JPS6214528A - Intermediate frequency amplifying circuit with electric field intensity detecting function - Google Patents

Intermediate frequency amplifying circuit with electric field intensity detecting function

Info

Publication number
JPS6214528A
JPS6214528A JP60153010A JP15301085A JPS6214528A JP S6214528 A JPS6214528 A JP S6214528A JP 60153010 A JP60153010 A JP 60153010A JP 15301085 A JP15301085 A JP 15301085A JP S6214528 A JPS6214528 A JP S6214528A
Authority
JP
Japan
Prior art keywords
stage
differential amplifier
differential
constitute
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60153010A
Other languages
Japanese (ja)
Other versions
JPH0464213B2 (en
Inventor
Katsuharu Kimura
克治 木村
Yukio Yokoyama
幸男 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60153010A priority Critical patent/JPS6214528A/en
Priority to US06/800,831 priority patent/US4680553A/en
Publication of JPS6214528A publication Critical patent/JPS6214528A/en
Publication of JPH0464213B2 publication Critical patent/JPH0464213B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the linearity of the log characteristic of a DC output to an input voltage by connecting mutually two double balanced differential amplifiers different in gain in parallel to form a double balanced differential amplifier constituting a full-wave rectifier in each stage. CONSTITUTION:Transistors TRs Q1-Q10 constitute the full-wave rectifier in the first stage, and TRs Q11-Q20 constitute that in the second stage, and TRs Q21-Q30 constitute that in the third stage, and TRs Q31-Q40 constitute that in the fourth stage. An adding circuit ADD adds positive-phase output currents of full-wave rectifiers in the first-fourth stages and smoothes this addition current and outputs the input signal level as a DC voltage VS. If an input signal VIN is increased gradually, double balanced differential amplifiers are saturated in order from the last stage. If emitter resistances R3, R4,... R15, R16, and RE (R3=R4=...=R15=R16=RE) are provided and the value of the resistance RE is selected properly, the linearity of the log characteristic of the voltage VS to the voltage VIN is improved. Thus, the electric field detecting function which has a high saturation input signal level and a wide dynamic range is provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、受信機の中間周波増幅器の構成に関し、特に
、受信機の受信電界検出の方式に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of an intermediate frequency amplifier of a receiver, and particularly to a method of detecting a received electric field of the receiver.

従来の技術 本発明の先行技術としては1例えば、マイクロエレクト
ロニクス アンド リライアビリティ、第14号、第3
11!頁〜第366頁、パーガモンプレス社19クク年
発行(Microelectronics and R
e1iability。
Prior art Prior art to the present invention includes 1, for example, Microelectronics and Reliability, No. 14, No. 3.
11! Pages 366 to 366, published by Pergamon Press in 2019 (Microelectronics and R
e1ability.

vol、/A、pp、 31Is  〜 3bb、Pe
rgamon  Press、/デクク )が存在する
。本発明の従来例として開示されている第3図の回路構
成は上記文献に示されているOA、3019なるIC中
の一部を抽出したものである。その他上記文献中1cお
ける本明細書の第3図と関係  □する部分はFi g
 / s F i g 2− F i g 10 w 
Fi g ”、Fig/コ及びその説明文である。
vol, /A, pp, 31Is ~ 3bb, Pe
rgamon Press,/Dekuku) exists. The circuit configuration shown in FIG. 3, which is disclosed as a conventional example of the present invention, is a part of an IC called OA 3019 shown in the above-mentioned document. Other parts related to Figure 3 of this specification in 1c in the above document are shown in Fig.
/ s F i g 2- F i g 10 w
Fig”, Fig/co and its explanatory text.

従来、電界検出機能を有する中間周波増幅器の構成は、
第3図に示すように、多段の増幅器(トランジスタQ 
t/〜Q/グから成る第1段IQ//’〜Q/q′から
成る第λ段+Qコグ〜Qコア′から成る第3段)の各段
の出力をコンデンサ(Cg、Cデ、Cio)を介して整
流し、夫々の段の整n11IL流波形を加算して電界レ
ベル情報を出していた。
Conventionally, the configuration of an intermediate frequency amplifier with an electric field detection function is as follows:
As shown in Figure 3, a multi-stage amplifier (transistor Q
The output of each stage is connected to a capacitor (Cg, Cde, Cio), and the rectified n11IL flow waveforms of each stage were added to output electric field level information.

発明が解決しようとする問題点 上述した従来の電界検出機能を有する中間周波増幅器は
交流信号の整流はダイオード(Q28’、、Q29’。
Problems to be Solved by the Invention In the above-mentioned conventional intermediate frequency amplifier having an electric field detection function, AC signals are rectified using diodes (Q28', Q29').

Q30’ ;Q32’ 、Q33’ 、Q34’ ;Q
35’ 、Q36’ 、Q37’ )を使って行ってい
るので咎に温度特性が悪くなシ湛度特性を補償する為に
は回路が複雑になるという欠点がある。
Q30';Q32',Q33',Q34'; Q
35', Q36', Q37'), the drawback is that the temperature characteristics are poor and the circuit becomes complicated to compensate for the constancy characteristics.

また、整流器は上述のようにダイオードを用いる半波整
流方式であることにより各々にコンデンサ(Cr、Cq
、Cto)が必要であり、中間周波数を下げると大きな
コンデンサが必要となる。従って、上述のコンデンサを
ICに内蔵する場合にはチップサイズが大きくなる。ま
た、コンデンサを外付けにしてテンプサイズを小さくす
るためには各段毎に外付はコンデンサが必要となるため
に、外付はコンデンサ用の端子が増えてIC化には不利
であった。更にまた、整流器が上述のようにダイオード
を用いたものであシ、トランジスタQt1〜ψグから成
る第1段目の差動増幅器が飽和するまでの信号入力まで
しか検出出来ず、ダイナミックレンジを大きくするため
に多段化して差動増幅器の総利得を上げていっても上述
の飽和レベルで最大入力レベルが決定され十分なダイナ
ミックレンジが得られなかった。一方、入力信号検出電
圧のログ特性に対する偏差を小さくするためには一般的
に上述した差動増幅器1段当りの利得を下げてかつ多段
化する必要があり、コンデンサも整流器の段数だけ必要
となる欠点があった。
In addition, since the rectifier is a half-wave rectification method using diodes as mentioned above, each capacitor (Cr, Cq
, Cto), and lowering the intermediate frequency requires a larger capacitor. Therefore, when the above-mentioned capacitor is built into an IC, the chip size becomes large. Furthermore, in order to reduce the size of the balance by externally attaching a capacitor, an external capacitor is required for each stage, and external capacitors increase the number of terminals for capacitors, which is disadvantageous for IC implementation. Furthermore, since the rectifier uses diodes as mentioned above, it can only detect signal input up to the point where the first stage differential amplifier consisting of transistors Qt1 to ψ is saturated, which increases the dynamic range. Even if the total gain of the differential amplifier was increased by increasing the number of stages in order to achieve this, the maximum input level was determined at the above-mentioned saturation level, and a sufficient dynamic range could not be obtained. On the other hand, in order to reduce the deviation of the input signal detection voltage from the logarithmic characteristic, it is generally necessary to lower the gain per stage of the differential amplifier mentioned above and increase the number of stages, and the number of capacitors required is equal to the number of stages of the rectifier. There were drawbacks.

本発明は従来の上記事情に鑑みてなされたものであり、
従って本発明の目的は、従来の技術に内在する上記諸欠
点を解消することにある。
The present invention has been made in view of the above-mentioned conventional circumstances, and
SUMMARY OF THE INVENTION It is therefore an object of the present invention to overcome the above-mentioned disadvantages inherent in the prior art.

問題点を解決するための手段 上記目的を達成する為に、本発明に係る電界強度検出機
能付中間周波増幅回路は、差動増幅器と一重平衡型差動
増幅器から構成される両波整流器を多段縦続接続して得
られる中間周波増幅回路であって各段の二重平衡型差動
増幅器を構成する差動増幅器が相互に並列接続されたコ
つの差動増幅器から成シ、それぞれ異なる利得を有して
いる。
Means for Solving the Problems In order to achieve the above object, an intermediate frequency amplifier circuit with a field strength detection function according to the present invention uses a multi-stage double-wave rectifier consisting of a differential amplifier and a single-balanced differential amplifier. This is an intermediate frequency amplification circuit obtained by cascading a double-balanced differential amplifier in each stage, which consists of two differential amplifiers connected in parallel, each with a different gain. are doing.

実施例 次だ本発明をその好ましい一実施例について図面を参照
して具体的に説明する。
EXAMPLE Next, a preferred embodiment of the present invention will be specifically explained with reference to the drawings.

π7図は本発明の一実施例として弘段構成の場合を例に
示した回路構成図である。
The π7 diagram is a circuit configuration diagram illustrating a high-stage configuration as an example of an embodiment of the present invention.

トランジスタQ/〜Qtoは第1段目の両波S流器を構
成し、トランジスタQ//〜Q:lDは第1段目の両波
整流器を構成し、トランジスタQコt −Q 3゜は第
3段目の両波整流器を構成し、トランジスタQ 、?/
 −Q tmは第ダ段目の両波整流器を構成する。
Transistors Q/~Qto constitute a first-stage double-wave S rectifier, transistors Q//~Q:lD constitute a first-stage double-wave rectifier, and transistors Qcot -Q 3° are A third-stage double-wave rectifier is configured, and transistors Q, ? /
-Q tm constitutes the second stage double-wave rectifier.

加算回路ADDは上述の第1段目の両波整流器から蘂ダ
段目の両波−整流器までの正相出力電流を加算し、この
加′jI?を流を抵抗R/7とコ/デンfC/により平
滑化し、入力信号レベルを直流電圧v8で出力する。
The adder circuit ADD adds the positive phase output currents from the first-stage double-wave rectifier to the second-stage double-wave rectifier, and adds this addition 'jI? The current is smoothed by resistor R/7 and co/den fC/, and the input signal level is output as DC voltage v8.

今、IF入力信号M工Nが次第に大きくなると。Now, when the IF input signal M and N gradually increases.

順次後段の21L平衡型差動増幅器から飽和してくる。The signal is saturated from the 21L balanced differential amplifier in the succeeding stage.

ここで、R,y=RダーR7−Rt = R// −R
/コーR1r = Riル=Rgと2けば、それぞれの
:1.を平衡型差動増幅器を構成する並列接続されたλ
つの差動増幅器の小信号利得は次のように示される。
Here, R,y=RdarR7-Rt=R//-R
/CorR1r=Rir=Rg and 2, then each:1. are connected in parallel to form a balanced differential amplifier.
The small signal gain of the two differential amplifiers is shown as:

但し、VT = kT/q    ・・・・・・・・・
・・・・・・・・・・・・・・・・・  (ハ第1段目
の、2重平衡型差動増幅器については、カレントソース
I2/を持つ差動増幅器の利得gNは gll = I2’/コVT  ・・・・・・・・・・
・・・・・・・・・曲・(コ)カレントソースエ5を持
つ差動増幅器の利得g1□はg12=工3/(2vT+
RE工3)・・曲・・四(3)である。
However, VT = kT/q ・・・・・・・・・
・・・・・・・・・・・・・・・・・・ (C) Regarding the first-stage double-balanced differential amplifier, the gain gN of the differential amplifier with current source I2/ is gll = I2'/ko VT ・・・・・・・・・・・・
・・・・・・・・・Song・(ko) The gain g1□ of a differential amplifier with current source 5 is g12=Ec3/(2vT+
RE engineering 3)...Song...4 (3).

第2段目の一重平衡型差動増幅器については、カレント
ソースエ2を持つ差動増幅器の利得g21はg21 =
a X2/2VT   ・・・・・・・・曲・・曲・・
・・・四  (lI)カレントソースエ5を持つ差動増
幅器の利得g22はg22 = I!/(JVT + 
REI3)−・−・−・−・・(h)である。
For the second stage single balanced differential amplifier, the gain g21 of the differential amplifier with current source 2 is g21 =
a X2/2VT... Song... Song...
...4 (lI) The gain g22 of the differential amplifier with current source 5 is g22 = I! /(JVT+
REI3) - - - - - - (h).

第3段目の一重平衡型差動増幅器については、カレント
ソースエ2を持つ差動増幅器の利得g31はg、、−I
2/、2VT   ・    ・・・・・・・・・・・
  (6)カレントソースエ3を持つ差動増幅器の利得
gs2はg、2= Is/fユv’r + RE Is
)  ・・・・・・・・・・・  (7)である。
For the third stage single balanced differential amplifier, the gain g31 of the differential amplifier with current source 2 is g, , -I
2/, 2VT ・・・・・・・・・・・・・・
(6) The gain gs2 of the differential amplifier with current source 3 is g, 2 = Is/f u v'r + RE Is
) ・・・・・・・・・・・・ (7).

第1段1のλ重平衡型差hJJjJ 1i!器について
は、カレントソースI2?持つ差vJ増幅器の利得g4
1はg41=工2/ユVT   ・・・・・・・・・・
・・・・・・・・・・・・・・・・・  (g)カレン
トソースエS/を持つ差動増v2aの利得g4□は g4□= 工3’ /’(2VT + RE Is’ 
)  、、・−・・・・(vlと表わせる。
λ double balanced type difference hJJjJ 1i of the first stage 1! Regarding the vessel, Current Source I2? difference vJ with amplifier gain g4
1 is g41 = engineering 2/yu VT ・・・・・・・・・
...
) ,,・・・・(It can be expressed as vl.

ここで、I2 = I2’= I3 = I3’  と
すると、gll =g21 ” g31−g41  °
°°°°゛°°°°°°(10)g12 ” g22−
g32 ”” g42  °°°゛°°゛°゛−(//
)となる。仲、8g1段から第弘段までの差動増幅器の
利得をすべてg。とする。
Here, if I2 = I2' = I3 = I3', gll = g21 '' g31 - g41 °
°°°°゛°°°°°° (10) g12 ” g22-
g32 ”” g42 °°°゛°°゛°゛-(//
). Naka, 8g The gains of the differential amplifiers from the first stage to the Hiro stage are all g. shall be.

(10) 、  (//)式で g、1=f訂・g 12 −−−−=   (/2)と
なる様にエミッタ抵抗REを設定することができる。こ
の場合、第1図の平均出力シンク電流Isの特性は第2
図の18で示す様な曲線となり、Vゴ(aB )と一 連流出力1!流特性の関係はほぼ線形となることがわか
る。但し、 (、o (dB) = 2011og go・・・・・
・・・・・・・−(/、?)以下、このことについて詳
しく説明する。
(10) The emitter resistance RE can be set so that g, 1=f correction・g 12 ----= (/2) in the formula (//). In this case, the characteristic of the average output sink current Is in FIG.
It becomes a curve as shown in 18 in the figure, with Vgo (aB ) and a series of outflow outputs of 1! It can be seen that the relationship between the flow characteristics is almost linear. However, (, o (dB) = 2011og go...
......-(/,?) This will be explained in detail below.

8g−図の/の曲線は第1図の回路図でトランジスタQ
71 Qt IQ/?、qlt+ Q2q、QコlQ、
7り。
8g - The curve / in the diagram is for transistor Q in the circuit diagram of Figure 1.
71 Qt IQ/? , qlt+ Q2q, QcolQ,
7ri.

Q 3gから構成されるqつの差動増幅器を取り除いた
場合の特性であり、(74式で示される利得の差動増幅
器だけで構成する場合である。
This is the characteristic when q differential amplifiers composed of Q3g are removed, and it is composed only of differential amplifiers with a gain shown by equation 74.

第二図の二面線は第1図の回路図でトランジスタ Q 
 9  、  Q10+  Q/9.  Q 20 +
  Q29.  QJO+  Q39゜Qmから構成さ
れるダつの差動増幅器を取り除いた場合の特性であり、
  (10)式で示される利得の差動増1鴎器だけで構
成する場合である。
The dihedral line in Figure 2 is the transistor Q in the circuit diagram of Figure 1.
9, Q10+ Q/9. Q 20 +
Q29. This is the characteristic when the two differential amplifiers consisting of QJO + Q39°Qm are removed,
This is a case in which only one differential amplifier with a gain shown by equation (10) is used.

ここで、(/コ)式かられかる様に、曲線コは曲線/の
場合に比べてにo/2aB  だけ整流器の感度が低く
なるようにエミッタ抵抗REの大きさを選んでいる。
Here, as can be seen from the equation (/), the size of the emitter resistance RE is selected so that the sensitivity of the rectifier for curve () is lowered by o/2aB compared to the case for curve (/).

冑、第2図のV工N faB)対Is%性等を以下にお
いてはログ特性曲線と呼ぶことだする。
In the following, the V-NfaB) vs. Is% characteristics in Figure 2 will be referred to as a log characteristic curve.

第2図の曲線/、2は弘つずつ凸凹に波打つ曲線でログ
特性が近似されている。このように、一般にログ特性曲
線を線形増幅器で折れ線近似した場合には第2図の曲線
/、コに示すように必ずログ特性からのずれが生じる。
The curves / and 2 in FIG. 2 are curves that undulate in a concave and convex manner, and the logarithmic characteristic is approximated. In general, when a logarithmic characteristic curve is approximated by a polygonal line using a linear amplifier, a deviation from the logarithmic characteristic always occurs as shown in the curves 2 and 2 in FIG.

このログ特性からのしかるに、第1図の回路図に於いて
は、各段の一重平衡型差動増幅器を構成する差動トラン
ジスタ対、即ち、トランジスタQ?、Qtとトランジス
タQデ、Q10IトランジスタQn、Qnとトランジス
タQ/?、Q20+ トランジスタQコア、Qコとトラ
ンジスタQ29.Q30+ トランジスタQ、77、Q
3tとトランジスタQJv、Quはそれぞれ位相が同一
であるから、第1図の回路図に示す電界強度検出機能の
出力シンク電流Isの特性は第二図に示す曲線/と曲線
ユとを足し合わせた特性となる。ここで曲線/の凸部と
曲線−の凸部とは互いに了GO(dB)だけずれた入力
レベルで生じるように、エミッタ抵抗REを選んでいる
ために、お互いに波打つ凸凹を打ち消し合って直線性が
改善されることがわかる。
According to this logarithmic characteristic, in the circuit diagram of FIG. 1, the differential transistor pair constituting the single-balanced differential amplifier at each stage, that is, the transistor Q? , Qt and transistor Qde, Q10I transistor Qn, Qn and transistor Q/? , Q20+ transistor Q core, Q core and transistor Q29. Q30+ Transistor Q, 77, Q
3t and the transistors QJv and Qu have the same phase, so the characteristics of the output sink current Is of the field strength detection function shown in the circuit diagram of Fig. 1 are obtained by adding the curve / and the curve U shown in Fig. 2. Becomes a characteristic. Here, since the emitter resistor RE is selected so that the convex part of the curve / and the convex part of the curve - occur at input levels that are shifted by GO (dB) from each other, the undulating convexities cancel each other out and the convexities are straight. It can be seen that the characteristics are improved.

発明の詳細 な説明したように、本発明によれば、差動増幅器と一重
平衡型差動増幅器を多段縦続接続して得られる中間周波
増幅回路に2いて、各段の両波整流器を構成する一重平
衡型差動増幅器を利得をそれぞれ違えたコつの一重平衡
型差動増幅器を相互に並列接続することにより、入力電
圧に対する直流出力のログ特性の線形性を改善できる効
果が得られる。
As described in detail, according to the present invention, in an intermediate frequency amplifier circuit obtained by cascading a differential amplifier and a single balanced differential amplifier in multiple stages, two wave rectifiers are configured in each stage. By mutually connecting single balanced differential amplifiers having different gains in parallel, it is possible to improve the linearity of the log characteristic of the DC output with respect to the input voltage.

本回路構成においては、一重平衡型差動増幅器の正相出
力電流波形が同相となるので、コンデンサを用いて直流
化しなくても加算が可能である。
In this circuit configuration, since the positive-phase output current waveforms of the single-balanced differential amplifiers are in phase, addition is possible without using a capacitor to convert to direct current.

本発明によれば、また、xn段の差動増幅器とコn段の
整流器から構成される電界検出機能を持つ中間周波増幅
器と同等の直線性を持つログ特性が得られる。更にまた
、差動対構成により温度特性も良好となる。
According to the present invention, it is also possible to obtain a logarithmic characteristic with linearity equivalent to that of an intermediate frequency amplifier having an electric field detection function, which is composed of an xn stage differential amplifier and a con n stage rectifier. Furthermore, the differential pair configuration also improves temperature characteristics.

以上、本発明によれば、低い中間周波数から動作し、電
界検出電圧の温度特性に優れ、直線性が大幅に改善され
た飽和入力信号レベルの高い広いダイナミックレンジを
有する電界検出機能を持つ中間周波増幅回路を比較的小
さな回路規模で実現出来ると共に、コンデンサを省略出
来、利点が大きい。
As described above, according to the present invention, the intermediate frequency has an electric field detection function that operates from a low intermediate frequency, has excellent temperature characteristics of the electric field detection voltage, has a wide dynamic range with a high saturation input signal level, and has significantly improved linearity. The amplifier circuit can be realized with a relatively small circuit scale, and the capacitor can be omitted, which is a great advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例をダ段で構成した場合の回路
構成図である。 第2図は第1図の回路図における直流電圧出力のシンク
電流工8の特性を示すものであり、第1図のlの曲線は
第1図の回路図でトランジスタQ?。 Q t s Q/7. Q/ざ+Qコア+Qコ+Qjり
、Q3gを取り除いた時の特性であり、−の曲線はトラ
ンジスタ Q?、Q10 IQ/デ 、  Qコo、Q
 コタ 、Q 3o  I Q  3q。 Q侵と抵抗R,?、RII+Rり、Rg HRii、R
/コ−R/s、Rtbを取り除いた時の特性である。 第3図は3段の差動増幅回路から構成される従来の回路
例を示すものである。 第ダ図は第3図に於けるS−METEROUTの出力 
  □電圧をIF大入力信号レベルV工N(aB)に対
して示したものである。
FIG. 1 is a circuit configuration diagram when an embodiment of the present invention is constructed in two stages. FIG. 2 shows the characteristics of the sink current generator 8 for DC voltage output in the circuit diagram of FIG. 1, and the curve l in FIG. 1 corresponds to the transistor Q? . Q t s Q/7. Q/za + Q core + Q core + Q j ri is the characteristic when Q3g is removed, and the - curve is the transistor Q? ,Q10 IQ/de ,Qkoo,Q
Kota, Q 3o I Q 3q. Q invasion and resistance R,? , RII+R, Rg HRii, R
/co-R/s, which is the characteristic when Rtb is removed. FIG. 3 shows an example of a conventional circuit consisting of a three-stage differential amplifier circuit. Figure D is the output of S-METEROUT in Figure 3.
□The voltage is shown relative to the IF large input signal level V (aB).

Claims (1)

【特許請求の範囲】[Claims] 差動増幅器がn段あり、それぞれの差動増幅器の出力が
順次次段の入力となる様に接続された中間周波増幅器を
構成し、前記差動増幅器の各段における出力信号を第1
の入力とし且つ前記差動増幅器の各段における入力信号
を第2の入力とする2重平衡型差動増幅器が前記差動増
幅器に対応してn個あり、前記n個の2重平衡型差動増
幅器のそれぞれの正相出力電流を加算する回路を持つ構
成から成る中間周波増幅器において、前記2重平衡型差
動増幅器の第2の入力が印加される差動増幅器は、エミ
ッタ抵抗を介して各エミッタが共通に接続されてなる差
動対とエミッタ抵抗を介さずに各エミッタが共通に接続
されてなる差動対が相互に並列接続されて成ることを特
徴とする電界強度検出機能付中間周波増幅回路。
There are n stages of differential amplifiers, and an intermediate frequency amplifier is configured in which the output of each differential amplifier is sequentially connected to the input of the next stage, and the output signal of each stage of the differential amplifier is
Corresponding to the differential amplifiers, there are n double-balanced differential amplifiers whose second inputs are the input signals in each stage of the differential amplifier, and the n double-balanced differential In an intermediate frequency amplifier configured with a circuit that adds the positive-sequence output currents of respective positive-sequence output currents of dynamic amplifiers, the differential amplifier to which the second input of the double-balanced differential amplifier is applied is connected to the differential amplifier through an emitter resistor. An intermediate with an electric field strength detection function, characterized in that a differential pair in which each emitter is connected in common and a differential pair in which each emitter is connected in common without an emitter resistor are connected in parallel to each other. Frequency amplification circuit.
JP60153010A 1985-01-18 1985-07-11 Intermediate frequency amplifying circuit with electric field intensity detecting function Granted JPS6214528A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60153010A JPS6214528A (en) 1985-07-11 1985-07-11 Intermediate frequency amplifying circuit with electric field intensity detecting function
US06/800,831 US4680553A (en) 1985-01-18 1985-11-22 Intermediate frequency amplifier with signal strength detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153010A JPS6214528A (en) 1985-07-11 1985-07-11 Intermediate frequency amplifying circuit with electric field intensity detecting function

Publications (2)

Publication Number Publication Date
JPS6214528A true JPS6214528A (en) 1987-01-23
JPH0464213B2 JPH0464213B2 (en) 1992-10-14

Family

ID=15552980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153010A Granted JPS6214528A (en) 1985-01-18 1985-07-11 Intermediate frequency amplifying circuit with electric field intensity detecting function

Country Status (1)

Country Link
JP (1) JPS6214528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521616A (en) * 1988-10-14 1996-05-28 Capper; David G. Control interface apparatus
US10086262B1 (en) 2008-11-12 2018-10-02 David G. Capper Video motion capture for wireless gaming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521616A (en) * 1988-10-14 1996-05-28 Capper; David G. Control interface apparatus
US10086262B1 (en) 2008-11-12 2018-10-02 David G. Capper Video motion capture for wireless gaming
US10350486B1 (en) 2008-11-12 2019-07-16 David G. Capper Video motion capture for wireless gaming

Also Published As

Publication number Publication date
JPH0464213B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
US4794342A (en) Intermediate frequency amplification circuit capable of detecting a field strength with low electric power
US5790943A (en) Dynamic range extension of a log amplifier with temperature and process compensation
US5241227A (en) Active high band weighting circuit of noise reduction circuit
JPS6214528A (en) Intermediate frequency amplifying circuit with electric field intensity detecting function
US4403196A (en) Pulse width modulated power amplifier with differential connecting line voltage drop comparators
JPH0575362A (en) Balanced amplifier
JPS585594B2 (en) rectifier circuit
JPS6218843A (en) Intermediate frequency amplifier circuit with beat detecting function and electric field detecting function
JPS63283214A (en) High frequency detecting circuit
JPH0622304B2 (en) Logarithmic IF amplifier circuit
JPS6224969Y2 (en)
JPH0441525B2 (en)
JPH0533564B2 (en)
JPS60246108A (en) Intermediate frequency amplifier
SU1465807A1 (en) Phase meter
JP2692427B2 (en) C-MOS logarithmic IF amplifier
JPH0691375B2 (en) Beat detection circuit
JPS61170106A (en) Intermediate frequency amplifier circuit with electric field detection function
JPH06318960A (en) Phase modulator
JPS6316053B2 (en)
JPH0659017B2 (en) Logarithmic IF amplifier circuit
JPS6238336Y2 (en)
JPS6145630Y2 (en)
JPS6038906A (en) Input signal level detecting circuit
JPS61170105A (en) Intermediate frequency amplifier circuit with electric field strength detecting function