JPS62135705A - Image processing type measuring instrument - Google Patents

Image processing type measuring instrument

Info

Publication number
JPS62135705A
JPS62135705A JP27651585A JP27651585A JPS62135705A JP S62135705 A JPS62135705 A JP S62135705A JP 27651585 A JP27651585 A JP 27651585A JP 27651585 A JP27651585 A JP 27651585A JP S62135705 A JPS62135705 A JP S62135705A
Authority
JP
Japan
Prior art keywords
optical system
image
enlarged image
measured
angular difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27651585A
Other languages
Japanese (ja)
Other versions
JPH0357403B2 (en
Inventor
Katsuhide Sawada
克秀 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP27651585A priority Critical patent/JPS62135705A/en
Publication of JPS62135705A publication Critical patent/JPS62135705A/en
Publication of JPH0357403B2 publication Critical patent/JPH0357403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To perform exactly, quickly and easily a measurement by an enlarged image, irrespective of an attached position of an object to be measured, by inclining and correcting a figure of an enlarged image of a monitor device to a reference figure. CONSTITUTION:An illumination optical system 14 executes a light irradiation to an object to be measured 12 which has been placed on an object placing base 10. An enlargement optical system 16 enlarges a part to be measured of the object 12. A moving mechanism 18 moves relatively the base 10 and the optical system 16 in order to enlarge a prescribed object part. A monitor device 22 is coupled to the optical system 16 through, for instance, a TV 20, and reflects an enlarged image of the object part. As a result, a size and a shape, etc. of the object are derived by bringing the enlarged image to, for instance, an edge detection processing. Also, an angle difference of an attached angle of the object 12 against the base 10, and a reference relative angle of both of them is derived by evaluating the enlarged image by the optical system 16, and operating an angle difference discriminating means 24. An angle difference signal of an output of this means 24 is supplied to an angle correcting means 26. An operator executes an inclination correction so that a figure of the enlarged image always becomes similar to a reference figure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、画像処理式測定装置に係り、特に、テレビカ
メラを使用した画像処理型測定間に用いるのに好適な、
載物台上に配置したエリ定対象物と関与した光を受けて
、前記載物台と相対移動される拡大光学系により所定の
測定対象部分の倣を拡大し、該測定対象部分の拡大像を
評価して、」11定対象物の司法や形状等を測定するよ
うにした両1り;処理式測定装置に関する。 【従来の技術】 近年、テレビカメラを使用した両’19ハy!1へ°4
の測定機が研究されている。この画像処理型のJII定
1;1において、テレビカメラ撮像面の大きさ、分割膜
は限られているため、測定殿として使用するには、測定
対象物乃至その部分を対物レンズ等の拡大光学系により
拡大し、拡大像を画像処理して、測定対象物の寸法や形
状等を測定する必要がある。
[Industrial Application Field 1] The present invention relates to an image processing type measuring device, and in particular, a device suitable for use during image processing type measurement using a television camera.
Receiving the light associated with the defined object placed on the stage, the enlarging optical system, which is moved relative to the stage, magnifies the profile of a predetermined measurement target part, and creates an enlarged image of the measurement target part. The present invention relates to a process-type measuring device that evaluates ``11'' and measures the shape, shape, etc. of a fixed object. [Prior Art] In recent years, a TV camera has been used for Ryo'19 Hay! 1°4
Measuring devices are being researched. In this image processing type JII standard 1;1, the size of the imaging surface of the television camera and the dividing film are limited, so in order to use it as a measurement hole, it is necessary to use a magnifying optical device such as an objective lens to It is necessary to enlarge the object using a system, perform image processing on the enlarged image, and measure the dimensions, shape, etc. of the object to be measured.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしがら、拡大すると視野範囲が狭くなるため、例え
ば測定対象物の!!!Il隔づ゛る2点間の寸法等を測
定する39合に、同一画面上に前記2点を同時に表示す
ることができなくなり、操作性が悪くなると同時に、光
学側定義の最大長所である目で観察できるという利点が
制限されるという問題点を有していた。 即ち、出願人が、載物台上に配置された測定対象物に光
照射する照明光学系と、前記測定対象物と関与した光(
反射光、通過光あるいは透過光)を受けて、測定対象部
分の像を拡大する拡大光学系と、所定の測定対象部分を
拡大ずべく、前記載物台と拡大光学系とを相対移動させ
る移動(4構と、+iij記拡大光学系に光電結合され
、測定対象部分の拡大(象を映すモニタ装置と、該拡大
像を処理して、測定対象物の寸法や形状等を求める計測
手段とを備えた画像処理型W、11定償を試作TII′
l究したところ、迅速な測定を可能として実効を1!7
1するためには、’<f4大な問題が内在していること
を認識できた。 即ち、通常、拡大光学系と載物台を相対移動させるul
 IMは、2次元の場合、X−Y方向に独立移動できる
よう形成される。従って、載物台に測定対象物を取付け
る場合、両名の軸線を合¥lt!シめることが求められ
る。 しかしながら、0.1μmオーダで評価しにうとする画
殻処理型測定践にJ3いて、軸線を合わし゛た取付けは
、例え治具を準備したとしても、事実上至難である。又
、これを強制ずれば、その測定埠((11作業が煩随ず
ぎ、長時間を要し極めて作V’s lu亭が悪いものと
なってしまう。 1追って、ある程度の位置ずれ取付けは許容UざるをI
+7な、いが、その程度を定量的に規定できず、人によ
っても異なるので、結果として拡大像が七二タ装買に傾
斜映像され、所定拡大像のjぢ択操1′1:に支障をき
たすほか、一段に両測定、Lツジが映像ざ机ない場合に
あっては、一方側で慎重にエツジ検出しても、他方側で
検出誤着が発生したり、1.スしい場合には検知不能と
なるという事態も招来した。 又、拡大光学系において測定対象物の測定対象部分が基
準姿態でモニタ装置に映された(すは、1!II定対粂
部分のエツジ演出等を11って、所定の画(((ミ処理
を行うことは、電子技術の発達から明らかな通り容易で
あり、迅速且つ正確な測定を行うことができるが、その
前に、所定の測定対象部分を選択して、これをモニタ装
置に拡大表示するまでの、いわゆる準備工桿に多大な時
間や労力を右し、又拡大像の選択を誤る場合も多かった
。 これは、通常、数十倍の拡大率をもってモニタ装置に表
示される拡大性が、測定対象物のいずれの個所に該当す
るのか見極めるのが困難である1ζめ、操作者が、測定
対象物とモニタ装置とを比較確認しつつ、載物台と拡大
光学系との相対移動作業をiテリなければならないから
であるつしかも、拡大像と測定対象物との対応させた形
状や模様、更には測定点の順序等を確実に記憶しておか
なければ、比較確認すら行い梵いので、熟練者1ノか1
モ作できないという問題もある。従って、特にtCパタ
ーンのように繰返し形状のある測定対象物の場合や、載
物台上に測定対象物を傾斜して取付けた場合には更に作
業困難となり、又、光透過あるいは通′A型の照明光学
系を選択したときには、目?51確認が困到となるとい
う事態も1B<。更に又、確認困難のため、1tt作名
が数冊本体に近付き過ざる危険性もあった。 このような問題点は、測定手順の各ステップFnに操作
者が操作する手動型だけでなく、測定千阿iプログラム
に基づいて前期相対移動を自動的に行う自動型にあって
も、測定手順プログラム作成上のテーチング作業中に手
動型のそれと全く同様の手順を踏まなければならないの
で、問題は同じである。
However, enlarging the field of view narrows the field of view, so for example the object to be measured! ! ! When measuring dimensions, etc. between two points that are far apart from each other, it becomes impossible to display the two points simultaneously on the same screen, which impairs operability and at the same time reduces the visual impact, which is the greatest advantage of the optical definition. The problem was that the advantage of being able to observe images was limited. That is, the applicant has developed an illumination optical system that irradiates light onto a measurement target placed on a stage, and a light (
a magnifying optical system that magnifies an image of a portion to be measured by receiving (reflected light, passing light, or transmitted light); and movement that relatively moves the document table and the magnifying optical system in order to magnify a predetermined portion to be measured. A monitor device that is photoelectrically coupled to the enlarging optical system described above and displays an enlarged image of the part to be measured, and a measuring means that processes the enlarged image to obtain the dimensions, shape, etc. of the object to be measured. Prototype TII' with image processing type W, 11 fixed charge
Upon investigation, it was found that the effective rate was 1!7, allowing for rapid measurement.
1, I was able to recognize that there was a big problem: '<f4. That is, normally, the magnifying optical system and the stage are moved relative to each other.
In the case of two dimensions, the IM is formed to be able to move independently in the X-Y directions. Therefore, when mounting the object to be measured on the stage, the axes of both people should be aligned! It is necessary to reduce However, in the case of J3, which attempts to evaluate on the order of 0.1 .mu.m, it is virtually impossible to mount the tubes with their axes aligned, even if a jig is prepared. In addition, if this is forcibly shifted, the measurement wharf ((11) will be cumbersome and take a long time, resulting in extremely poor quality. Tolerance U colander I
+7, but the degree cannot be quantitatively defined and it varies from person to person, so as a result, the enlarged image is tilted to the 72-tattoo image, and the predetermined enlarged image's j selection operation 1'1: In addition to causing problems, if there is no image display for both measurements and the L edge, even if edges are carefully detected on one side, detection errors may occur on the other side. This has led to situations in which detection has become impossible in some cases. In addition, in the magnifying optical system, the part to be measured of the object to be measured was displayed on the monitor device in the standard state (1! Processing is easy, as evidenced by the development of electronic technology, and enables quick and accurate measurements, but before that, it is necessary to select a predetermined measurement target area and enlarge it to a monitoring device. A great deal of time and effort was required in the so-called preparation process before displaying the image, and the selection of the enlarged image was often made incorrectly. It is difficult to determine which part of the object to be measured corresponds to the object being measured. In addition, if you do not remember the shape and pattern that corresponds to the enlarged image and the object to be measured, as well as the order of the measurement points, you will not be able to even compare and confirm. I'm a monk, so I'm an expert 1 or 1.
There is also the problem of not being able to grow rice. Therefore, it becomes more difficult to work, especially when the object to be measured has a repeating shape such as a tC pattern, or when the object to be measured is mounted on the stage at an angle. When choosing the illumination optics for the eyes? There is also a situation where it is difficult to confirm 51. Furthermore, because it was difficult to confirm, there was a risk that the titles of 1tt's works would be too close to the main body of several books. Such problems arise not only in the manual type in which the operator operates each step Fn of the measurement procedure, but also in the automatic type in which the first relative movement is automatically performed based on the measurement program. The problems are the same because the same steps as in the manual type must be followed during the teaching work for program creation.

【発明の目的1 本発明は、前期従来の問題点を解消するべくなされたも
ので、測定対象物の取付姿態に拘りら1ノ゛、拡大像に
よる測定を正確、迅速1つ容易に行うことができる画像
処理式測定装置を1ヱ供することを第1の目的どする。 本発明は、更に、測定対象物上の拡大像の位置を容易に
確認することができる画像処理式測定装置を提供するこ
とを第2の目的とする。 【問題点を解決するための手段】 本発明は、第1図にその要旨構成を示す如く、載物台1
o上に配置された測定対象物12に光照射する照明光学
系14と、前記測定対客物12と関与した光を受けて、
測定対象部分の象を拡大する拡大光学系16と、所定の
測定対象部分を拡大サベく、前記載物台10と拡大光学
系16とを相対移動させる移動機構18と、前記拡大光
学系16に例えばテレビカメラ20を用いて光電結合さ
机、測定対象部分の拡大像を映すモニタ装置22と、該
拡大像を例えばエツジ検出処理して、測定対象物の寸法
や形状等を求める計測手段とを隔えた画像処理式測定装
置において、前記載物台10に対する測定対象物12の
取f1角度と両者の基準相対角度との角度差を、前記拡
大光学系16による拡大像を評価して求める角度差識別
手段24と、該角度差識別手段24出力の角度差13号
に応じて、前記角度差を打潤す反対方向に前記拡大像を
傾斜させて前記モニタ装置22に映す゛ための角度補正
手段26とを設け、前記モニタ装置22の拡大[IQの
姿態を常に基準姿態に傾斜補正するように構成して、1
)を2第1の目的を達成したものである。 又、本発明は、前記のにうむ画像処理式測定装置におい
て、第2図にその要旨構成を示寸如く、前記測定対象物
12の全体像を捉える全体光学系28と、該全体像を固
定的に映す第2のモニタ装置(第2図ではモニタ装置2
2と共用)と、+1i+記載物台10と拡大光学系16
の相対移動変位量から、前記拡大像の測定対象物12上
の現在位置を特定する現在位置特定手段30と、前記載
物台10に対する測定対象物12の取付角度と両者の基
準相対角度との角度差を、前記拡大光学系16による拡
大像又は全体光学系28にJ:る仝体1象の少くどもい
ずれか一方を評価して求める角度差識別手段24ど、該
角度差識別手段24出力のfQ度メf15号に応じて、
前記角度差を打消づ反対方向に前記拡大像及び全体像を
傾斜さ往て前記モニタ装置22に映寸ための角α補正手
段26とを設け、前記拡大像の姿態を常に基準姿態に傾
斜補正すると共に、前記載物台10ど拡大光学系16の
相対移動に伴って変位する拡大像の現在位置を、同じく
基準姿態に傾斜補正した全体像上に重複表示させるよう
に構成することにより、前記第2の目的を)構成したも
のである。 又、本発明の実IM態様は、前記拡大像の傾斜iIi正
角度と前記全体俄の傾斜補正角度を、各々独立に調整可
能どするようにしたものである。 又、本発明の実施態様は、前記モニタ装置と第2のモニ
タ装置を、表示両面を同一として形成したものである。 (作用] 本発明は、前記のよう′な画像処理式測定装置において
、載物台に対する測定対染物の取付角度と両91のjQ
l il+相対角度との角度差を、拡大光学系による拡
大像を評価して求める角度差識別手段と、該角度差識別
手段出力の角度差信号に応じて、前記角度差を打消す反
対方向に前記拡大像を傾斜させてモニタ装置に映すため
の角度補正手段とを設け、前記モニタ装置の拡大代の姿
態を常に基?(−姿態に傾斜補正するように(7+1成
している。従って、測定対象物の取付姿態に拘わらず、
拡大像を水平姿態、垂直姿態等の所定のも1ハf姿(ぶ
で映し出づことができ、拡大像による測定を正確、迅速
且つ容易に行うことができる。 本発明は、又、前記のような画像タハ理式測定装置にお
いて、測定対象物の全体(象を捉える全体光学系と、該
全体1′CAを固定的に映す第2のモニタ装置と、載物
台と拡大光学系の相対移動変位量から、拡大□□□の測
定対象物上の現在位置を特定する現在位置特定手段と、
前記載物台に対する測定対e−1均の取付角度と両者の
コ;木姑相対角度との角1夏着を、前記拡大光学系によ
る拡大像又は全体光学系による全体像の少くともいずれ
か一方を評価して求める角度差識別手段と、該角麿差識
別手[Ω出力の角度差18号に応じて、1)a記角度丹
を打消11−反え1方向に前記拡大(〜及び全体像をl
1hi斜さuでモニク哀「に1llJB−、lための角
度補正手段とを;9け、前記拡大i矛の姿態を常に基準
姿態に傾斜補正すると共に、前記載物台と拡大光学系の
相対移動に伴って変位する拡大像の現在1ヴ首を、同じ
く阜ti姿態に傾斜?+(i正した全体像上に重複表示
させるように11う成している。従って、拡大像及び全
体像を基ip姿態で映し出すことができるだけでイ≧く
、載物台と拡大光学系の相対移動に伴って変位する拡大
像の位置を確認することができ、拡大像による測定を迅
速りつ容易に行うことができる。 又、前記拡大像の傾斜補正角度と前記全体像のKij:
l ?ili正角度を、各々独立に調整可能とした場合
には、拡大1悦と全体像の基準姿態が異なる場合にも容
易に対応できる。 又、前記モニタ装置と第2のモニタ装置を、表示両面を
同一として形成した場合には、装置の構成が比較的単純
となり、小型化できる。 (実施例1 以下図面を参照して、本発明が採用された両1ffi処
理型測定(大の実施例を詳細に説明する。 本発明の第1実施例は、第3図に示づ如く、載物台であ
るX−Yテーブル40、該X−Yテーブル/10をX−
Y方向に移動自在に支持する、側面にJす定3−1象物
を1.1Q入出するための1肴入出口42△が形成され
たテーブル栗白42、照明光学系、411、大光学系、
全体光学系、テレビカメラ等が内蔵された、Z@方向に
移動自在む測定ヘッド44、該測定ヘッド44をX−Y
テーブル40上ぐ支持ヅる支持アーム46答を有し、前
記X−Yテーブル40の位置を制t)[1するための駆
動制御系、flit記×−Yテーブル40の位置を検出
するための直線■1変位検出器をCむ位置検出系、前記
照明光学系を制御するための照明制御系、前記拡大光学
系や全体光学系のレンズを制御づ゛るためのレンズIi
’l 1lln系、前記テレビカメラで17られた画像
を処理するための、本発明による角度差識別回路どi1
4斜補正補正を含むビデオα理系、前記テレビカメラの
焦点を自動的に調節覆るためのオートフォーカス系等が
内蔵された測定台38ど、前記テレビカメラで捉えられ
、傾斜補正された1q:人像及び全体像を(IHIHづ
モニタ装置48と、ハードデスクやフロッピーデスク及
び中央処理ユニットを合むコンピュータ50ど、該コン
ピュータ50に必要イア指令を与えたりあるいは前記X
−Yテーブル40を操作したtつするためのジョイステ
ィック52、操作=、p 54及びデジタイザ56と、
測定対象物の全体像の輪郭等を必要に応じて描くための
プロッタ58とから主に溝成されている。 前記測定ヘッド4/Iの内部では、′f34図に詳細に
示した如く、少くとも1木の拡大光学系60及び全体光
学系62が軸64A廻りに回動可能とされたレボルバ6
4上に固定され、例えばベルト66を介して光学系切換
モークロ8にj:り該レボルバ64の位置を切換えるこ
とによって、拡大光学系60と仝体光学系62が切換え
可能とされ、単一のテレビカメラ70の受光部70Aに
像が入力覆るようにされている。図にJ3いて、72は
、光軸の位置決めを行うためのクリック、74は、どの
光学系が使用されているかを検出器るだめの光学系検出
センサである。 以下第1実施例の作用を説明する。 まず、X−Yテーブル40上に測定対柔物をセットづ゛
る。次いで、ヌーYテーブル40の位置を大略調整した
後、光学系切換モータ68を駆動して全体光学系62を
テレビカメラ70の前面に挿入し、測定対象物の全体像
を捉えて、傾斜補正を行った後、モニタ装置48の画面
の一部分、例えば第5図に示づ如く左−ヒ部に固定的に
表示づ゛ろ。 この全体像の表示は、以後測定が終了するまで床持して
おく。 次いで、光学系切換モータ68を駆動してレボルバ64
を回転させ、所定倍率の拡大光学系60をテレビカメラ
70の前面に押入り゛る。j広大光学系6oによって捉
えられ、傾斜補正されIζ拡大像は、第5図に示した如
く、モニタ装置/I8の例えば左下部に表示される。 X−Yテーブル40の位γ、即ち拡大光学系60の測定
対象物に対する位置は、例えばテーブル架台42に内蔵
された直線型変位検出器で検出されており、これによっ
て検出された拡大光学系60とX−Yテーブル40の位
置間係が、前記全体■上に例えば輝点の現在位置マーク
で重複表示される。 従って測定者は、望む目標値に向【ノて、全体Rf上に
表示された現在位置マークを近付けよう、ジョイスティ
ック52、デジタイザ56又はライトベン(図示省略)
等を用いてX−Yテーブル40を駆動する。 第5図に示した如く、測定すべきエツジ線G−Gを含む
所望拡大像がモニタ装置48に表示された段階で、操作
者が探作車54のボタン、例えばデジタイザ56で第5
図の矢印A→Bに示づ如く、エツジ検出系路の位置と方
向を定め、エツジ検出ボタンをオンとすると、エツジ点
Hでエツジ位置(画面中心からの長さし1)が自動的に
検出される。 次いで、X−Yテーブル移動量を移動させ、第6図に示
す如く、反対側のエツジ線J−’Jを含む所望拡大像を
モニタ装置48に表示する。次いで、第5図とは逆に、
矢印C→Dの如くエツジ検出系路の位置と方向を定め、
エツジ点にの位置〈画面中心からの長さL2)を求める
。 このようにしてエツジ点FIK間の寸法を、(寸法L1
+寸法L2+変位検出器で検出したテーブル移動量)で
求めることができる。なa3、この場合には、モニタ装
胃48上でエツジ線G −GとJ−Jが同一線上に位置
付けされたと仮定している。 ここで測定精度は、テレビカメラ70の分盲了能をW5
00ビクセルX H500ビクセル(受光面の大ぎさを
10x10關とする)、拡大光学系60の侶埠tを50
18とした時、テレビカメラ70からの出力信号は、横
方向について、1150X10.1500=1/250
0/ビクセルと仕る。従って、測定対象の腺を、0.1
1μm/ビクヒルの分解能で評価できることになる。こ
の揚台、前記変位検出器の出力信号の分ガY能は0.4
μm以上どづ゛る。これは、第7図に示す如く、エツジ
線G−GどJ−Jを同時に映した場合には、土ツジ腺G
−G−J−J間に入るピクセル攻×0.4μmがG−G
−J−J間寸法となる。 処理データは記憶され、必要に応じてメツレージとして
、前出第5図に示した如くモニタ装置48の右半分に出
力される。 な33円の径や仮想中心位置、勾配、角度等も、それぞ
れ同様の手順でエツジを検出して同様に111定するこ
とができる。この拡大伝に対するエツジ検出方向、検出
点数、拡大づべき測定対象物の位置等は、各スデツブ毎
に決められた測定プログラムどして記↑0されている。 なお前記全体光学系62で捕えられた全体代は、輪郭の
みを抽出し、スケッチ図として、プリンタやプロッタ5
8へ出力することができ、従来の手出に比べて正確で速
やかにトレース図が作成でさる。又、トレース図形上に
測定結果を記入づ“ることも可能となる。更に、全体浄
上に、第8図に示づ如く、座標軸や測定点(円の中心C
1や直線の交点I+、Iz等)を名称付きで重ねて表示
することもできる。この場合には、測定手順の把握や図
面との対比が容易と4にるので、複鉗なデータ処理を行
う場合に便利である。 この第1実施例においては、拡大光学系60と全体光学
系62を、倍率の異なる複数組のレンズ系を設けてVJ
換え可能に(j4成しているので、各光学系の設訓が容
易である。 又、この第1実施四においては、テレビカメラ70を共
用としているので、装置を′り、価に(j・1成するこ
とができる。なおテレビカメラ70を拡大光学系60と
全体光学系62のそれぞれに設けることも可能である。 更に、この第1実施例においては、71−1〜フオ一カ
ス機構を絹み込んでいるので、画像がj了明となり測定
精度が高い。なJ3、オートフォーカス1;1描を省略
することも可能である。 次に本発明の第2実施例を詳細に説明する。 この′?52実施例は、第9図に示ず如く、全体光学系
をズームレンズ80で(r11成するど共に、移動ボッ
クス82を図の右方向に移動8ぼた時に、Jl:1定用
レンズ84即ら拡大レンズとなるようにして拡大光学系
を形成したものである。 第9図において、86はミラー、88は、ギ119Qを
介してズームレンズ80のズーミングを行うためのズー
ム用モータ、92はズーム位置を(の出するためのセン
サ、91及び96は、それぞれVレール」ニに支持され
た移!FJJ板及び固定板、98は、移動ボックス82
を光学系切換モータ68によって駆動するためのラック
である。 面間測定用レンズ8/lは、例えばレボルバ(図示省略
)等により、拡大率の異なるものに切換えあるいは、着
脱により交換可能とされている。 他の点については前記第1実施例と同様であるので説明
は省i’18づ゛る。 この第2実施例においては、第9図に示した状態で測定
用レンズ84及びズームレンズ80を介してテレビカメ
ラ70に入力される像によって、全体象の表示が行われ
る。なa3、ズームレンズ80の拡大率は、ズーム用モ
ータ88で変えられる。 一方、拡大像を覗察する際には、光学系I、l171灸
えモータ68によりランク98を介して移動ボックス8
2の全体を図の右方向に移動刃る。すると、光路中から
ズームレンズ80が外されて測定用レンズ84による拡
大光学系となる。 この第2実り色間にiJ3いては、光学系を切換えるた
めの1ま構が測定ヘッド44内に完全に収容されている
ので、破損の恐れが少ない。又、全体光学系にズームレ
ンズ80を用いているので、Ill定対象物の大きさに
合わせて任意の縮小倍率を連携することが容易にできる
。 なお前記実/II!i例においては、いずれも、拡大光
学系と全体光学系が独立とされていたが、第10図に承
り第3実施例の如く、例えば甲−のズームレンズ80を
用いて、光学系を光軸方向に変f、l、可能なレンズ系
で形成し、該レンズ系の位置を調整することで、例えば
拡大率n倍(n=30.20.40等)の拡大光学系ど
簡小率1 / n 13の全体光学系を共用することも
可能である。この場合に(よ、測定ヘッドを小型化する
ことが可能である。又、全体光学系を省略することも可
能である。 又、+”+if記実施例においては、いずれも、光学系
の現在位置のみを輝点て表示するようにしていlこが、
予め記憶しておいた測定プログラムに従つζ、移動すべ
き次の目標位置も合わせてマーク表示又は接近程度によ
って点滅表示することら可能である。更に、現在位置が
目標位置と一致した0)に、へ1測Q’= f(i°1
完了信号を出力することも可能である。 これらの場合には、操作名が測定点の順序を熟知してい
なくても、正確な測定が迅速に行える。 なC15、前記実施例においては、いずれも、X−Yテ
ーブル40を用いて載物台をX−Y方向に移動し、測定
ヘッド44を用いて光学系をZ軸方向に移動するように
構成していたが、載物台と光らγ・系を相対移すJさせ
る構成は、これに限定されず、例えば、載物台を固定し
、光学系のみをXYZ方向に移動するように構成するこ
ともできる。 又、前記実施例においては、いずれも、本発明が2次元
測定(;(に用いられていたが、本発明の適用範囲はこ
れに限定されず、オートフォーカス別格を利用して3次
元測定l凌としたり、あるいは顕微鏡等にも同様に適用
できることが明らかである。 [発明の効果] 以上説明した通り、本発明によれば、測定対象1力の取
付姿態に拘わらず、拡大画や全体像を所定の基準¥態で
映し出づ゛ことができ、従って、迅速且つ確実な測定が
可能となるという岡れた効果を有づ゛る。
Purpose of the Invention 1 The present invention has been made in order to solve the problems of the previous generation, and to easily perform measurement using an enlarged image accurately, quickly, and without regard to the mounting position of the object to be measured. The first objective is to provide an image processing type measuring device that can perform A second object of the present invention is to provide an image processing measuring device that can easily confirm the position of an enlarged image on an object to be measured. [Means for Solving the Problems] The present invention, as shown in FIG.
an illumination optical system 14 that irradiates light onto the object to be measured 12 placed on the object 12;
a magnifying optical system 16 that magnifies the image of the measurement target portion; a moving mechanism 18 that relatively moves the document table 10 and the magnification optical system 16 to magnify a predetermined measurement target portion; For example, a photoelectric coupling device using a television camera 20, a monitor device 22 that displays an enlarged image of the part to be measured, and a measuring means that performs edge detection processing on the enlarged image to obtain the dimensions, shape, etc. of the object to be measured. In the separated image processing measuring device, the angular difference between the taken f1 angle of the measurement object 12 with respect to the document table 10 and the reference relative angle between the two is determined by evaluating the magnified image by the magnifying optical system 16. identification means 24; and angle correction means 26 for tilting the enlarged image in a direction opposite to compensate for the angular difference according to the angular difference No. 13 output from the angular difference identification means 24 and displaying it on the monitor device 22. The enlargement of the monitor device 22 [1
) has achieved the first objective. Further, the present invention provides the above-mentioned image processing type measuring device, as shown in FIG. A second monitor device (monitor device 2 in Figure 2)
2), +1i+ writing table 10 and magnifying optical system 16
A current position specifying means 30 specifies the current position of the enlarged image on the measurement object 12 from the amount of relative movement displacement, and the mounting angle of the measurement object 12 with respect to the document table 10 and the reference relative angle between the two. An angular difference discriminating means 24 for determining the angular difference by evaluating at least one of the enlarged image by the enlarging optical system 16 or the whole image of the whole optical system 28, and the output of the angular difference discriminating means 24. According to the fQ degree f15,
The monitor device 22 is provided with an angle α correction means 26 for tilting the enlarged image and the entire image in the opposite direction to cancel the angular difference, and always corrects the inclination of the enlarged image to the reference posture. At the same time, by configuring the current position of the enlarged image, which is displaced with the relative movement of the object table 10 and the enlargement optical system 16, to be displayed overlappingly on the overall image whose tilt has been corrected to the reference posture, the above-mentioned (second purpose). Further, in the actual IM aspect of the present invention, the positive angle of inclination iIi of the enlarged image and the inclination correction angle of the entire image can be adjusted independently. Further, in an embodiment of the present invention, the monitor device and the second monitor device are formed so that both display surfaces are the same. (Function) The present invention provides an image processing type measuring device as described above, in which the installation angle of the dyed object to be measured with respect to the stage and the jQ of both 91
An angular difference identifying means that evaluates the magnified image by the enlarging optical system to determine the angular difference between l il+relative angle, and an angular difference identifying means that calculates the angular difference between the angular difference and the relative angle in the opposite direction to cancel the angular difference according to the angular difference signal output from the angular difference identifying means. An angle correction means for tilting the enlarged image and displaying it on the monitor device is provided, and the angle correction means is provided to tilt the enlarged image and display it on the monitor device, so that the enlarged image is always based on the orientation of the enlargement range of the monitor device. (7+1 is made so that the tilt is corrected in the - position. Therefore, regardless of the mounting position of the measurement target,
The enlarged image can be projected in a predetermined horizontal or vertical position, etc., and measurements using the enlarged image can be performed accurately, quickly, and easily. In an image-based Tahar-type measuring device such as the Current position specifying means for specifying the current position of the enlarged □□□ on the measurement target from the amount of relative movement displacement;
The mounting angle of the measurement pair e-1 with respect to the document table and the relative angle of both; An angular difference discriminating means for evaluating one side and the angle difference discriminating means [Depending on the angular difference No. 18 of the Ω output, 1) canceling the angle tan 11 - oppositely expanding the angle in one direction (... and The whole picture
An angle correction means for adjusting the position of the magnifying lens at an inclination of 1; The current head of the enlarged image, which is displaced as it moves, is tilted to the same tilted position. The position of the magnified image, which is displaced due to the relative movement of the stage and the magnifying optical system, can be confirmed, and measurements using the magnified image can be performed quickly and easily. In addition, the tilt correction angle of the enlarged image and Kij of the entire image:
l? If the ili positive angles can be adjusted independently, it is possible to easily cope with the case where the reference posture of the enlarged image and the overall image are different. Further, when the monitor device and the second monitor device are formed so that both display surfaces are the same, the structure of the device becomes relatively simple and can be miniaturized. (Example 1) Hereinafter, with reference to the drawings, a detailed description will be given of an embodiment of both 1ffi processing type measurement (large) in which the present invention is adopted. The X-Y table 40 is a stage, and the X-Y table/10 is
A table Kurishiro 42 that is movably supported in the Y direction and has a 1-piece inlet/outlet 42△ for 1.1Q entry and exit of a J-shaped 3-1 object on its side, illumination optical system, 411, large optical system. system,
A measuring head 44 that has a built-in optical system, a television camera, etc. and is movable in the Z@ direction, and the measuring head 44 is
It has a support arm 46 that supports above the table 40, and a drive control system for controlling the position of the X-Y table 40; Linear ■1 A position detection system that includes the displacement detector, an illumination control system for controlling the illumination optical system, and a lens Ii for controlling the lenses of the magnification optical system and the overall optical system.
'l 1lln system, the angular difference discrimination circuit according to the present invention for processing the image captured by the television camera.
4. A video α system including tilt correction correction, a measuring table 38 having a built-in autofocus system for automatically adjusting the focus of the television camera, etc. 1q: Human image captured by the television camera and tilt corrected. and the overall picture (such as an IHIH monitor device 48 and a computer 50 that includes a hard disk, floppy disk, and central processing unit), and gives necessary ear commands to the computer 50, or
- a joystick 52 for operating the Y table 40, an operation=, p 54 and a digitizer 56;
It mainly consists of a plotter 58 for drawing the outline of the entire image of the object to be measured as needed. Inside the measuring head 4/I, as shown in detail in Fig. 'f34, at least one enlarging optical system 60 and an overall optical system 62 are provided with a revolver 6 which is rotatable around an axis 64A.
The magnifying optical system 60 and the body optical system 62 can be switched by switching the position of the revolver 64, which is fixed to the optical system switching mocro 8 via a belt 66, for example. The image is input to and covers the light receiving section 70A of the television camera 70. At J3 in the figure, 72 is a click for positioning the optical axis, and 74 is an optical system detection sensor for detecting which optical system is being used. The operation of the first embodiment will be explained below. First, a soft object to be measured is set on the X-Y table 40. Next, after approximately adjusting the position of the Nu Y table 40, the optical system switching motor 68 is driven to insert the entire optical system 62 in front of the television camera 70, capture the entire image of the object to be measured, and perform tilt correction. After that, it is fixedly displayed on a portion of the screen of the monitor device 48, for example, on the left-hand side as shown in FIG. The display of this overall image is kept on display until the measurement is completed. Next, the optical system switching motor 68 is driven to switch the revolver 64.
is rotated, and the magnifying optical system 60 with a predetermined magnification is pushed into the front of the television camera 70. The tilt-corrected Iζ magnified image captured by the wide optical system 6o is displayed, for example, at the lower left of the monitor device/I8, as shown in FIG. The position γ of the X-Y table 40, that is, the position of the magnifying optical system 60 with respect to the object to be measured, is detected by, for example, a linear displacement detector built into the table pedestal 42, and the magnifying optical system 60 detected by this and the positional relationship of the X-Y table 40 are displayed overlappingly on the above-mentioned whole section (2) using, for example, a bright spot current position mark. Therefore, the measurer should move the current position mark displayed on the entire Rf toward the desired target value using the joystick 52, the digitizer 56, or the light bevel (not shown).
etc. to drive the X-Y table 40. As shown in FIG. 5, when the desired enlarged image including the edge line GG to be measured is displayed on the monitor device 48, the operator presses the button of the probe vehicle 54, for example, the digitizer 56, to
As shown in the arrow A → B in the figure, when you set the position and direction of the edge detection system and turn on the edge detection button, the edge position (length 1 from the center of the screen) is automatically set at edge point H. Detected. Next, the X-Y table is moved by the amount of movement, and a desired enlarged image including the edge line J-'J on the opposite side is displayed on the monitor device 48, as shown in FIG. Next, contrary to Figure 5,
Determine the position and direction of the edge detection system as shown by arrow C→D,
Find the position of the edge point (length L2 from the center of the screen). In this way, the dimension between the edge points FIK is set as (dimension L1
+ dimension L2 + table movement amount detected by the displacement detector). In this case, it is assumed that the edge lines GG and JJ are positioned on the same line on the monitor mount 48. Here, the measurement accuracy is the blindness of the television camera 70
00 pixel
18, the output signal from the television camera 70 is 1150X10.1500=1/250 in the horizontal direction.
0/Work with Bixel. Therefore, the gland to be measured is 0.1
This means that evaluation can be performed with a resolution of 1 μm/Vichir. The output signal of this platform and the displacement detector is 0.4
The depth exceeds μm. As shown in Figure 7, when the edge lines G-G and J-J are projected at the same time,
- Pixel attack x 0.4 μm between G-J-J is G-G
- The dimension between J and J. The processed data is stored and output as memory as necessary to the right half of the monitor device 48 as shown in FIG. 5 above. The diameter, virtual center position, slope, angle, etc. of the 33 circles can also be determined in the same way by detecting edges using the same procedure. The edge detection direction, the number of detection points, the position of the measurement object to be enlarged, etc. for this enlargement are recorded in a measurement program determined for each step. It should be noted that the overall area captured by the overall optical system 62 is extracted only as a contour and printed as a sketch on a printer or plotter 5.
8, making it possible to create trace diagrams more accurately and quickly than with conventional methods. It is also possible to write the measurement results on the trace figure.Furthermore, as shown in Figure 8, it is possible to write the measurement results on the trace figure.
1, straight line intersections I+, Iz, etc.) can also be displayed in an overlapping manner with names. In this case, it is easy to understand the measurement procedure and compare it with the drawings, which is convenient when performing complex data processing. In this first embodiment, the magnifying optical system 60 and the overall optical system 62 are provided with a plurality of lens systems having different magnifications, and the VJ
It is easy to set up each optical system because it can be changed (j4). Also, in this first embodiment, since the television camera 70 is shared, the equipment can be - It is also possible to provide the television camera 70 in each of the enlarging optical system 60 and the overall optical system 62.Furthermore, in this first embodiment, 71-1 to the focus mechanism Since the image is clearly defined, the measurement accuracy is high.It is also possible to omit the step 1 of autofocus.Next, a second embodiment of the present invention will be explained in detail. In this '?52 embodiment, as shown in FIG. 9, the entire optical system is constructed with a zoom lens 80 (r11), and when the moving box 82 is moved to the right in the figure, Jl: A magnifying optical system is formed by forming a constant lens 84, that is, a magnifying lens. In FIG. 92 is a zoom motor; 92 is a sensor for outputting the zoom position; 91 and 96 are a moving FJJ board and a fixed plate supported by V-rails; 98 is a moving box 82;
This is a rack for driving the optical system switching motor 68. The surface-to-plane measurement lens 8/l can be changed to one with a different magnification using a revolver (not shown), or can be replaced by attachment and detachment. The other points are the same as those of the first embodiment, so the explanation will be omitted. In this second embodiment, the entire image is displayed by an image input to the television camera 70 through the measurement lens 84 and the zoom lens 80 in the state shown in FIG. a3. The magnification of the zoom lens 80 can be changed by a zoom motor 88. On the other hand, when observing the enlarged image, the moving box 8 is
Move the entire section 2 to the right in the figure. Then, the zoom lens 80 is removed from the optical path and becomes an enlarging optical system using the measurement lens 84. At iJ3 between the second fruit colors, one mechanism for switching the optical system is completely housed within the measuring head 44, so there is little risk of damage. Furthermore, since the zoom lens 80 is used in the entire optical system, it is possible to easily coordinate arbitrary reduction magnifications according to the size of the constant object. In addition, the fruit/II! In Example i, the magnifying optical system and the overall optical system were independent, but as shown in FIG. 10, as in the third embodiment, the optical system is By forming a lens system that can change f and l in the axial direction and adjusting the position of the lens system, it is possible to easily create a magnifying optical system with a magnification of n times (n = 30, 20, 40, etc.), for example. It is also possible to share the entire optical system of 1/n 13. In this case, it is possible to miniaturize the measurement head. It is also possible to omit the entire optical system. In addition, in the embodiments described above, the current state of the optical system is I tried to display only the position as a bright spot, but
According to a measurement program stored in advance, the next target position to be moved can also be displayed with a mark or blinking depending on the degree of approach. Furthermore, at 0) where the current position coincides with the target position, the first measurement Q'= f(i°1
It is also possible to output a completion signal. In these cases, accurate measurements can be quickly performed even if the operator is not familiar with the order of measurement points. C15, in each of the above embodiments, the X-Y table 40 is used to move the stage in the X-Y direction, and the measurement head 44 is used to move the optical system in the Z-axis direction. However, the configuration in which the stage and the optical system are moved relative to each other is not limited to this, for example, the stage may be fixed and only the optical system may be moved in the XYZ directions. You can also do it. In addition, in all of the above embodiments, the present invention was used for two-dimensional measurement (;), but the scope of application of the present invention is not limited to this, and three-dimensional measurement using special autofocus is also possible. It is clear that the present invention can be similarly applied to a microscope, etc. [Effects of the Invention] As explained above, according to the present invention, an enlarged image or an overall image can be obtained regardless of the mounting position of the force to be measured. It has an excellent effect in that it can be displayed in a predetermined standard state, and therefore, rapid and reliable measurement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明に係る画像処]11j式測
定装置の基本的な構成の例を示づブロック線図、第3図
は、本発明が採用された両(免処理型測定汐の第1実施
例の全体構成を示す斜視図、第4図は、前記第1実施例
の測定ヘッドの構成を示す断面図、第5図は、前記第1
実施例におけるモニタ装置の表示例を示す線図、第6図
及び第7図は、前記第1実施例におけるモニタ装置の拡
大像の表示例泰示1線図、第8図は、同じく全体像の表
示例を示す線図、第9図は、本発明の第2実施例にJ3
<jる測定ヘッドの構成を示す断面図、第10図は、同
じく第3実rM例における光学系の基本的な(111成
を示す線図である。 10・・・載物台、 12・・・測定対象物、 14・・・照明光学系、 16.60・・・拡大光学系、 18・・・移動橙描、 20.70・・・テレビカメラ、 22.48・・・モニタ装置、 24・・・角度差識別手段、 26・・・角度補正手段、 28・・・全体光学系、 30・・・現在位(支)特定手段、 38・・・測定台、 40・・・X−Yテーブル、 44・・・測定ヘッド、 50・・・コンピュータ。
1 and 2 are block diagrams showing an example of the basic configuration of an image processing]11j type measuring device according to the present invention, and FIG. FIG. 4 is a sectional view showing the structure of the measurement head of the first embodiment, and FIG. 5 is a perspective view showing the overall structure of the first embodiment of the measurement head.
6 and 7 are diagrams showing display examples of the monitor device in the embodiment, and FIG. 7 is a diagram showing an example of display of an enlarged image of the monitor device in the first embodiment. FIG. 9 is a diagram showing an example of the display of J3 in the second embodiment of the present invention.
FIG. 10 is a cross-sectional view showing the configuration of the measuring head, and is a diagram showing the basic (111 configuration) of the optical system in the third practical example. ...Measurement object, 14.. Illumination optical system, 16.60.. Magnifying optical system, 18.. Moving orange drawing, 20.70.. Television camera, 22.48.. Monitor device. 24... Angle difference identification means, 26... Angle correction means, 28... Overall optical system, 30... Current position (support) identification means, 38... Measurement stand, 40... X- Y table, 44...Measuring head, 50...Computer.

Claims (4)

【特許請求の範囲】[Claims] (1)載物台上に配置された測定対象物に光照射する照
明光学系と、前記測定対象物と関与した光を受けて、測
定対象部分の像を拡大する拡大光学系と、所定の測定対
象部分を拡大すべく、前記載物台と拡大光学系とを相対
移動させる移動機構と、前記拡大光学系に光電結合され
、測定対象部分の拡大像を映すモニタ装置と、該拡大像
を処理して、測定対象物の寸法や形状等を求める計測手
段とを備えた画像処理式測定装置において、 前記載物台に対する測定対象物の取付角度と両者の基準
相対角度との角度差を、前記拡大光学系による拡大像を
評価して求める角度差識別手段と、該角度差識別手段出
力の角度差信号に応じて、前記角度差を打消す反対方向
に前記拡大像を傾斜させて前記モニタ装置に映すための
角度補正手段とを設け、 前記モニタ装置の拡大像の姿態を常に基準姿態に傾斜補
正するように構成したことを特徴とする画像処理式測定
装置。
(1) An illumination optical system that irradiates light onto an object to be measured placed on a stage, an enlarging optical system that receives light related to the object and magnifies an image of the part to be measured, and a predetermined a moving mechanism for relatively moving the document table and the magnifying optical system in order to magnify the measurement target part; a monitor device photoelectrically coupled to the magnification optical system to display an enlarged image of the measurement target part; and a monitor device for displaying the enlarged image. In an image processing measuring device equipped with a measuring means for processing and determining the dimensions, shape, etc. of the object to be measured, the angular difference between the mounting angle of the object to be measured with respect to the object table and the reference relative angle between the two, An angular difference identifying means for evaluating and obtaining an enlarged image by the enlarging optical system; and an angular difference identifying means for determining the enlarged image by tilting the enlarged image in a direction opposite to canceling out the angular difference according to an angular difference signal output from the angular difference identifying means. An image processing type measuring device, comprising: an angle correction means for displaying the image on the device, and configured to always correct the tilt of the enlarged image of the monitor device to a reference posture.
(2)載物台上に配置された測定対象物に光照射する照
明光学系と、前記測定対象物と関与した光を受けて、測
定対象部分の像を拡大する拡大光学系と、所定の測定対
象部分を拡大すべく、前記載物台と拡大光学系とを測定
移動させる移動機構と、前記拡大光学系に光電結合され
、測定対象部分の拡大像を映すモニタ装置と、該拡大像
を処理して、測定対象物の寸法や形状等を求める計測手
段とを備えた画像処理式測定装置において、 前記測定対象物の全体像を捉える全体光学系と、該全体
像を固定的に映す第2のモニタ装置と、前記載物台と拡
大光学系の相対移動変位量から、前記拡大像の測定対象
物上の現在位置を特定する現在位置特定手段と、 前記載物台に対する測定対象物の取付角度と両者の基準
相対角度との角度差を、前記拡大光学系による拡大像又
は全体光学系による全体像の少くともいずれか一方を評
価して求める角度差識別手段と、 該角度差識別手段出力の角度差信号に応じて、前記角度
差を打消す反対方向に前記拡大像及び全体像を傾斜させ
て前記モニタ装置に映すための角度補正手段とを設け、 前記拡大像の姿態を常に基準姿態に傾斜補正すると共に
、前記載物台と拡大光学系の相対移動に伴って変位する
拡大像の現在位置を、同じく基準姿態に傾斜補正した全
体像上に重複表示させるように構成したことを特徴とす
る画像処理式測定装置。
(2) An illumination optical system that irradiates light onto the measurement target placed on the stage, an enlarging optical system that receives the light associated with the measurement target and magnifies the image of the measurement target, and a predetermined a moving mechanism for measuring and moving the document table and the enlarging optical system in order to enlarge the part to be measured; a monitor device that is photoelectrically coupled to the enlarging optical system and displays an enlarged image of the part to be measured; and a monitor device for displaying the enlarged image. In an image processing type measuring device, the image processing measuring device is equipped with a measuring means for determining the dimensions, shape, etc. of the object to be measured. a current position specifying means for specifying the current position of the enlarged image on the object to be measured based on the amount of relative displacement between the object table and the magnifying optical system; An angular difference identifying means for determining the angular difference between the mounting angle and a reference relative angle between the two by evaluating at least either an enlarged image by the enlarging optical system or an overall image by the overall optical system; and the angular difference identifying means. and angle correction means for tilting the enlarged image and the entire image in a direction opposite to canceling out the angular difference according to the output angular difference signal, and displaying the image on the monitor device, so that the posture of the enlarged image is always used as a reference. In addition to performing tilt correction on the posture, the current position of the enlarged image that is displaced due to the relative movement of the document stage and the magnifying optical system is overlappingly displayed on the overall image that has also been tilt-corrected to the reference posture. Features of image processing measurement device.
(3)前記拡大像の傾斜補正角度と前記全体像の傾斜補
正角度が、各々独立に調整可能とされている特許請求の
範囲第2項記載の画像処理式測定装置。
(3) The image processing measuring device according to claim 2, wherein the tilt correction angle of the enlarged image and the tilt correction angle of the entire image are each independently adjustable.
(4)前記モニタ装置と第2のモニタ装置が、表示画面
を同一として形成されている特許請求の範囲第2項記載
の画像処理式測定装置。
(4) The image processing type measuring device according to claim 2, wherein the monitor device and the second monitor device are formed with the same display screen.
JP27651585A 1985-12-09 1985-12-09 Image processing type measuring instrument Granted JPS62135705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27651585A JPS62135705A (en) 1985-12-09 1985-12-09 Image processing type measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27651585A JPS62135705A (en) 1985-12-09 1985-12-09 Image processing type measuring instrument

Publications (2)

Publication Number Publication Date
JPS62135705A true JPS62135705A (en) 1987-06-18
JPH0357403B2 JPH0357403B2 (en) 1991-09-02

Family

ID=17570544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27651585A Granted JPS62135705A (en) 1985-12-09 1985-12-09 Image processing type measuring instrument

Country Status (1)

Country Link
JP (1) JPS62135705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036285A1 (en) * 2002-08-26 2004-04-29 Japan Science And Technology Agency One-cell long-term observing device
JP2008107645A (en) * 2006-10-26 2008-05-08 Fuji Electric Holdings Co Ltd Image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554695B2 (en) 2014-07-18 2019-08-07 株式会社ミツトヨ Image measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036285A1 (en) * 2002-08-26 2004-04-29 Japan Science And Technology Agency One-cell long-term observing device
JP2008107645A (en) * 2006-10-26 2008-05-08 Fuji Electric Holdings Co Ltd Image display device

Also Published As

Publication number Publication date
JPH0357403B2 (en) 1991-09-02

Similar Documents

Publication Publication Date Title
JP3960390B2 (en) Projector with trapezoidal distortion correction device
US6519359B1 (en) Range camera controller for acquiring 3D models
US9129773B2 (en) Charged particle beam apparatus
US11189012B2 (en) Arrangement having a coordinate measuring machine or microscope
JP3427236B2 (en) Methods and means for measuring the magnification of zoom optics
JP5972563B2 (en) Edge detection using structured illumination
JP5597056B2 (en) Image measuring apparatus, image measuring method, and program for image measuring apparatus
KR20070053759A (en) Fluorocope
JPS61278275A (en) Automatic display screen adjustor
US20120194651A1 (en) Shape measuring apparatus
EP3503524A1 (en) Variable focal lentgh lens system including a focus state reference subsystem
CN111609995A (en) Optical module assembly and debugging test method and device
CN114593897B (en) Measuring method and device of near-eye display
JPS62135705A (en) Image processing type measuring instrument
JPS62130305A (en) Image processing type measuring instrument
JPH08313217A (en) Noncontact image measuring system
JP2011138096A (en) Measuring microscope
JP3322227B2 (en) Infrared microscope
JPH11295045A (en) Inspecting apparatus
JP3931130B2 (en) Measurement system, calculation method and calculation program
JP5610579B2 (en) 3D dimension measuring device
JPS62130303A (en) Method and instrument for measuring by means of image processing type
JP3589512B2 (en) Inspection point marking method for microfabricated products, automatic dimension inspection method and automatic dimension inspection device
JPH1047959A (en) Method and device for automatic collimation
JPH10221018A (en) Three-dimensional measuring method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees