JPS62123307A - Solar ray tracking sensor - Google Patents

Solar ray tracking sensor

Info

Publication number
JPS62123307A
JPS62123307A JP60261515A JP26151585A JPS62123307A JP S62123307 A JPS62123307 A JP S62123307A JP 60261515 A JP60261515 A JP 60261515A JP 26151585 A JP26151585 A JP 26151585A JP S62123307 A JPS62123307 A JP S62123307A
Authority
JP
Japan
Prior art keywords
light receiving
light
hemispherical surface
receiving element
sun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60261515A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60261515A priority Critical patent/JPS62123307A/en
Publication of JPS62123307A publication Critical patent/JPS62123307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To enable the detection of an angle of solar rays for receiving light simply, by detecting the light receiving element just detecting the maximum quantity of light among all light receiving elements. CONSTITUTION:There are arranged a small hemispherical surface 16 with a relatively small diameter and a large hemispherical surface 17 which shares the same center point O with another hemispherical surface 16 with a relatively large diameter. On the hemispherical surface 17, light receiving cells 14 are closely arranged so that lenses 11 are arrayed close to forme a shell. The cell 14 is so arranged that the optical axes of the lenses 11 in the cells 14 thus arranged will al pass through the center point O. A solar position computing section 20 is connected to a signal line cable 19 led outside the shell by bundling signal lines from a number of cells 14. Then, in two concentric hemispheres different in the radius, a plurality of focusing lenses are arranged on the external hemispherical surface 17 while light receiving element 12 are arranged on the internal hemispherical surface 16 corresponding to the focusing lenses. The computing section 20 is used to determine which light receiving elements receive light among those 12 arranged to detect the analog solar beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、太陽光発電装置において、その受光量が最
大になるように集光用ミラーや発電用の太陽電池パネル
の角度を変える制御装置のために利用される受光用太陽
光線の方角を検出する太陽光追尾センサに関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a control device for changing the angle of a condensing mirror and a solar panel for power generation in a solar power generation device so as to maximize the amount of light received. The present invention relates to a sunlight tracking sensor that detects the direction of sunlight for reception.

〔従来の技術〕[Conventional technology]

従来、太陽先発[装置においては、集光用のミラーや発
電用の太陽電池パネルに最大の受光量金得るために太陽
の位置、すなわち太陽光線の方角に応じてミラーや太陽
電池パネルの角度全変化させる一例として、コンピュー
タにより発1に場所における現在の年月日の時刻から受
光用の太陽光縁の方角全演算して、この演算結果から上
述の角度を決定する方式がめった。
Conventionally, in order to obtain the maximum amount of light received by the mirror for concentrating the light and the solar panel for power generation, the angle of the mirror or solar panel was adjusted according to the position of the sun, that is, the direction of the sun's rays. As an example of changing the angle, a method has been found in which a computer calculates the direction of the sunlight edge for light reception from the current time of year, month, and day at the place of departure 1, and then determines the above-mentioned angle from the calculation result.

第6図は従来方式で太陽光を追尾して太陽先発tを行な
う太陽光発電装置の構成の一例を示す図である。図にお
いて、1は基準クロック発生部、2は時計、3は太陽の
現在位置を演算するコンピュータ等からなる太陽位置演
算部、4は太陽の現在の位置情報すなわち受光用太陽光
線の方角を出力する太陽位置設定部であり、上述の符号
1〜3で示される構成要素から成る。5は太陽電池パネ
ル、6は太陽電池パネルの向き′jtfえる受光移動機
構、7は太陽の位置情報により受光移動機構を制御する
受光面制御装置である。
FIG. 6 is a diagram showing an example of the configuration of a solar power generation device that tracks sunlight and performs solar advance t in a conventional manner. In the figure, 1 is a reference clock generation unit, 2 is a clock, 3 is a sun position calculation unit consisting of a computer etc. that calculates the current position of the sun, and 4 is an output unit that outputs the current position information of the sun, that is, the direction of the sun's rays for reception. This is a sun position setting unit, and consists of the components shown by the above-mentioned symbols 1 to 3. 5 is a solar panel; 6 is a light-receiving movement mechanism that changes the direction of the solar cell panel; and 7 is a light-receiving surface control device that controls the light-receiving movement mechanism based on sun position information.

次に動作について説明する。時計2は基準クロック発生
部1からクロックを入力してカウントし。
Next, the operation will be explained. The clock 2 inputs the clock from the reference clock generator 1 and counts the clock.

現在の年月日時刻清報を太陽位置演算部3に出力する。The current year, month, day, and time information is output to the sun position calculation section 3.

太陽位置演算部3は年月日時刻情報に基づき現在の太陽
の位置すなわち太陽光線の方角(球座標における2種類
の角度θ、ψ)?演算して太陽位置情報として出力する
。受光面制御装置7は太陽位置設定部4からの太陽位置
情報に従って受光移動機構6を駆動制御し、太陽電池パ
ネル5の面が太陽に向くようにし、太陽光s2最大限受
けるように制御する。
The solar position calculation unit 3 calculates the current position of the sun, that is, the direction of the sun's rays (two types of angles θ and ψ in spherical coordinates) based on the date and time information. Calculate and output as sun position information. The light-receiving surface control device 7 drives and controls the light-receiving movement mechanism 6 in accordance with the sun position information from the sun position setting section 4 so that the surface of the solar panel 5 faces the sun and receives maximum sunlight s2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の太陽位置設定部は以上のように構成されているの
で、基準クロックによる正確な年月日時刻の設定と、こ
の年月日時刻による長期にわたる太陽位置情報の演算が
必要で、精度の良い基準クロックの発生装置と複雑な演
算処理する太陽位置演算部と、システムの設置場所毎の
太陽の位置の演算を可能とするための演算プログラムの
開発を必要とするなどの問題点が6った。
Conventional sun position setting units are configured as described above, so it is necessary to accurately set the year, month, day and time using a reference clock, and to calculate sun position information over a long period of time using this year, month, day and time. There were six problems, including the need to develop a reference clock generator, a sun position calculation unit that performs complex calculations, and a calculation program to enable calculation of the sun position for each location where the system is installed. .

この発明は上記のような問題点全解消するためになされ
たもので、精度の良い基準クロック発生部や太陽の位置
を演算する太陽位置演算部による高度の演算処理を用い
なくとも間単に受光用の太陽光線の方角の検出が可能な
太陽光追尾センサ金得ること?目的とする。
This invention was made to solve all of the above-mentioned problems, and it can be easily used for light reception without using advanced calculation processing by a highly accurate reference clock generation section or a sun position calculation section that calculates the position of the sun. Can we get a solar tracking sensor that can detect the direction of the sun's rays? purpose.

〔問題点全解決するための手段〕[Means to solve all problems]

この発明に係る太陽光追尾センサは、2つの半径の異な
る同心半球において、外側の半球面に集光型レンズを多
数個配列し、内側の半球面上に集光型レンズに対応して
受光素子を配列し、太陽位置演算部により配列した受光
素子の内でどの受光素子が受光しているかを検知して太
陽光線の方角を検出するようにしたものである。
The sunlight tracking sensor according to the present invention has two concentric hemispheres with different radii, in which a large number of condensing lenses are arranged on the outer hemisphere, and a light receiving element is arranged corresponding to the condensing lenses on the inner hemisphere. are arranged, and the direction of the sun's rays is detected by detecting which light-receiving element among the arranged light-receiving elements is receiving light by a solar position calculating section.

〔作 用〕[For production]

この発明における太陽光追尾センサは、受光素子の9ち
最大の光量を検知した受光素子の検出を太陽位置演算部
により行うことで太陽光線の方角を一義的に検出する。
The sunlight tracking sensor according to the present invention uniquely detects the direction of sunlight by having the solar position calculation section detect the light receiving element that has detected the maximum amount of light among the nine light receiving elements.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第2
図はこの発明に用いられ、太陽光を検知する受光セルを
示し、図において、11は太陽光集光用の集光型のレン
ズ、12はレンズ11の集光位置(焦点位置)に配置さ
れた受光素子、13はレンズ11と受光素子12とを保
持するセル本体でオシ。レンズ11″Ik支持している
上面側の面積の方が受光素子12t−支持している下面
側の面積より広い。14は受光セルであり、上述の符号
11〜13で示される構成要素から構成される。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure shows a light-receiving cell used in the present invention to detect sunlight. In the figure, 11 is a condensing lens for concentrating sunlight, and 12 is a light-receiving cell arranged at the condensing position (focal position) of the lens 11. The light receiving element 13 is a cell body that holds the lens 11 and the light receiving element 12. The area of the upper surface supporting the lens 11''Ik is wider than the area of the lower surface supporting the light receiving element 12t. 14 is a light receiving cell, which is composed of the components indicated by the above-mentioned symbols 11 to 13. be done.

15は受光素子12に接続された信号引出し用の信号線
である。
Reference numeral 15 denotes a signal line connected to the light receiving element 12 for extracting a signal.

第3図は第2図に示した受光セルと太陽の位置関係を示
し、図において5Lはレンズ11の光軸、rBレンズ1
1の焦点距離、Aは第1の位置にある太陽、Bは第2の
位置にある太陽である。レンズ11に入射する太陽Aか
らの太陽光線は光軸りに対して略平行であり、レンズ1
1を通過したその太陽光線は略焦点位置A1に集光され
受光素子12によって受光される。しかし、レンズ11
に入射する太陽Bからの太陽光線は光軸りに対して角度
θを成す平行光でろり、レンズ11を通過したその太陽
光線はレンズ71で光軸りと角度θをなす方向の位置B
1上に集光され受光素子12によって受光されない。
FIG. 3 shows the positional relationship between the light receiving cell shown in FIG. 2 and the sun. In the figure, 5L is the optical axis of the lens 11,
1 focal length, A is the sun in the first position, B is the sun in the second position. The sunlight from the sun A that enters the lens 11 is approximately parallel to the optical axis, and the lens 1
The sunlight that has passed through the lens 1 is focused at approximately the focal point A1 and is received by the light receiving element 12. However, lens 11
The sunlight from the sun B that enters the lens is parallel light that forms an angle θ with the optical axis, and the sunlight that passes through the lens 11 reaches a position B in the direction that makes an angle θ with the optical axis at the lens 71.
The light is focused on the light receiving element 12 and is not received by the light receiving element 12.

第1図はこの発明における太陽光追越センサを省略的に
示し1図において、16は比較的に小径の小半球面、1
7は比較的に大径で小半球面16と同一中心点Ot−共
有する大半球面、18は小半球面16および大半球面1
7下にある地面である。
FIG. 1 schematically shows a sunlight overtaking sensor according to the present invention. In FIG. 1, 16 is a small hemispherical surface with a relatively small diameter;
7 is a large hemisphere that has a relatively large diameter and shares the same center point Ot with the small hemisphere 16; 18 is the small hemisphere 16 and the large hemisphere 1;
7 This is the ground below.

これら大半球面17上にはレンズ11が密に配列され、
小半球面16上には受光素子12が密に配列されるよう
に受光セル14が密接に配列されシェルを形成している
。なお、この配列された受光セル14のレンズ11の光
軸りは全て中心点0(又は任意の一点)y&:通過する
ように受光セル14は配列されている。中心点0を中心
として水平方向の面の座標軸をY軸、Y軸とし、鉛直方
向の座標軸を2軸とする。ここで、中心点0を通る任意
の線を考えた場合、その線がY軸とY軸とで形成される
面に投影される投影線とY軸とのなす角度をψとし、そ
の投影線と上述の任意の線とのなす角度をθとすると、
その任意の線の球座標は(θ。
Lenses 11 are densely arranged on these large hemisphere surfaces 17,
On the small hemispherical surface 16, the light receiving cells 14 are closely arranged to form a shell so that the light receiving elements 12 are densely arranged. The light receiving cells 14 are arranged so that the optical axes of the lenses 11 of the arranged light receiving cells 14 all pass through the center point 0 (or any one point) y&:. Centering on the center point 0, the coordinate axes in the horizontal direction are the Y-axis, and the coordinate axes in the vertical direction are the two axes. Here, if we consider an arbitrary line that passes through the center point 0, let ψ be the angle between the projection line projected on the plane formed by the Y-axis and the Y-axis, and the projection line If the angle between the line and the above arbitrary line is θ, then
The spherical coordinate of that arbitrary line is (θ.

ψ)となる。ここで、大半球面17上に輪帯状に配列さ
れた1つの輪帯内のレンズ11の光軸りの角度θは全て
一定である。19は多数の受光セル14からの信号線1
5を束ねてシェル外に導出した信号線ケーブル、20は
太陽位置演算部であり。
ψ). Here, the angles θ of the optical axis of the lenses 11 within one annular zone arranged in an annular shape on the large hemisphere surface 17 are all constant. 19 is a signal line 1 from a large number of light receiving cells 14
5 is bundled and led out from the shell, and 20 is a solar position calculation section.

信号sヶ 2ル19に接続され、受光セル14がらの検
知信号により太陽からの太陽光線の方角の情報を出力す
る。ここでは、受光セル14の位置を示すものとしては
、受光セル14の光軸の球座標(θn、ψm)で示す。
It is connected to the signal line 19 and outputs information on the direction of the solar rays from the sun based on the detection signal from the light receiving cell 14. Here, the position of the light receiving cell 14 is indicated by the spherical coordinates (θn, ψm) of the optical axis of the light receiving cell 14.

第4図は第1図の太陽位置演算部2oの内容を示し、図
において、21はN箇のシフトレジスタ211・・・2
1i・・・21Nからなるシフトレジスタ群、22Uシ
フトレジスタ211・・・21i・・・21Nの夫々の
出力をとり太陽光線の方角を示す太陽位置情報を出力す
る演算処理部でめる。各シフトレジスタ211・・・2
1i・・・21Nは、大半球面17に位置する受光セル
14の各輪帯別に設けられている。例えば、角度θがθ
iで一定のもので、角度ψが角度ψ4.ψ2.・・・ψ
、の位置に夫々配列された受光セル14の信号[15は
、信号線ケーブル19から分岐してi番目のシフトレジ
スタ21iの入力側にψの角度順に接続されている。輪
帯はN箇あり、各輪帯の一定角度を01・・、θi80
.θ、とし、各角度θの角度に対するψの角度をψ7.
ψ2゜・・・、9Mとする。すなわち、1つの輪帯1c
M個の受光セル14が配置される。i番目のシフトレジ
x夕21i以外のシフトレジスタ211・・・21Nと
受光セル14との接続関係もi番目のシフトレジスタ2
1iと同様とする。受光セル14の受光素子12での太
陽光線の検知信号は信号線15に与えられ、信号線ケー
プに19によって太陽位置演算部20のシフトレジスタ
群21に与えられる。
FIG. 4 shows the contents of the sun position calculating section 2o in FIG.
An arithmetic processing section takes the outputs of the shift register group 1i...21N, 22U shift registers 211...21i...21N, and outputs sun position information indicating the direction of the sun's rays. Each shift register 211...2
1i...21N are provided for each ring zone of the light receiving cell 14 located on the large hemisphere surface 17. For example, if the angle θ is θ
i is constant, and the angle ψ is the angle ψ4. ψ2. ...ψ
The signals [15] of the light-receiving cells 14 arranged at positions , respectively, are branched from the signal line cable 19 and connected to the input side of the i-th shift register 21i in the angular order of ψ. There are N ring zones, and the constant angle of each ring zone is 01..., θi80
.. θ, and the angle of ψ with respect to each angle θ is ψ7.
ψ2゜..., 9M. That is, one ring zone 1c
M light receiving cells 14 are arranged. The connection relationship between the shift registers 211...21N other than the i-th shift register x 21i and the light receiving cell 14 is also the same as the i-th shift register 2.
Same as 1i. A detection signal of sunlight at the light receiving element 12 of the light receiving cell 14 is applied to a signal line 15 and is applied to a shift register group 21 of a sun position calculating section 20 via a signal line cape 19.

演算処理部22はシフトレジスタ211・・・21i・
・・21Nから所定の順序に従って信号全取出す。
The arithmetic processing unit 22 includes shift registers 211...21i.
...Extract all signals from 21N in the prescribed order.

今、ここで、第3図で述べた原理から、球座標(θi、
ψj−+ ) −(θ1.ψj)、(θi、ψi+、)
の位置の受光上A−14のみが太陽光線全受光素子12
で受光しているとする。演算処理部22が取出し九シリ
アル信号は第5図に示すものとなる。すなわち、(θj
、ψi −+ ) 、 (θi、ψ1)、(θi、ψ斗
、)の3つの位置の各受光セル14の各受光素子12が
太陽光線全検知していることがわかる。すなわち、受光
用の太陽光線の方角は(θJ、ψ1)の方角にある。す
なわち、演算処理部22は1番目のシフトレジスタ27
iを走査する場合には角度θの角度情報θiを検知し、
走査し念ときにi−1,i。
Now, from the principle described in Figure 3, the spherical coordinates (θi,
ψj−+ ) −(θ1.ψj), (θi, ψi+,)
Only the light-receiving element A-14 at the position is the solar light-receiving element 12.
Suppose that light is being received at The nine serial signals taken out by the arithmetic processing section 22 are as shown in FIG. That is, (θj
, ψi −+ ), (θi, ψ1), and (θi, ψto, ), it can be seen that each light receiving element 12 of each light receiving cell 14 detects all of the sunlight. That is, the direction of the sunlight rays for light reception is in the direction of (θJ, ψ1). That is, the arithmetic processing unit 22 operates as the first shift register 27.
When scanning i, detect angle information θi of angle θ,
Scan i-1,i just in case.

i+1番目にパルスを得なことがら角度ψの角度情報ψ
i−1,ψi、ψi+1を得る。ここでは中央部ψiを
取り、θiと組合せて、太陽光線の方角が(θi、ψi
)であることが演算処理部22により演算される。従っ
て、演算処理部22は(θi、ψi)に対応した太陽位
置情報を出力する。この出方信号は上述の集光用ミラー
や太陽電池パネルの位置の制御用に用いられる。
Angle information ψ of angle ψ since a pulse is obtained at i+1th
Obtain i-1, ψi, ψi+1. Here, the central part ψi is taken and combined with θi, the direction of the sun's rays is (θi, ψi
) is calculated by the calculation processing unit 22. Therefore, the arithmetic processing unit 22 outputs sun position information corresponding to (θi, ψi). This output signal is used for controlling the position of the above-mentioned light collecting mirror and solar panel.

なお、上記実施例で鉱、受光セルを輪帯状に配列してシ
ェルを形成したが5輪帯状でなくシェル?形成するどの
ような配列でもよいことは勿論でおる。例えば、略同形
状の受光セルと鉛直線上に1つ設け、その回りに輪帯状
に受光セルを配置してもよい。この場合には、角度θが
浅くなるにつれて輪帯の受光セルの数は増す。
In addition, in the above embodiment, the shell was formed by arranging the ore and the light-receiving cells in a ring shape, but the shell was formed instead of in the form of five rings. Of course, any arrangement may be used. For example, one light receiving cell having substantially the same shape may be provided on a vertical line, and the light receiving cells may be arranged in an annular shape around the light receiving cell. In this case, as the angle θ becomes shallower, the number of light receiving cells in the annular zone increases.

また、受光セルを用いなくとも大半球面を殻としてレン
ズを多数個配置し、小半球面を殻として受光素子をレン
ズに対応させて配置してもよい。
Further, without using a light receiving cell, a large hemisphere may be used as a shell and a large number of lenses may be arranged, and a small hemisphere may be used as a shell and light receiving elements may be arranged in correspondence with the lenses.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、利用する太陽光線の
方角の検知を受光セルモジュールと簡単な演算回路で行
うように構成したので、装置が廉価で、かつ設置場所が
変ってもプログラムを組み変える等の調整を不要とし、
また精度の高いものが得られる効果がある。
As described above, according to the present invention, since the direction of the sunlight to be used is detected using a light receiving cell module and a simple arithmetic circuit, the device is inexpensive and can be programmed even if the installation location changes. Eliminates the need for adjustments such as rearranging,
Moreover, there is an effect that a highly accurate product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の装置t構成を示す部分省
略構成図、第2図は受光セルの一例を示す斜視図、第3
図は受光セルの受光の原理を示す原理図、第4図は第1
図の太陽位置演算部のブロック図、第5図は位置情報の
信号を示す図、第6図は従来の太陽先発電装ftを示す
図である。 図において、114レンズ、12は受光素子、13は受
光セル本体、14は受光セル、15は信号縁、16は小
半球面、17は大半球面、19は信号縁ケーブル、20
は太陽位置演算部、21はシフトレジスタ群、22は演
算処理部。 なお5図中、同一符号は同一、又は相当部分を示す。 特許出願人  三菱電機株式会社 (外2名)−一− 第1図 づ烙 77′ 20:人陽位1寅穫]鞭            OU
T第2図   第3図 15:イ宮 =ト余倉と 第4図 tJT 21:シフトレシスタ君手 第6図
FIG. 1 is a partially omitted configuration diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view showing an example of a light receiving cell, and FIG.
The figure is a principle diagram showing the principle of light reception by the light receiving cell.
FIG. 5 is a block diagram of the solar position calculation unit shown in FIG. 5, FIG. 5 is a diagram showing position information signals, and FIG. 6 is a diagram showing a conventional solar power generation system ft. In the figure, 114 lenses, 12 a light receiving element, 13 a light receiving cell body, 14 a light receiving cell, 15 a signal edge, 16 a small hemisphere, 17 a large hemisphere, 19 a signal edge cable, 20
21 is a shift register group; and 22 is a calculation processing section. Note that in Figure 5, the same reference numerals indicate the same or equivalent parts. Patent Applicant: Mitsubishi Electric Corporation (2 others) -1- Figure 1 zu 77' 20: 人 Yang position 1 tiger catch] Whip OU
T Figure 2 Figure 3 15: Imiya = To Yokura and Figure 4 tJT 21: Shift Resistor Kunite Figure 6

Claims (1)

【特許請求の範囲】[Claims] 集光型レンズの略焦点距離に等しい距離だけ半径方向が
離れている同心半球面の内で、比較的に大径の前記半球
面上に配置された多数個の前記集光型レンズと、比較的
に小径の前記半球面上で前記配置された各集光型レンズ
に対応した各焦点位置に配置された各受光素子と、この
各受光素子から信号を導き出して現在太陽光線を受光し
ている該当受光素子を検知することにより前記太陽光線
の方角を検知する太陽位置演算部とを備えた太陽光追尾
センサ。
A large number of the condensing lenses arranged on the hemispherical surface having a relatively large diameter among concentric hemispherical surfaces separated in the radial direction by a distance approximately equal to the focal length of the condensing lenses; Each light-receiving element is arranged at each focal point corresponding to each of the arranged condensing lenses on the hemispherical surface having a relatively small diameter, and a signal is derived from each light-receiving element to currently receive sunlight. A sunlight tracking sensor comprising: a solar position calculation section that detects the direction of the sunlight by detecting a corresponding light receiving element.
JP60261515A 1985-11-22 1985-11-22 Solar ray tracking sensor Pending JPS62123307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261515A JPS62123307A (en) 1985-11-22 1985-11-22 Solar ray tracking sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261515A JPS62123307A (en) 1985-11-22 1985-11-22 Solar ray tracking sensor

Publications (1)

Publication Number Publication Date
JPS62123307A true JPS62123307A (en) 1987-06-04

Family

ID=17362975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261515A Pending JPS62123307A (en) 1985-11-22 1985-11-22 Solar ray tracking sensor

Country Status (1)

Country Link
JP (1) JPS62123307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124514U (en) * 1988-02-16 1989-08-24
JP2008527493A (en) * 2005-01-03 2008-07-24 ローズマウント インコーポレイテッド Wireless process field device diagnostics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124514U (en) * 1988-02-16 1989-08-24
JP2008527493A (en) * 2005-01-03 2008-07-24 ローズマウント インコーポレイテッド Wireless process field device diagnostics

Similar Documents

Publication Publication Date Title
US4013885A (en) Solar energy sun tracker
CN102141373A (en) Light spot center real-time detection system and detection method
US4684249A (en) Angular position sensors
RU2611571C1 (en) Management system control of concentrating solar modules
EP0295152A2 (en) Apparatus for following sun light
US20020121574A1 (en) Method and sensor for capturing rate and position and stabilization of a satellite using at least one focal plane
US4043672A (en) Method and apparatus for detecting the direction of incidence of electromagnetic radiation
JPS62123307A (en) Solar ray tracking sensor
US4618259A (en) Star and sun sensor for attitude and position control
US3765743A (en) Optical energy detection system including image plane scanning system
WO1983004303A1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JPH05133715A (en) Target mark, image pickup device, relative position and attitude measuring device using them
CN109708559B (en) Angle measuring method of photoelectric autocollimator based on corner mirror
CN113447020B (en) Attitude resolving method based on multi-sensor fusion
Kurata et al. Navigation system for a mobile robot with a visual sensor using a fish-eye lens
JPS6329210A (en) Sunshine tracking sensor device
JP2660017B2 (en) Space structure relative position / posture detection device
RU162322U1 (en) HEAT DETECTOR
SU1656323A1 (en) Method for determining star coordinates by means of a transducer installed on the space vehicle for making the star catalogue
JPS63212817A (en) Displacement converter
JPS63241415A (en) Star sensor
JPS5868611A (en) Attitude detecting device
JPH01196509A (en) Polyhedral type satellite attitude detector
CN117516706A (en) Light source tracking device and equipment
JPS6131980A (en) Compound light sensor