JPS62127340A - Phenolic resin molding material - Google Patents

Phenolic resin molding material

Info

Publication number
JPS62127340A
JPS62127340A JP26531685A JP26531685A JPS62127340A JP S62127340 A JPS62127340 A JP S62127340A JP 26531685 A JP26531685 A JP 26531685A JP 26531685 A JP26531685 A JP 26531685A JP S62127340 A JPS62127340 A JP S62127340A
Authority
JP
Japan
Prior art keywords
phenolic resin
molding material
average fiber
fiber
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26531685A
Other languages
Japanese (ja)
Inventor
Takuji Ito
伊藤 拓二
Etsuji Kubo
久保 悦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP26531685A priority Critical patent/JPS62127340A/en
Publication of JPS62127340A publication Critical patent/JPS62127340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To increase the heat resistance and mechanical strength of the resulting moldings without causing environmental pollution, by blending a phenolic resin with glass fiber and specified mineral fiber. CONSTITUTION:This phenolic resin molding material is obtd. by blending (a) phenolic resin, (h) glass fiber having an average fiber diameter of 8-13mum and an average fiber length of 1-13mm and (c) mineral fiber having an average fiber diameter of 0.5-8mum and an average fiber length of 50-300mum, composed of 40-45wt% SiO2, 13-15wt% Al2O3 and 34-36wt% CaO as main components and having a non-fibrous material content of 5wt% or below in such an amount as to give a weight ratio of (c) to (b) of 0.3-2.0. It is preferred that the surface of the component (c) is treated with any of a silane surface treating agent, a phenolic resin, an epoxy resin and a silane treating agent-contg. phenolic resin or epoxy resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェノール樹脂成形材料に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a phenolic resin molding material.

〔従来の技術] 熱硬化性樹脂成形材料は熱可塑性樹脂に比べて熱時、機
械的強度および物理的に優れた特性を有する。また、こ
の熱硬化性樹脂の中で、フェノール樹脂成形材料は他の
樹脂に比べ、優れた耐熱性、機械的強度、寸法変化、ク
リープ特性を有しており、各種機械部品、電気部品に使
用されている。
[Prior Art] Thermosetting resin molding materials have better mechanical strength and physical properties when heated than thermoplastic resins. Among these thermosetting resins, phenolic resin molding materials have superior heat resistance, mechanical strength, dimensional change, and creep properties compared to other resins, and are used in various mechanical and electrical parts. has been done.

近年、金属からプラスチック材料への代替による軽量化
、製造工程の合理化およびコストダウンを図るために、
フェノール樹脂成形材料が見直されてきている。そして
、成形品に金属に匹敵する物性を付与するために、フェ
ノール樹脂成形材料の補強繊維として、ガラス繊維やア
スベストが単独または、併せて用いられているのである
In recent years, in order to reduce weight, rationalize manufacturing processes, and reduce costs by replacing metal with plastic materials,
Phenolic resin molding materials are being reviewed. In order to provide molded products with physical properties comparable to metals, glass fibers and asbestos are used alone or in combination as reinforcing fibers in phenolic resin molding materials.

(発明が解決しようとする問題点〕 しかしながら、上記補強繊維のうち、アスベストは公害
物質であるため、安全衛生上等の観点から使用の中止が
望まれている。
(Problems to be Solved by the Invention) However, among the above-mentioned reinforcing fibers, asbestos is a polluting substance, so it is desired to discontinue its use from the viewpoint of safety and health.

そのため、補強材としてガラス繊維単独、またはガラス
繊維とクレー、マイカ、シリカ、炭酸カルシウム等のア
スベスト以外の無機質充填材の組み合わせが検討されて
いる。しかし、ガラス繊維単独では機械的強度、寸法変
化、クリープ特性等は優れている反面、肉厚成形品を高
温で熱処理した場合、成形品内部にヘアクラ、りが発生
しやすいという問題があり、肉厚成形品には使用不可で
ある。また、ガラス繊維と前記無機質を併用すると、強
度が低下し、やはり実用上問題がある。
Therefore, the use of glass fiber alone or a combination of glass fiber and inorganic fillers other than asbestos, such as clay, mica, silica, and calcium carbonate, is being considered as a reinforcing material. However, while glass fiber alone has excellent mechanical strength, dimensional change, creep properties, etc., when thick molded products are heat-treated at high temperatures, hair cracks and glue tend to occur inside the molded products. Cannot be used for thick molded products. Further, when glass fibers and the above-mentioned inorganic materials are used in combination, the strength decreases, which is still a problem in practical use.

本発明の目的は前記公害問題を起こすことなく、かつ、
優れた耐熱性、機械的強度を有する成形品の得ることが
できるフェノール樹脂成形材料を提供することにある。
The purpose of the present invention is to avoid causing the above-mentioned pollution problem, and
The object of the present invention is to provide a phenolic resin molding material from which molded products having excellent heat resistance and mechanical strength can be obtained.

〔問題点を解決するための手段] 前記問題点について種々検討した結果、補強材として平
均繊維径0.5〜8μ惟、平均繊維長50〜300μm
の鉱物質繊維とガラス繊維を併用することにより解決で
きることがわかった。
[Means for solving the problem] As a result of various studies regarding the above problem, we found that the reinforcing material has an average fiber diameter of 0.5 to 8 μm and an average fiber length of 50 to 300 μm.
It was found that this problem could be solved by using a combination of mineral fiber and glass fiber.

即ち、本発明は (a)フェノール樹脂、 (b)平均繊維径8〜13μ爾、平均繊維長1〜13t
mのガラス繊維および (c)主成分としてSin、を40〜45wt%、Al
zo3を13〜15wt%、CaOを34〜36wt%
含み、非繊維状物質含量が5wt%以下である平均繊維
径0.5〜8μm、平均繊維長50〜300μIの鉱物
質繊維を(b)成分と(c)成分との重量比(c)/(
b)が0.3〜2.0になるよう混合したことを特徴と
する。
That is, the present invention uses (a) a phenol resin, (b) an average fiber diameter of 8 to 13μ, and an average fiber length of 1 to 13t.
m glass fiber and (c) 40 to 45 wt% of Sin as the main component, Al
13 to 15 wt% of zo3, 34 to 36 wt% of CaO
The weight ratio of component (b) to component (c) (c)/ (
b) is characterized by being mixed so that it becomes 0.3 to 2.0.

本発明に用いられるガラス繊維(b)はアミノシラン等
のシラン系表面処理剤で表面処理されているものが好ま
しく、またアルカリ含有率が小さいEガラスのものが好
ましい。このようなガラス繊維をシラン系表面処理剤で
処理することにより、ガラス繊維とフェノール樹脂との
なじみがよくなって成形材料の成形性が向上し、また成
形品の機械強度、および耐熱性が一層向上する。またガ
ラス繊維の長さは1〜13鶴のものが用いられ、1璽−
未満では強度が弱く、13−1を越えると製造作業性が
悪くなる。
The glass fiber (b) used in the present invention is preferably one that has been surface-treated with a silane-based surface treatment agent such as aminosilane, and is preferably E-glass with a low alkali content. By treating such glass fibers with a silane-based surface treatment agent, the compatibility between the glass fibers and the phenol resin becomes better, improving the moldability of the molding material, and further improving the mechanical strength and heat resistance of the molded product. improves. In addition, the length of glass fiber used is 1 to 13 cranes, and
If it is less than 13-1, the strength will be weak, and if it exceeds 13-1, the manufacturing workability will be poor.

本発明に用いられる鉱物質繊維(c)は高炉滓、ケイ酸
を主成分とする鉱石、石灰石等の原料をキュポラで溶解
し、溶けたものを遠心力で繊維化した人工の非結晶質の
鉱物繊維を任意長に切断し、精選加工したものである。
The mineral fiber (c) used in the present invention is an artificial amorphous material made by melting raw materials such as blast furnace slag, ore containing silicic acid as a main component, and limestone in a cupola, and turning the melted material into fibers using centrifugal force. Mineral fibers are cut into arbitrary lengths and carefully processed.

通常このようにして製造される鉱物i!f繊維には製造
時、球状の非繊維状物質が含まれているが、本発明の鉱
物質繊維(c)においてはこの球状物質が5wt%以下
であることが好ましく、1wt%以下が最適である。
Minerals usually produced in this way i! F fibers contain spherical non-fibrous substances during production, but in the mineral fiber (c) of the present invention, this spherical substance is preferably 5 wt% or less, and optimally 1 wt% or less. be.

この球状物質が5wt%を越えると、強度が低下し、成
形品を急激に加熱した時、ガラス繊維単独と同様にクラ
ンクが発生する。
If the content of this spherical substance exceeds 5 wt%, the strength decreases, and when the molded product is rapidly heated, cranking occurs as in the case of glass fiber alone.

また、本鉱物質繊維単独では強度が低下する。In addition, the strength of this mineral fiber alone decreases.

そこで、ガラス繊維の特徴を出し、かつクラック等の欠
点をなくするため、通常の繊維径8〜13μmのガラス
繊維(b)と本鉱物質繊維(c)とを重量比(c)/ 
(b)が0.3〜2.0、望ましくは0.5〜1.0と
なるように混合する。重量比が0゜3未満ではクラック
が発生しやすく、2.0を越えると強度が低下する。
Therefore, in order to bring out the characteristics of glass fiber and eliminate defects such as cracks, glass fiber (b) with a normal fiber diameter of 8 to 13 μm and this mineral fiber (c) were mixed at a weight ratio (c)/
(b) is 0.3 to 2.0, preferably 0.5 to 1.0. When the weight ratio is less than 0.3, cracks tend to occur, and when it exceeds 2.0, the strength decreases.

次に、鉱物質繊維(c)はそのままで使用してもよいが
、そのままではガラス表面と樹脂とのなじみが悪いので
、表面処理をした方がよい。表面処理の方法は、従来の
8〜13μmのガラス繊維で行われているシラン系表面
処理剤で行う方法とフェノール樹脂またはエポキシ樹脂
を5〜20W【%表面に処理する方法またはこれを組み
合わせる方法がある。樹脂で処理する場合はこれらの樹
脂をあらかじめメタノール、アセトン、MEK。
Next, the mineral fiber (c) may be used as it is, but since it does not blend well with the glass surface and the resin, it is better to perform a surface treatment. Surface treatment methods include the conventional method of using a silane surface treatment agent for glass fibers of 8 to 13 μm, the method of treating the surface with 5 to 20 W% of phenolic resin or epoxy resin, or a method of combining these methods. be. When processing with resins, pre-mix these resins with methanol, acetone, or MEK.

等の溶剤で10〜20wt%の溶液を作成し、鉱物質繊
維をニーダ等の設備で剪断処理を行う。
A 10 to 20 wt % solution is prepared using a solvent such as, and the mineral fibers are sheared using equipment such as a kneader.

本発明のフェノール樹脂(a)としてはノボラックタイ
プの樹脂を単独またはレゾールタイプの樹脂と併用して
用いられる。
As the phenolic resin (a) of the present invention, a novolak type resin is used alone or in combination with a resol type resin.

その他硬化剤であるヘキサミン、およびステアリン酸等
の離型剤、消石灰、酸化マグネシウムのようなアルカリ
土類金属の酸化物または水酸化物等、従来のフェノール
樹脂成形材料に配合されているものを適宜加えることが
できる。
In addition, hexamine as a hardening agent, mold release agents such as stearic acid, slaked lime, alkaline earth metal oxides or hydroxides such as magnesium oxide, etc., which are blended in conventional phenolic resin molding materials, may be used as appropriate. can be added.

本発明のフェノール樹脂成形材料は、常法で製造される
。例えば次のようにして製造される。ガラス繊維(b)
とti物質繊維(c)、フェノール樹脂、硬化剤、およ
びその他の添加物をニーダのような剪断の強い混合機で
混合し、これを、加熱ロールを通すことにより成形材料
化して製造される。この場合、ガラス繊維(b)と鉱物
質繊維(c)は全体の40〜70wt%に設定される。
The phenolic resin molding material of the present invention is produced by a conventional method. For example, it is manufactured as follows. Glass fiber (b)
It is manufactured by mixing ti material fibers (c), phenolic resin, curing agent, and other additives in a mixer with strong shear such as a kneader, and passing the mixture through heating rolls to form a molding material. In this case, the glass fiber (b) and mineral fiber (c) are set at 40 to 70 wt% of the total.

この範囲をはずれると成形材料化が困難になるからであ
る。
This is because if it is outside this range, it becomes difficult to use it as a molding material.

(実施例〕 以下実施例に基づいて具体的に説明する。実施例中、部
および%は重量によるものとする。
(Example) The following will specifically explain based on Examples. In the Examples, parts and percentages are based on weight.

平均繊維径5μI、平均繊維長150μm、非繊維状物
質含有率1%以下の鉱物質繊維90部とアミノシラン処
理剤Q、2w t%を含むフェノール樹脂(20%メタ
ノール溶液)50部をニーダで剪断混合、乾燥し、フェ
ノール樹脂10%+アミノシラン0.5%処理の処理鉱
物質繊維Aを作製した。
90 parts of mineral fibers with an average fiber diameter of 5 μI, an average fiber length of 150 μm, and a non-fibrous substance content of 1% or less and 50 parts of a phenolic resin (20% methanol solution) containing 2 wt% of aminosilane treatment agent Q were sheared using a kneader. The mixture was mixed and dried to produce treated mineral fiber A treated with 10% phenolic resin and 0.5% aminosilane.

前記鉱物質繊維をアミノシラン0.5%含むメタノール
溶液で処理し、乾燥してアミノシラン0.5%処理の処
理物Bを得た。
The mineral fibers were treated with a methanol solution containing 0.5% aminosilane and dried to obtain a treated product B treated with 0.5% aminosilane.

また、フェノール樹脂(20%メタノール溶液)で同様
な方法で処理し、フェノール樹脂10%処理の処理物C
を得た。
Also, treated with phenol resin (20% methanol solution) in the same manner, and treated product C with 10% phenol resin treatment.
I got it.

実施例1 フェノール樹脂42部、ヘキサン5部、酸化マグネシウ
ム1部、ステアリン酸亜鉛1部、一般ガラス繊維(平均
繊維径IOμm、平均繊維長3龍)27部に処理物へを
30部入れ、ニーダで混合し、90℃〜100℃の熱ロ
ールで混合し、粉砕して成形材料を得た。
Example 1 42 parts of phenolic resin, 5 parts of hexane, 1 part of magnesium oxide, 1 part of zinc stearate, and 27 parts of general glass fiber (average fiber diameter IO μm, average fiber length 3×) were added to 30 parts of the treated material, and the mixture was put into a kneader. The mixture was mixed at 90° C. to 100° C. using a hot roll and pulverized to obtain a molding material.

実施例2 処理物Aの代わりに処理物Bを使用した他は実施例1と
同様にして成形材料作製した。
Example 2 A molding material was produced in the same manner as in Example 1 except that treated product B was used instead of treated product A.

実施例3 処理物への代わりに処理物Cを使用した他は実施例1と
同様にして成形材料作製した。
Example 3 A molding material was produced in the same manner as in Example 1, except that treated product C was used instead of treated product.

実施例4 処理物への代わりに未処理の平均繊維径5μm、平均繊
維長150μm、非繊維状物質含有率1%以下の鉱物質
繊維を使用した他は実施例1と同様にして成形材料を作
製した。
Example 4 A molding material was produced in the same manner as in Example 1, except that untreated mineral fibers with an average fiber diameter of 5 μm, an average fiber length of 150 μm, and a non-fibrous substance content of 1% or less were used instead of the treated material. Created.

次に、比較例としてガラス繊維を単独で使用した成形材
料(比較例1)、アスベスト繊維を単独で使用した成形
材料(比較例2)を作製した。
Next, as comparative examples, a molding material using only glass fiber (Comparative Example 1) and a molding material using only asbestos fiber (Comparative Example 2) were produced.

以上の実施例、比較例による成形材料を用いて成形した
成形品の特性を表1に示した。
Table 1 shows the characteristics of molded products molded using the molding materials of the above Examples and Comparative Examples.

なお、曲げ強さ、シャルピー衝撃強さ、絶縁抵抗はJ 
Is−に−6911に基づいて測定し、耐熱性は、外径
50龍、内径20m、長さ40mの円筒形成形品を作製
し、300℃のハンダ浴に30秒環設入した後の成形品
を切断し、内部の状態を目視により観察して判定した(
○ クラックなし、× クランクあり)。
In addition, bending strength, Charpy impact strength, and insulation resistance are J
The heat resistance was measured based on Is-6911, and the heat resistance was measured after making a cylindrical molded product with an outer diameter of 50 mm, an inner diameter of 20 m, and a length of 40 m, and placing it in a solder bath at 300°C for 30 seconds. The product was cut and the internal condition was visually observed and judged (
○ No crack, × Crank).

表1から明らかなように、本発明のフェノール樹脂成形
材料を用いた成形品はアスベストを含有させた比較例2
の成形材料を用いた成形品と同等以上の耐熱性を有し、
かつ、その他の特性もガラス繊維と同等であることがわ
かる。
As is clear from Table 1, the molded product using the phenolic resin molding material of the present invention contained asbestos in Comparative Example 2.
It has heat resistance equivalent to or higher than molded products using molding materials of
Moreover, it can be seen that other properties are also equivalent to glass fiber.

〔発明の効果〕〔Effect of the invention〕

本発明のフェノール樹脂成形材料により、毒性がなく、
かつ耐熱性、機械的強度および絶縁抵抗性に優れた成形
品を製造することができた。
The phenolic resin molding material of the present invention is non-toxic and
Moreover, it was possible to produce a molded article with excellent heat resistance, mechanical strength, and insulation resistance.

Claims (1)

【特許請求の範囲】 1、(a)フェノール樹脂、 (b)平均繊維径8〜13μm、平均繊維長1〜13m
mのガラス繊維および (c)主成分として、SiO_2を40〜45wt%、
Al_2O_3を13〜15wt%、CaOを34〜3
6wt%含み、非繊維状物質含量が5wt%以下である
平均繊維径0.5〜8μm、平均繊維長50〜300μ
mの鉱物質繊維を(b)成分と(c)成分との重量比(
c)/(b)が0.3〜2.0になるよう混合したこと
を特徴とするフェノール樹脂成形材料。 2、鉱物質繊維(c)がフェノール樹脂またはエポキシ
樹脂で表面処理されている特許請求の範囲第1項記載の
フェノール樹脂成形材料。 3、鉱物質繊維(c)がシラン系表面処理剤で表面処理
されている特許請求の範囲第1項記載のフェノール樹脂
成形材料。 4、鉱物質繊維(c)がシラン系表面処理剤を含有する
フェノール樹脂またはエポキシ樹脂で表面処理されてい
る特許請求の範囲第1項記載のフェノール樹脂成形材料
[Claims] 1. (a) Phenol resin, (b) average fiber diameter 8 to 13 μm, average fiber length 1 to 13 m
m glass fiber and (c) 40 to 45 wt% of SiO_2 as the main component;
Al_2O_3 13-15wt%, CaO 34-3
6 wt%, non-fibrous substance content is 5 wt% or less, average fiber diameter 0.5 to 8 μm, average fiber length 50 to 300 μm
The weight ratio of component (b) to component (c) (
A phenolic resin molding material characterized by being mixed so that c)/(b) is 0.3 to 2.0. 2. The phenolic resin molding material according to claim 1, wherein the mineral fiber (c) is surface-treated with a phenolic resin or an epoxy resin. 3. The phenolic resin molding material according to claim 1, wherein the mineral fiber (c) is surface-treated with a silane-based surface treatment agent. 4. The phenolic resin molding material according to claim 1, wherein the mineral fiber (c) is surface-treated with a phenolic resin or epoxy resin containing a silane surface treatment agent.
JP26531685A 1985-11-26 1985-11-26 Phenolic resin molding material Pending JPS62127340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26531685A JPS62127340A (en) 1985-11-26 1985-11-26 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26531685A JPS62127340A (en) 1985-11-26 1985-11-26 Phenolic resin molding material

Publications (1)

Publication Number Publication Date
JPS62127340A true JPS62127340A (en) 1987-06-09

Family

ID=17415500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26531685A Pending JPS62127340A (en) 1985-11-26 1985-11-26 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JPS62127340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229602A (en) * 1989-03-01 1990-09-12 Ishikawajima Harima Heavy Ind Co Ltd Press roll device for preventing buckling in edging press
JPH0333497A (en) * 1989-06-30 1991-02-13 Toshiba Corp Lateral flow fan and material for it
FR2659176A1 (en) * 1990-03-05 1991-09-06 Mitsuba Electric Mfg Co Current commutator for an electric dynamo machine and its method of manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229602A (en) * 1989-03-01 1990-09-12 Ishikawajima Harima Heavy Ind Co Ltd Press roll device for preventing buckling in edging press
JPH0333497A (en) * 1989-06-30 1991-02-13 Toshiba Corp Lateral flow fan and material for it
FR2659176A1 (en) * 1990-03-05 1991-09-06 Mitsuba Electric Mfg Co Current commutator for an electric dynamo machine and its method of manufacture

Similar Documents

Publication Publication Date Title
IL155721A (en) Inorganic matrix compositions and composites incorporating the matrix compositions
CN101070409A (en) Polypropylene resin composition, its preparing method and fan
RU2170716C1 (en) Sand-polymer material
WO2013139708A2 (en) Two part sizing composition for coating glass fibres and composite reinforced with such glass fibres
JPS601256A (en) Polyamide resin composition
WO2023011205A1 (en) High-dispersion glass fiber, glass fiber reinforced nylon material, preparation method therefor and application thereof
JPS62127340A (en) Phenolic resin molding material
CN107473595A (en) A kind of Novel rock wool and its processing technology for adding bauxite raw material
EP0763392B1 (en) Material for metal casting equipment
JPS61232257A (en) Water-containing low temperature-curable inorganic forming material and formed body therefrom
US4974522A (en) Cold-molded cementitious composites reinforced with surface-modified polyamide fibres and method of preparing same
JPS61151261A (en) Production of phenolic resin molding material
DE2344324C3 (en) Process for the treatment of sulphurous slag and its use
JP4952192B2 (en) Thermosetting resin molding material
CA1045641A (en) Glass fiber compositions
JP2881511B2 (en) Composition for inorganic foam
JPS58109552A (en) Phenolic resin molding material
CN112175296B (en) Recyclable basalt fiber reinforced polypropylene and preparation method thereof
JPS5857385B2 (en) Alkali-resistant inorganic fiber reinforced cement products
WO2004106259A1 (en) Hardened article and method for producing hardened article
JP2004131667A (en) Epoxy resin molding material
JP4584200B2 (en) Highly insulating lead-free material for sealing the sheath heater module
JPH04220461A (en) Thermoplastic resin composition
JP2879384B2 (en) Composition for inorganic molding
JP2879378B2 (en) Composition for inorganic molding