を参照しながら、本発明による生
体fg号解析方式を脳波に通用した一実施例について説
明する。
Hereinafter, an embodiment in which the biological fg analysis method according to the present invention is applied to brain waves will be described with reference to FIGS. 1 to 5.

本発明の一実施例の構成を第4図にボす。The configuration of one embodiment of the present invention is shown in FIG.

第4図においζ、複数の電極(11)、  (12)・
・・ (1n)によって検出された電イ)7変動が、電
極箱(2)内のバッファく図ボを省略)を介して、多チ
ヤンネル増幅器(3)に供給される。増幅器(3)の複
数の出力信号は、マルチプレクサ(4)によって時間的
に直列化され、A−D変換器(5)に順次供給される。
In Fig. 4, ζ, a plurality of electrodes (11), (12),
... (1n) is supplied to the multichannel amplifier (3) via a buffer in the electrode box (2). A plurality of output signals of the amplifier (3) are temporally serialized by a multiplexer (4) and are sequentially supplied to an A/D converter (5).

A−D変換器(5)の出力データはコンピュータの中央
処理装置(プロセツサ)(6)に供給される。10セツ
サ(6)にメモ1月7)が接続されると共に、表示記録
制御部(8)及びキーボード制御部(9)を介して、表
示部(10)、記録部(11) 、図ホを省略した磁気
記録部及びキーボー1”(12)が接続される。
The output data of the A/D converter (5) is supplied to the computer's central processing unit (processor) (6). 10 The memo (January 7) is connected to the setter (6), and the display section (10), recording section (11), and the figure H are connected via the display recording control section (8) and the keyboard control section (9). A magnetic recording section and keyboard 1'' (12), which are omitted, are connected.

脳波検出のためのljU皮上の電極配置部(37(検出
部位)は国際的に標準化されているが、本実施例におい
ては、第5図にボずような、左半球のFPI。
The electrode arrangement part (37 (detection part)) on the LJU skin for electroencephalogram detection is internationally standardized, but in this example, the FPI of the left hemisphere, as shown in Fig. 5, was used.

T]、C3及び01の11部位並びに右半球のFP2゜
′T”4.C4及び02の4部位が選択される。そしζ
、同図Aに不すように、左右両半球の名前、後部の各3
検出部位を選択してfIl枠誘導法による11つの検出
パターンP1〜F)→が形成される。また、間し113
にボー4−ように、左半球の′1゛3及びC3の両検出
部位からjJi極誘導法(破線で表示)により各1チヤ
ンネルの検出信号を得ると共に、FPI及びO】の両検
出部位から双極誘導法(実線C表示)により1チヤンネ
ルの検出信号を得て、3チヤン皐ルの検出信号の検出パ
ターンP5が形成される。
T], 11 sites of C3 and 01, and 4 sites of FP2゜'T''4.C4 and 02 of the right hemisphere are selected. Then ζ
, as shown in Figure A, the names of both the left and right hemispheres, and the names of the posterior three
By selecting the detection site, 11 detection patterns P1 to F) are formed by the fIl frame guidance method. Also, between 113
As shown in Figure 4, one channel of each detection signal is obtained from both the '1゛3 and C3 detection sites in the left hemisphere using the jJi pole induction method (indicated by the broken line), and one channel of detection signals are obtained from both the FPI and O] detection sites. One channel of detection signals is obtained by the bipolar induction method (indicated by solid line C), and a detection pattern P5 of three channels of detection signals is formed.

同様にして、右半球に検出パターンP6が形成される。Similarly, a detection pattern P6 is formed in the right hemisphere.

次に、第1図〜第3図を参照しながら、本実施例におけ
るコンピュータの機能について説明する。
Next, the functions of the computer in this embodiment will be explained with reference to FIGS. 1 to 3.

本実施例の機能ブロック図を第1図にネオ。この第1図
において、上述の8つの検出部位に対応4−る入力端子
(211)〜(21s )から8チヤンネルの検出信号
が前処理演算手段(22)に入力され(ステップ■)、
フィルタリング等によりノイス等の不要成分(対象外の
臓器等の生体信号も含まれる)や・\−スラインの動揺
等が除去されると共に、平均、整流等により各検出1,
7. I+の総和が零となるような基準直流レベルまた
は適宜の基準直流レベルが設定される等の前処理演算が
行われる(ン、テップ■)。l1ii処理演算手段(2
2)の8千ャン不ルの出力がパターン設定手1没(23
)に供給され、前出第5図に示すような6通りの検出パ
ターンP1〜P6が順次設定され、各検出パターンに対
応するiすi定の3チヤンネルの信号が順次出力され、
相関演算手段(24)に供給される(スアソプ(0)。
The functional block diagram of this embodiment is shown in Figure 1. In FIG. 1, 8 channels of detection signals are inputted to the preprocessing calculation means (22) from the 4-input terminals (211) to (21s) corresponding to the above-mentioned eight detection parts (step 2),
Unnecessary components such as noise (including biological signals from non-target organs, etc.) and fluctuation of the line are removed by filtering, etc., and each detection 1,
7. Preprocessing calculations are performed such as setting a reference DC level or an appropriate reference DC level such that the sum of I+ becomes zero (Step 2). l1ii processing calculation means (2
The output of 8,000 yen in 2) is the pattern setting hand 1 (23
), six detection patterns P1 to P6 as shown in FIG.
It is supplied to the correlation calculation means (24) (suasop(0)).

本実施例においては、各検出パターンの3千ヤン矛ルの
信号の時間的相関の演算は次のように行われる。
In this embodiment, the calculation of the temporal correlation of the 3,000-yen contradictory signals of each detection pattern is performed as follows.

例えば、第1の検出パターンP1を形成する3つの検出
部位T3.C3及びFPtの各検出信号(i?ij処理
済)SA、SR及びScが第3図A、  13及びCに
ボずように、時間と共にそれぞれの瞬時j辰幅及び極性
が変化しているものとする。これらの4g号SA、SR
及びS。を、例えばスクリーニングの場合、数秒間〜数
分間の測定期間にわたー。
For example, three detection sites T3 . . . forming the first detection pattern P1. Each detection signal (i?ij processed) of C3 and FPt (i?ij processed) SA, SR, and Sc has their instantaneous width and polarity changing over time, as shown in Figure 3 A, 13, and C. shall be. These 4g SA, SR
and S. For example, in the case of screening, over a measurement period of several seconds to several minutes.

ζ、4mSの周期で、同時にサンプリングを行なうと、
各サンプリング時点における各信号の枠外は第1表にボ
ずような8通りの組合せ(,11〜Q8となる。
When sampling is performed simultaneously at a period of ζ, 4 mS,
Outside the frame of each signal at each sampling time point are eight combinations (, 11 to Q8) as shown in Table 1.

第1表 相関′6?JW′手段(24)のデータ分別手段(25
)においζは、13つの検出信号SA、SB及びScの
任意のサンプリング時点のサンプル値の各組か、当該サ
ンブリンク時点の極性組合せQ【〜Q8毎に分別される
(ステップ■)。この分別されたサンプル値の佳慈の組
を(a*、7.  bij、  clj)  (i= 
l −N、  j = 1〜8.但しNは分別群によっ
て異なることがある)として、各振1qti演算乎没(
261)〜(26s)において、検出パターンP1の検
出信号の眼幅(ルートパワー)Kijが次の(1)式に
従って最初に6Q許される。
Table 1 Correlation '6? Data sorting means (25) of JW' means (24)
) The odor ζ is separated into each set of sample values at arbitrary sampling points of the 13 detection signals SA, SB, and Sc, or into each polarity combination Q[~Q8 at the sampling point in question (step ■). The Kaji set of these separated sample values is (a*, 7. bij, clj) (i=
l −N, j = 1-8. However, N may differ depending on the classification group), and each wave 1qti calculation is performed (
In 261) to (26s), the interpupillary distance (root power) Kij of the detection signal of the detection pattern P1 is first allowed to be 6Q according to the following equation (1).

・・・(11 ごのルー1−パワーKijから、次の(2)式で定養さ
れる各極性組合せQj毎の極性面積率Mjの演算が行わ
れる(ステップ■)。
...(11) From the rule 1-power Kij, the polarity area ratio Mj for each polarity combination Qj determined by the following equation (2) is calculated (step 2).

なお、解析の対象によっては、各サンプリング時点のル
ートパワーを求め1” (K i jを定数としζ)、
各極性組合せ毎の出現率を求めてもよい。
Depending on the target of analysis, the root power at each sampling point may be calculated as 1'' (ζ with K i j as a constant),
The appearance rate for each polarity combination may be determined.

上述のような相関演算手段(24)の出力、即ち、極性
面、偵イ4Mjが収束率/liJ算手段(27)に供給
され、次の(3)式により定AされるようなパターンP
1の収束率U[の演算が行われる。
The output of the correlation calculation means (24) as described above, that is, the polar plane, 4Mj, is supplied to the convergence rate/liJ calculation means (27), and the pattern P is determined by the following equation (3).
A convergence rate U[ of 1 is calculated.

[J 1−Ml +Mt         ・・・(3
)この(3)式から明らかなように、収束率は検出パタ
ーンの検出信号がすべて1にで、bる極性組合せ(ユ1
及び]1べて負である極性組合せ07のh性向れ’I 
”ICAの和である。測定時間が例えば数秒間のように
p、Iい場合、1111極性組合せQl及びQ?におけ
る極性面積率M1及びMlば一般的に等しくない。しか
しながら、測定時間が例えば数分間のように良くなると
、前述の前処理演算(ステップ■)の平均の効果が現れ
°ζ、両極性面禎率M1とMlとは略等しくなり、この
場合の収束率U1gは次の(4)式のように表される。
[J1-Ml+Mt...(3
) As is clear from equation (3), the convergence rate is determined when all the detection signals of the detection pattern are 1 and the polarity combination b (Y 1
and] h tendency 'I of polarity combination 07 where all 1 are negative
If the measurement time is p, I, for example, several seconds, the polar area ratios M1 and M1 in the 1111 polarity combinations Ql and Q? are generally not equal.However, if the measurement time is, for example, several seconds When the average efficiency of the pre-processing operation (step ■) described above appears, the bipolar conversion rates M1 and Ml become approximately equal, and the convergence rate U1g in this case is as follows (4 ) is expressed as the formula.

[J iJ!”−2M1’= 2M7      ・・
・(4)同様にして、他の5つの検出パターンP2〜P
6の収束率U2〜LJ6が求められ、更に、各検出パタ
ーンの収束率[J t〜U6の平均として、合計収束率
Uの演算が行われる(ステップ■)。
[JiJ! "-2M1'= 2M7...
・(4) Similarly, other five detection patterns P2 to P
The convergence rates U2 to LJ6 of 6 are determined, and the total convergence rate U is calculated as the average of the convergence rates [Jt to U6 of each detection pattern (step 2).

収束率演算子1没(27)の出力、即ち、各検出パター
ンP1〜P e、の収束率U1〜【ノロ止ひに合計収束
率Uは、解わ[対象に応じで、陰極線管(10)の画面
に例えば棒グラフ、ヒストダラム、4Ir線グラフ等ご
表ボされ、また、記録にル(11)等にリスI・形式や
プロット(経時的変化の場合)形式ご記録される(ステ
ップ■)。
The output of the convergence rate operator 1 (27), that is, the convergence rate U1 of each detection pattern P1 to P ) For example, bar graphs, histodarams, 4Ir line graphs, etc. are displayed on the screen, and the list I format and plot (in the case of changes over time) format are recorded in the record (11) etc. (Step ■) .

なお、11に析対象によっては、1脳の左、イーI半I
、ドの各1111部、各後部間の比・咬、或いは各前後
間の比・咬が行われるが、このような場合、同一極性の
組合ゼであるQl及びQ7による収束イシ等と同様に、
例えばQ3やQ5等のように、極12トが必ずしも一致
しない特定の組合せの極性面積率等を効果的に使用する
ことができる。
In addition, depending on the subject of analysis in 11, the left side of the brain, E I half I
, each 1111 part of C, the ratio/intersection between each rear part, or the ratio/intersection between each front and rear are performed, but in such a case, the same polarity is used as in the case of convergence with Ql and Q7, which are combinations of the same polarity. ,
For example, it is possible to effectively use a specific combination of polar area ratios, etc., such as Q3 and Q5, in which the poles do not necessarily match.

」−述のようにして得られた各検出パターンの収束率並
びに合計収束率等によっ”ζ、睡眠時、覚酸時等で変化
する精神作用の活性度に応じた脳の活動状況を解析する
ことができる。
- Analyze the state of brain activity according to the level of mental activity that changes during sleep, wakefulness, etc., based on the convergence rate of each detection pattern obtained as described above, the total convergence rate, etc. can do.

一般に、正常な脳は、その中心部の制御のトに活動して
いると考えられており、この場合、収束率及び合計収束
率はともに大きな値となり、その分布(頻度)は商収束
率領域に集中する。反対に、脳波の伝播異常、異所性ダ
イポール、大脳皮質障害等がある場合には、収束率が小
さくなって(Iζ収束率領域に分布が集中し、異常部位
に応じて、特定パターンの収束率の低トが顕著となる。
It is generally believed that a normal brain is active under the control of its central part, and in this case, both the convergence rate and the total convergence rate will be large values, and the distribution (frequency) will be in the quotient convergence rate region. Concentrate on. On the other hand, in the case of abnormal electroencephalogram propagation, ectopic dipole, cerebral cortical damage, etc., the convergence rate decreases (the distribution concentrates in the Iζ convergence rate region, and a specific pattern of convergence occurs depending on the abnormal location). The low rate becomes noticeable.

従って、本実施例によれば、収束率をパラメータとして
、必ずしも専門医でなくとも脳の活・1!J)の正常・
異常のrJ+定を短時間で容易に行なうことができる。
Therefore, according to this embodiment, by using the convergence rate as a parameter, even people who are not necessarily specialists can improve the brain activity. J) normality/
Abnormal rJ+ can be determined easily in a short time.

史に、各検出パターンの収束率の比較等により、異常部
位の検出ができると共に、υ、識しヘルの変化、各種賦
活時の変化、投薬効果等を定量的に把握して容易に判定
することができる。
Historically, abnormal areas can be detected by comparing the convergence rate of each detection pattern, and it is also possible to quantitatively understand changes in υ, discernment health, changes during various activations, medication effects, etc., and make judgments easily. be able to.

なお、上述の説明では、8つの電極配置部位から6つの
検出パターンを得る場合について説明したが、必要に応
じて、仕急数の電極の4:F:意の配置により佳怠のパ
ターンの組合を用いることができると共に、所望の1′
i、体用の検出領域を設定することもできる。
In addition, in the above explanation, the case where six detection patterns are obtained from eight electrode placement sites was explained, but if necessary, combinations of patterns of 4:F: of the shortest number of electrodes may be obtained according to the desired arrangement. can be used and the desired 1'
i. It is also possible to set a detection area for the body.

次に、第6図を参照しながら、本発明の他の実施例につ
いて説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

本発明の他の実施例の要部の構成を第6図にボす。この
第6図は第1図の相関演算手段(24)及び収束fX演
算手段(27)に相当するものであって、3つの入力端
子(30a ) 、  (30b )及び(30c )
からの前処理された3チヤンネルの入力信号が対応j°
る増幅器(31a ) 、  (31b )及び(31
c )に供給されると共に、対応する反転増幅器(41
a ) 。
The configuration of the main parts of another embodiment of the present invention is shown in FIG. This FIG. 6 corresponds to the correlation calculation means (24) and convergence fX calculation means (27) of FIG. 1, and has three input terminals (30a), (30b) and (30c).
The preprocessed 3-channel input signal from j°
amplifiers (31a), (31b) and (31
c) and the corresponding inverting amplifier (41
a).

(41,b)及び(41c )に夫々共通に供給される
(41,b) and (41c), respectively.

これらの反転増幅器は前出第1表の極性組合せに対応し
て設けられる。
These inverting amplifiers are provided corresponding to the polarity combinations shown in Table 1 above.

増幅器(31a ) 、  (31b )及び(31c
 )の各出力が自乗特性の伸長器(32a ) 、  
(32b )及び(32c )に供給されると共に、コ
ンパレータ(33a ) 。
Amplifiers (31a), (31b) and (31c)
), each output of which has a square characteristic (32a),
(32b) and (32c) as well as a comparator (33a).

(331+ ’)及び(33c)にそれぞれ共通に供給
される。各コンパレータ(33a)〜(33c)の出力
は共にアンド回路(34)に供給される。;)つの入力
端子(30a )〜(30c)の信号の極111がすべ
て止である場合、テント回路(34)の出力が“1”と
なって、スイッチ(35++ ) +  (35b )
及び(35c)が閉成され、伸長器(、’(2a)〜(
32(:)の各出力が加算器(36)を介し゛(1/2
来特Hのjト縮器(37)に供給される。圧縮器(37
)の出力は前出(1)式で表されるルートバリーであっ
て、これが積分器(38)において積分されて、前出の
極性組合せQlの極性面4責率M1に相当するものとな
る。
(331+') and (33c), respectively. The outputs of the comparators (33a) to (33c) are both supplied to an AND circuit (34). ;) When the signal poles 111 of the two input terminals (30a) to (30c) are all stopped, the output of the tent circuit (34) becomes "1" and the switch (35++) + (35b)
and (35c) are closed, and the stretchers (,'(2a)~(
Each output of 32 (:) is passed through an adder (36) to
It is supplied to the condenser (37) of the next generation H. Compressor (37
) is the root barry expressed by the above equation (1), which is integrated by the integrator (38) and becomes equivalent to the polarity surface 4 ratio M1 of the above polarity combination Ql. .

また、入力端子(30,+)〜(30(: ) 0肩i
−X号の極性がすべ°ζ負である場合、反転増111i
li器(41a )〜(4Lc)の出力は」−述と全く
同様にして積分z):(48)に供給され、極性組合せ
(ニアの極性面積率M7に相当するものが得られる。
In addition, input terminal (30, +) ~ (30 (: ) 0 shoulder i
If the polarity of -X is negative, the inversion increase 111i
The outputs of the li devices (41a) to (4Lc) are supplied to the integral z): (48) in exactly the same manner as described above, and a polarity combination (corresponding to the near polarity area ratio M7) is obtained.

内積分器(38)及び(48)の出力が加W器(39)
において加算されて、前出(3)式の収束率に相当する
ものが得られる。
The outputs of the inner integrators (38) and (48) are added to the W adder (39)
The convergence rate of equation (3) above is obtained.

なお、図ン賀を省略したが、他の極性組合せに対しても
、入力側に増幅器及び反転増幅器を適宜設けることによ
り、上述と同様の構成でそれぞれの極性面積率に相当す
る成分が得られる。従って、本実施例におい−(も、+
’+ij述の実)AI!例と同様に収束;↑・tを求め
ることができて、同様の効果を奏する。
Although the diagram is omitted, by appropriately providing an amplifier and an inverting amplifier on the input side for other polarity combinations, components corresponding to the respective polarity area ratios can be obtained with the same configuration as above. . Therefore, in this example, −(also, +
' + ij statement) AI! Convergence; ↑・t can be found as in the example, and the same effect is achieved.

以上、本発明を脳波に通用した実施例につい°ζ説明し
たが、誘発脳波等への応用もi’iJ能であり、更に、
本発明を他の生体信号波形、例えば心電図に応用した場
合、解析結果が定量的に明部にされるために、正常、異
IS゛の判断が容易となると共に、不整脈、伝導路障害
、心筋梗塞等の異常部位の検出にイ3″効である。
The embodiments in which the present invention was applied to electroencephalograms have been described above, but it is also possible to apply the invention to induced electroencephalograms, etc.
When the present invention is applied to other biological signal waveforms, such as electrocardiograms, the analysis results are quantitatively highlighted, making it easy to determine whether the IS is normal or abnormal. It is effective in detecting abnormal areas such as infarction.

(発明の効果〕 以−ヒd″C述のように、本発明によれば、同一時点の
各瞬時値が所定の極性を有する組合せの出現率等を用い
て、複数の生体信号の時間的相関関係を定量化すること
により、生体店ゴリ1状態を容易に判定するごとができ
る4F体信号解析方式が得られる。
(Effects of the Invention) As described below, according to the present invention, a plurality of biological signals are temporally determined by using the appearance rate of a combination in which each instantaneous value at the same time has a predetermined polarity. By quantifying the correlation, a 4F body signal analysis method can be obtained that can easily determine the state of the body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による生体信号1+′l折方式の一実施
例の構成をン1々ず機能ブロック図、第2図及び第3図
は本発明の一実施例の動作を説明するだめの流れ図及び
波形図、第4図は本発明の一実施例の構成をネオブロッ
ク図、第5図は本発明の説1す農こ供する路線平面図、
第6図は本発明の他の実施例の構成を示すブロック図で
ある。 (ム)はブロセソザ(中央処理装置)、(24)は相関
演算手段、(25)はデータ分別す段、(26)は振幅
演算手段、(27)は収束率演算手段である。
FIG. 1 is a functional block diagram showing the configuration of an embodiment of the biological signal 1+'l folding method according to the present invention, and FIGS. 2 and 3 are diagrams for explaining the operation of an embodiment of the present invention. Flowcharts and waveform diagrams, Figure 4 is a neo-block diagram of the configuration of an embodiment of the present invention, Figure 5 is a plan view of the route for agricultural use according to the present invention,
FIG. 6 is a block diagram showing the configuration of another embodiment of the present invention. (24) is a correlation calculation means, (25) is a data classification stage, (26) is an amplitude calculation means, and (27) is a convergence rate calculation means.

Claims (1)

【特許請求の範囲】 1、所定の時間長の複数の生体信号から該複数の生体信
号の同一時点における各瞬時値が所定の極性を有する組
合せを分別し、 この分別された極性組合せの少なくとも一方の出現率に
よって上記複数の生体信号の時間的相関関係を表すよう
にしたことを特徴とする生体信号解析方式。 2、上記分別された極性組合せの少なくとも一方の極性
面積率を得るようにした特許請求の範囲第1項記載の生
体信号解析方式。
[Claims] 1. From a plurality of biological signals of a predetermined length of time, a combination in which each instantaneous value at the same point in time of the plurality of biological signals has a predetermined polarity is separated, and at least one of the separated polarity combinations. A biological signal analysis method characterized in that the temporal correlation of the plurality of biological signals is expressed by the appearance rate of the biological signals. 2. The biological signal analysis method according to claim 1, wherein the polarity area ratio of at least one of the classified polarity combinations is obtained.
JP60289869A 1985-12-23 1985-12-23 System for analysis of living body signal Pending JPS62148642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60289869A JPS62148642A (en) 1985-12-23 1985-12-23 System for analysis of living body signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60289869A JPS62148642A (en) 1985-12-23 1985-12-23 System for analysis of living body signal

Publications (1)

Publication Number Publication Date
JPS62148642A true JPS62148642A (en) 1987-07-02

Family

ID=17748814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60289869A Pending JPS62148642A (en) 1985-12-23 1985-12-23 System for analysis of living body signal

Country Status (1)

Country Link
JP (1) JPS62148642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761858A (en) * 1992-07-09 1998-06-09 Muramoto Corporation Co., Ltd. Permanent form for placing basement concrete wall
JP2006325754A (en) * 2005-05-24 2006-12-07 Brain Research & Development:Kk Electroencephalogram (eeg) dipole tracing apparatus, eeg dipole tracing method, program for eeg dipole tracing, and storage medium storing the program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761858A (en) * 1992-07-09 1998-06-09 Muramoto Corporation Co., Ltd. Permanent form for placing basement concrete wall
JP2006325754A (en) * 2005-05-24 2006-12-07 Brain Research & Development:Kk Electroencephalogram (eeg) dipole tracing apparatus, eeg dipole tracing method, program for eeg dipole tracing, and storage medium storing the program

Similar Documents

Publication Publication Date Title
Von Rosenberg et al. Resolving ambiguities in the LF/HF ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV
Alghoul et al. Heart rate variability extraction from videos signals: ICA vs. EVM comparison
Muthuswamy et al. Higher-order spectral analysis of burst patterns in EEG
Meste et al. Ventricular late potentials characterization in time-frequency domain by means of a wavelet transform
Kamen et al. Physiology and interpretation of the electromyogram
AU658228B2 (en) Process and device for determining the health condition of a living being
US20070179396A1 (en) Method and System for Detecting and Classifying Facial Muscle Movements
Ahmadi-Pajouh et al. Fractal-based classification of human brain response to living and non-living visual stimuli
JPH07500983A (en) Brain biopotential analysis system and device
US3696808A (en) Method and system for brain wave analysis
CN107024987A (en) A kind of real-time human brain Test of attention and training system based on EEG
WO2006060727A2 (en) System and method for eeg imaging of cerebral activity using electrode sets
Levine et al. Description and validation of an ECG removal procedure for EMGdi power spectrum analysis
Castegnetti et al. Assessing fear learning via conditioned respiratory amplitude responses
Khalid et al. Epileptic MEG spikes detection using amplitude thresholding and dynamic time warping
Pandey et al. Nonlinear EEG analysis of mindfulness training using interpretable machine learning
Li et al. Detecting self-paced walking intention based on fNIRS technology for the development of BCI
GB2278686A (en) Analysis of ventricular late potential
Cejnek et al. Adaptive classification of eeg for dementia diagnosis
JPS62148642A (en) System for analysis of living body signal
KR100379571B1 (en) Detecting device of brain signal using the digital brain wave and displaying method thereof
CN115017996A (en) Mental load prediction method and system based on multiple physiological parameters
Hosseini A computational framework to discriminate different anesthesia states from EEG signal
JP2814969B2 (en) Active site detection device
Bonfim et al. Analysis of Electrical Neural Data Using MUSE and EEGLAB