JPS62117620A - Method for removing nitrogen oxide contained in exhaust gas of gasoline engine - Google Patents

Method for removing nitrogen oxide contained in exhaust gas of gasoline engine

Info

Publication number
JPS62117620A
JPS62117620A JP60257734A JP25773485A JPS62117620A JP S62117620 A JPS62117620 A JP S62117620A JP 60257734 A JP60257734 A JP 60257734A JP 25773485 A JP25773485 A JP 25773485A JP S62117620 A JPS62117620 A JP S62117620A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
nitrogen oxides
gasoline engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257734A
Other languages
Japanese (ja)
Inventor
Tomohisa Ohata
知久 大幡
Koichi Saito
斉藤 皓一
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60257734A priority Critical patent/JPS62117620A/en
Publication of JPS62117620A publication Critical patent/JPS62117620A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To efficiently perform denitration by bringing NOx into contact with a catalyst under the presence of O2 to oxidize and absorb it and stopping the pass of exhaust gas at the point of time when the absorption efficiency of the catalyst is reduced and using a gaseous reducing agent to reduce NO2 of the catalyst. CONSTITUTION:Exhaust gas discharged from a manifold is introduced into an oxidizing catalyst to convert CO into CO2 and introduced into either catalyst of the parallel catalysts A, B and NOx is oxidized and absorbed to the catalyst under the presence of O2. Various metals such as Mn and Fe, oxide thereof and composite oxide are used as the catalyst. When exhaust gas is introduced into the catalyst layer of one hand for a specified time and absorption efficiency is reduced, the flow of exhaust gas is changeovered to the catalyst layer of the other hand and H2 is introduced into the catalyst layer wherein exhaust gas is not flowed from an H2 generator to remove NOx and the catalyst is regenerated.

Description

【発明の詳細な説明】 U産業上の利用分野] 本発明は、燃料希薄状態で運転されるガンリンエンジン
などの内燃機関からの排ガス中の窒素酸化物(以下NO
Xとづる。)を除去1゛る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application] The present invention is aimed at reducing nitrogen oxides (hereinafter referred to as NO
It's called X. ).

ガソリンエンジン中にJ3いて、燃料希薄状態で運転さ
れるエンジンシスアムは燃料浦費1aが少なく燃I1効
率の良いエンジンである。しかし、排ガス中に酸素が過
剰に存在するために窒素酸化物の除去は困難とされてい
た。
The engine system, which is located in the gasoline engine J3 and is operated in a fuel lean state, is an engine with low fuel consumption 1a and high fuel efficiency. However, it has been difficult to remove nitrogen oxides due to the excessive presence of oxygen in the exhaust gas.

本発明は、これに応えるものであり、ガソリンエンジン
等から排出される酸累含{j排ガス中のNOXを除去す
る方法に関するものである。
The present invention addresses this need and relates to a method for removing NOX from acid-containing exhaust gas discharged from gasoline engines and the like.

[従来の技術1 排ガス中のNOX除去法としては、大別して吸着法、吸
収法及び接触還元法などがあるが、接触還元法が排ガス
処理品が大きく、かつ廃水処理も不用であり、技術的、
経済的にも有利であるため現在の脱硝抜術の主流をなし
ている。
[Conventional technology 1 Methods for removing NOX from exhaust gas can be broadly classified into adsorption methods, absorption methods, and catalytic reduction methods, but the catalytic reduction method requires a large amount of exhaust gas treatment products, does not require wastewater treatment, and is technically difficult. ,
Because it is economically advantageous, it is currently the mainstream denitrification technique.

接触還元法には還元剤としてメタン、LPG。The catalytic reduction method uses methane and LPG as reducing agents.

ガソリン、軽油、灯油等の炭化水素、水素あるいは一酸
化炭素を用いる非選択的接触還元法と、)2元剤として
アンモニアを用いる選択的接触還元法とがある。
There is a non-selective catalytic reduction method using hydrocarbons such as gasoline, diesel oil, kerosene, hydrogen or carbon monoxide, and a selective catalytic reduction method using ammonia as a binary agent.

部名の場合、酸素を含む排ガスには酸素と反応するに十
分な還元剤を投入し、NOXを還元するのに対して後者
の場合、高′a度の酸素を含む排ガスでもNOXを選択
的に除去できる。
In the case of the part name, a reducing agent sufficient to react with oxygen is added to the exhaust gas containing oxygen to reduce NOx, whereas in the latter case, NOx is selectively reduced even in the exhaust gas containing high a degree of oxygen. can be removed.

前者の非選択的接触還元法は内燃機関、主として自動車
排ガスのNOX除去に酸素がほとんどない還元雰囲気下
で用いられており、また、後者の選択的接触還元法は、
火力発電所などをはじめ各種丁場の固定燃焼装置から排
出されるJJtガスのNOX除ム除去いられている。
The former non-selective catalytic reduction method is used to remove NOx from internal combustion engines, mainly automobile exhaust gas, in a reducing atmosphere with almost no oxygen, and the latter selective catalytic reduction method is
NOx is removed from JJT gas discharged from various types of stationary combustion equipment, including thermal power plants.

[発明が解決しようとり−る問題点1 現在、に流をなしている脱硝技術、′Ilなわら、接触
還元法にも問題点がイにいわけでもない。
[Problem 1 to be solved by the invention Although the presently popular denitrification technology is 'Il', the catalytic reduction method is not without its problems.

非選択的接触還元法について菖−えば、排ガス中の酸素
濃度が高い場合、人聞の還元剤を必要どづるため、経済
的に問題になるし、アンモニアを用いる選択的接触還元
法について占えば、自動車等のNOXの移動発生源に対
しCは7ン[−アを供給させることが難しく、又、NO
xの固定発生源に対してb触媒の活性低下とともに未反
応のアンモニアが排出されるという2次公害の問題があ
り、現在、肌硝技術の主流をなしている接触還元法にも
種々の解決すべさ゛問題点が残されている。
Regarding the non-selective catalytic reduction method, if the oxygen concentration in the exhaust gas is high, it becomes an economical problem as it requires a human reducing agent, while the selective catalytic reduction method using ammonia has It is difficult to supply C to mobile sources of NOX, such as automobiles, and
There is a problem of secondary pollution in which unreacted ammonia is discharged as the activity of b catalyst decreases for a fixed source of There are still some issues left.

一方、接触還元法以外の1悦硝技術の主なしのは吸収法
と吸着法がある。
On the other hand, other than the catalytic reduction method, the main oxidation techniques include the absorption method and the adsorption method.

まず吸収法は、NOxを酸化し吸収する酸化吸収法とN
OXを吸収し還元する還元吸収法とがあるが、酸化吸収
法は、たとえば次曲塩素Mj−1〜す・クム、過酸化水
木1重クロム酸ナトリウム、あるいは過マンガン酸カリ
ウムなどの酸化剤を含むアルカリ性水溶液で吸収する方
法、他には、オゾンあるいは接触酸化などにより酸化し
た後でアルカリ水溶液で吸収する方法、電子線照射によ
り酸化した後アンモニアと反応させ硝安で捕集する方法
などである。また、還元吸収法は、たとえば亜硫酸ナト
リウム、チオ硫酸ナトリウム、硫化すl−リウムなどの
還元剤を含む水溶液に接触させNOxを窒素に還元して
除去J−る方法、他には、NOXを鉄の錯塩等で吸収し
、共存する亜硫酸ガスで)!元しアルカリ水溶液ぐ吸収
する方法などである。
First, the absorption method consists of the oxidation absorption method, which oxidizes and absorbs NOx, and the N
There is a reduction absorption method that absorbs and reduces OX, but the oxidation absorption method uses an oxidizing agent such as chlorine peroxide, sodium dichromate, or potassium permanganate. Other methods include oxidizing with ozone or contact oxidation, then absorbing with an alkaline aqueous solution, and oxidizing with electron beam irradiation, reacting with ammonia, and collecting with ammonium nitrate. In addition, the reduction absorption method is a method in which NOx is reduced to nitrogen by contact with an aqueous solution containing a reducing agent such as sodium sulfite, sodium thiosulfate, and sulfur sulfide. Absorbed by complex salts, etc., and coexisting sulfur dioxide gas)! One method is to absorb the original alkaline aqueous solution.

これらの吸収法はガス吊が大きい排ガスの場合NOXの
CJ瓜が希薄なため吸収効率が悪く、装置が大規模にな
るし、使用する酸化剤、あるいは還元剤が高価ぐあるた
め好演上問題があるし、さらに吸収に用いた水溶液の廃
水処理、あるいは、a1牛づる硝安の取扱いなどにも配
慮する必要がある。
These absorption methods have poor absorption efficiency in the case of exhaust gas with a large gas volume because the CJ melon of NOX is dilute, the equipment is large-scale, and the oxidizing agent or reducing agent used is expensive, so there are problems in terms of performance. In addition, consideration must be given to wastewater treatment of the aqueous solution used for absorption, and handling of the a1 ammonium salt.

また、ガス部が多いiJlガスの場合、あるいは移動発
生源の場合などは大ノリ模なS!i−胃であることが問
題となり、いずれの場合も実用化に至っていない。
In addition, in the case of iJl gas with many gas parts, or in the case of a moving source, S! The i-stomach is a problem, and neither case has been put to practical use.

つぎに吸着法は、合成ゼオライト、活性炭あるいはイオ
ン交換樹脂などを吸η剤として用い、NOXを吸着除去
づる方法であるが、吸48(乙に限界があるため、共存
ガスたとえば硫黄化合物、水蒸気などの影響を受け、使
用時開とともに除去効率が低■し、吸着剤の交換あるい
は昇温等による吸谷物の脱離操作、1I12離ガスの処
理等を8肢とザること、かつ一般に排ガス処理能力が小
さいために装置が大規模になるなどの問題が多く、プロ
レスの実用化には至っていない。
Next, the adsorption method uses synthetic zeolite, activated carbon, or ion exchange resin as an absorbent to adsorb and remove NOX. Due to the effects of Due to the small capacity, there are many problems such as the large scale of the equipment, and it has not been put into practical use for professional wrestling.

以上、いずれの方法でb問題点tま多い。As mentioned above, there are many problems with either method.

以上述べ′Cさたように燃(1希薄状態で運転されるガ
ソリンエンジン等の酸素含有排ガス中のN。
As mentioned above, combustion (N) is present in the oxygen-containing exhaust gas of a gasoline engine operated in a lean state.

×除去法は適切な方法がなく、本発明(よ、上記の点に
鑑み、実用的かつ新しい脱硝方法を提供するものである
There is no suitable removal method, and the present invention (in view of the above points) provides a practical and new denitrification method.

F問題点を解決するための手段] 本発明の方法は11Fガス中のN OXを1lI2木存
在下、触媒と18触させることにより酸(ヒ吸収さU、
該JJFガスよりNOxを除去し、触媒の吸収効率が低
下した時点で排ガスの通過をとめ、気体状の還元剤を用
いて触媒に蓄積されたNOXを還元除去することにより
、触媒の酸化吸収能を再生させることを特徴とするNO
X含有ガスからNOxを除去する方法である。排ガス中
のNOxを従来のガス吸着剤を用いて吸着せしめる場合
、その吸着機構は単純な物理的吸着であって、吸着平衡
のため、残留ガスのNO×濃度に限界があり、また、温
度。
Means for Solving the F Problems] The method of the present invention involves contacting NOx in 11F gas with a catalyst in the presence of 11I2 wood, thereby converting it into an acid (absorbed U,
The oxidation absorption capacity of the catalyst is improved by removing NOx from the JJF gas, stopping the passage of exhaust gas when the absorption efficiency of the catalyst decreases, and reducing and removing the NOx accumulated in the catalyst using a gaseous reducing agent. NO characterized by regenerating
This is a method for removing NOx from X-containing gas. When NOx in exhaust gas is adsorbed using a conventional gas adsorbent, the adsorption mechanism is simple physical adsorption, and due to adsorption equilibrium, there is a limit to the NOx concentration of the residual gas, and there is a limit to the NOx concentration of the residual gas.

湿度、共存ガス等の環境条件の変化に強く影響され、N
Oxの吸@能力が低くなりそのため、大規模な装置を必
要とする欠点があった。
Strongly affected by changes in environmental conditions such as humidity and coexisting gases, N
This method has the disadvantage of requiring a large-scale device due to its low Ox absorption capacity.

本発明の第1の特徴は排ガス中のNOxを酸素存在下触
媒によって酸化吸収することにある。
The first feature of the present invention is that NOx in exhaust gas is oxidized and absorbed by a catalyst in the presence of oxygen.

NOXを触媒によって酸化吸収するために、NOxの吸
若能は外部環境条件に比較的影響を受りに<<、かつ極
めて希薄な濃度のNOXでも吸収除去することが可能で
ある。それ故に従来のガス吸着剤を用いる方法に比べ、
小規模な装置で排ガス処理が可能となり経済的に有利で
ある。
Since NOX is oxidized and absorbed by a catalyst, the NOx absorption ability is relatively unaffected by external environmental conditions, and even extremely dilute concentrations of NOX can be absorbed and removed. Therefore, compared to methods using conventional gas adsorbents,
This makes it possible to treat exhaust gas with a small-scale device, which is economically advantageous.

NOXの吸収1横については、tJ!なる物理的吸着で
はなく、触媒と11すらかの望で強く吸容した化学的吸
着であると思われる。
Regarding NOx absorption 1 side, tJ! It seems that this is not a physical adsorption, but a chemical adsorption in which the catalyst and 11 were strongly absorbed.

本発明の第2の特徴は除去効率の低下した触媒を水素等
の気体状還元剤を用いて再生する点にある。
The second feature of the present invention is that a catalyst whose removal efficiency has decreased is regenerated using a gaseous reducing agent such as hydrogen.

NOxを水素等の還元剤を用いて還元する方法につ・い
ては非選択的接触還元法として広く知られている方法で
あるが、この方法では、酸素が排ガス中に多Mに存在し
た場合、酸素と反応り−るに十分な還元剤を投入し、N
Oxを還元するため、還元剤を多量に消費する点、経済
的でなく、非選択的接触還元法の使用はM索がJtl存
しない場合か、あるいは、酸素の濃度を極力低下せしめ
た場合に限られていた。
The method of reducing NOx using a reducing agent such as hydrogen is widely known as the non-selective catalytic reduction method. , add enough reducing agent to react with oxygen, and
Because it reduces Ox, it consumes a large amount of reducing agent and is not economical, and the use of non-selective catalytic reduction method is recommended only when there is no M cord or when the concentration of oxygen is reduced as much as possible. It was limited.

本発明の方法では還元剤の消費量は触媒に吸収されたN
OXを37元除去するに必要な酬であり極めて9母であ
るため、舒汎上非常に有利である。
In the method of the present invention, the consumption of reducing agent is reduced by the amount of N absorbed by the catalyst.
It is a necessary reward to remove 37 yuan of OX, and it is extremely advantageous in terms of generalization since it is extremely 9 yuan.

又還元剤の消費量が選択的′)7元法と同等である点で
本発明の方法は選択的接触還元法に屈す方法であると言
える。
In addition, the method of the present invention can be said to be a method that yields to the selective catalytic reduction method in that the amount of reducing agent consumed is equivalent to that of the selective 7-component method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

具体的な使用例を第1図に示した。A specific usage example is shown in FIG.

マニホールドから排出された排ガスは酸化触媒に導かれ
、−酸化炭素は二酸化炭素に変換し、各種のハイドロカ
ーボンは二酸化炭素と水に変換する。触媒A、触媒B、
は窒素酸化物を酸化吸収する触媒であり、並行に配列さ
れ、切り換えパルプで排ガスは融媒△、触[8、いずれ
かの触媒図に導かれる。
The exhaust gas discharged from the manifold is led to an oxidation catalyst - carbon oxides are converted into carbon dioxide, and various hydrocarbons are converted into carbon dioxide and water. Catalyst A, Catalyst B,
are catalysts that oxidize and absorb nitrogen oxides, and are arranged in parallel, and the switching pulp guides the exhaust gas to either the melting medium Δ or the catalyst [8].

一方の触媒図に一定時間導入されたのちに、切り換えバ
ルブで他方の触媒層に導入される。lJ[ガスが通過し
てない触媒層は水素発生装置から発生した水素を導入し
再生される。
After being introduced into one catalyst layer for a certain period of time, it is introduced into the other catalyst layer using a switching valve. lJ [The catalyst layer through which gas has not passed is regenerated by introducing hydrogen generated from the hydrogen generator.

次に、本発明に使用する触媒はマンガン、鉄。Next, the catalysts used in the present invention are manganese and iron.

コバルト、ニッケル、銅、銀、亜鉛、クロム、モリブデ
ン、タングステン、バナジウム、ニオブ。
Cobalt, nickel, copper, silver, zinc, chromium, molybdenum, tungsten, vanadium, niobium.

タンタル、セリウム、ランタン、チタン、ジルコニウム
、アルミニウム、ケイ素、スズ、鉛、リン。
Tantalum, cerium, lanthanum, titanium, zirconium, aluminum, silicon, tin, lead, phosphorus.

イオウ、カルシウム、マグネシウム、ストロンチウム、
バリウムよりなるアルカリ土類金属、リヂウム、す1ヘ
リウム、カリウム、ルビジウム、セシウムよりなるアル
カリ金属J3よびL1金属の群から選ばれた少なくとも
1種の元素の金属、酸化物または複合酸化物から成る組
成物である。
sulfur, calcium, magnesium, strontium,
A composition consisting of a metal, oxide or composite oxide of at least one element selected from the group of alkaline earth metals consisting of barium, alkali metals J3 and L1 consisting of lithium, helium, potassium, rubidium and cesium. It is a thing.

触媒の形状として、ペレッ[〜状、パイプ状、板状、格
子状、リボン状、波板状、ドーナツ状、その他一体化成
形されたもの等を適宜選ぶことがひきる。又、コージェ
ライト、ムライトあるいはアルミナ等の格子状の担体お
よび金網、板等の全屈基材−Fに触媒組成物を被冒する
触媒調製法も採用できる。
The shape of the catalyst may be appropriately selected from pellet shapes, pipe shapes, plate shapes, lattice shapes, ribbon shapes, corrugated plate shapes, donut shapes, and other integrally molded shapes. It is also possible to employ a catalyst preparation method in which a lattice-shaped carrier such as cordierite, mullite, or alumina, and a fully curved substrate -F such as a wire mesh or a plate are coated with the catalyst composition.

完成した触媒の物性については特に限定は4にいが、B
ET比表面積が大きい稈好ましい。
There are no particular limitations regarding the physical properties of the completed catalyst, but B
Culms with a large ET specific surface area are preferred.

本発明の方法が使用される処理の対蒙となるI)tガス
組成としては、窒素酸化物(N OI; ?% Di 
L、て)o、ol 〜6.OOOppm 、 fa黄耐
酸化物SO2にl!!! iしT)  O〜2.500
ppm 、 酸素o、1〜21容吊%、炭酸ガス 1〜
15容f?1%J3よび水、p気 1〜15容ψ%稈l
含イ1づ゛る6の℃・ある。通常のボイラー[[がス。
The I)t gas composition applicable to the treatment in which the method of the invention is used is nitrogen oxide (NOI; ?% Di).
L, te) o, ol ~6. OOOppm, fa yellow oxide resistant SO2 l! ! ! ishiT) O~2.500
ppm, oxygen o, 1-21% by volume, carbon dioxide 1-21%
15 volumes f? 1% J3 and water, p air 1-15 volume ψ% culm l
There are 1 and 6 degrees Celsius. Normal boiler [[gas.

自動車排ガス、家庭用の暖房器具の排ガスはこの範囲に
入るが、特にガス組成を限定しない。次に処理温度は1
50〜goo℃、特に200〜700℃が好ましく、空
間速度は1000〜300,000)(r−’、特に2
.000〜100,000Hr−1の範囲が好適である
。処理能力は特に限定はないが、0.01〜10に’J
/l、iの第四が好ましい。処理時間は排ガス中のNo
XIIn度に関係するものであるため特に限定はない。
Automobile exhaust gas and household heating equipment exhaust gas fall within this range, but the gas composition is not particularly limited. Next, the processing temperature is 1
The temperature is preferably 50 to gooC, especially 200 to 700C, and the space velocity is 1000 to 300,000) (r-', especially 2
.. A range of 000 to 100,000 Hr-1 is suitable. There is no particular limitation on the processing capacity, but it is 0.01 to 10'J
The fourth of /l and i is preferred. The processing time is
Since it is related to the degree of XIIn, there is no particular limitation.

また、還元剤を用いる処理条件としては排ガスの種類、
性状によって異なるが、まず還元剤の種類は水素、アン
モニア、−酸化炭素、メタン等の炭化水素等の通常の還
元剤を使用できるが、取扱いや2次公害の点で水素が最
し好ましい。水素の場合、水の電気分解くメタノールの
スチームリフォーム)等で簡単に発生することが可能で
あるからである。
In addition, the processing conditions using the reducing agent include the type of exhaust gas,
Although it varies depending on the properties, conventional reducing agents such as hydrogen, ammonia, carbon oxide, and hydrocarbons such as methane can be used, but hydrogen is most preferred from the viewpoint of handling and secondary pollution. This is because hydrogen can be easily generated by electrolysis of water, steam reforming of methanol, etc.

還元剤の濃度は、特に限定はないが、窒素等の不活性ガ
スで希釈して用いることもできる。次に還元温度は15
0〜800℃特に200〜700℃が好ましく、空間速
度は還元剤の濃度に関係するものであるが、10〜10
0,0OOHr ”’の範囲が好適である。
The concentration of the reducing agent is not particularly limited, but it may be diluted with an inert gas such as nitrogen. Next, the reduction temperature is 15
0 to 800°C, especially 200 to 700°C is preferred, and the space velocity is related to the concentration of the reducing agent, but 10 to 10
A range of 0,0OOHr'' is preferred.

処理時間は特に限定はないが1分〜1時間の範囲が好ま
しい。
The treatment time is not particularly limited, but is preferably in the range of 1 minute to 1 hour.

以下に実施例を用いて本発明をさらに詳細に説明づるが
、本発明1よこれら実施例のみに限定されるものではな
い。
The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.

実施例1 日本碍子製のコージェライトハニカム((6,68イン
ヂx 3.18インチ)φX565インチL。
Example 1 Cordierite honeycomb ((6.68 inches x 3.18 inches) φ x 565 inches L manufactured by Nippon Insulators.

400セル/平方インチ〕に、触媒物質としでL a 
F CO3の組成物510gを担持して触媒をえた。
400 cells/in2] as a catalytic material.
A catalyst was obtained by supporting 510 g of a composition of F CO3.

同じbのを2個作製し、並列にガソリンエンジンの排気
ラインに装着し、10分間間隔て一交Uに排ガスを通過
さじだ。
I made two of the same type B, installed them in parallel on the exhaust line of a gasoline engine, and passed the exhaust gas in a straight line U at 10 minute intervals.

ガスを通過させていない触媒tよ、水の電解からえたH
2ガスをト]2aめから毎分21′c供給し、酸化吸着
したNOxを還元除去した。排出される排ガス中のNO
x 8度をケミルミ弐分析計で測定した。入口ガス中の
NOX訓度と、出口ガス中のNoxQ度からNOxの浄
化率を10分間の積粋1直で算出した。
Catalyst that does not allow gas to pass through, H obtained from water electrolysis
Two gases were supplied at 21'c/min from 2a to 2a to reduce and remove the oxidized and adsorbed NOx. NO in exhaust gas
x 8 degrees was measured using a Chemilumi Ni analyzer. The NOx purification rate was calculated from the NOx concentration in the inlet gas and the NoxQ degree in the outlet gas in one 10-minute accumulation shift.

該実験に用いたガソリンエンジン及び運転条件。Gasoline engine and operating conditions used in the experiment.

排ガス条件は下記の通りである。The exhaust gas conditions are as follows.

使用丁ンジン:排気小2000cc 4サイクル、 IEFf仕様 運転条件  : 2500rpm X−200mX−2
O0定回転触媒入ロ温度:400℃ 入口ガス濃度: NOx = 700DIllI+空 
 燃  費  :  A/F  =  19.0排出ガ
ス中のNOX&1度は、10分間の平均濃度r1oop
pmであった。従ってNOx浄化率は約86%であった
Engine used: Exhaust small 2000cc 4 cycles, IEFf specification operating conditions: 2500rpm X-200mX-2
O0 constant rotation catalyst entrance temperature: 400℃ Inlet gas concentration: NOx = 700DIllI+empty
Fuel consumption: A/F = 19.0 NOx & 1 degree in exhaust gas is the average concentration r1oop for 10 minutes
It was pm. Therefore, the NOx purification rate was about 86%.

[発明の効果1 以上説明したような本発明の窒素酸化物除去方法につい
では、下記に列記するように種々の特徴を有するもので
ある。
[Effect of the Invention 1] The nitrogen oxide removal method of the present invention as described above has various features as listed below.

(1)従来の排ガス浄化シスjムでは、酸素過刺雰囲気
では窒素酸化物の浄化が出来なかったが、本発明の方法
により窒素酸化物の処理が可能となった。
(1) Conventional exhaust gas purification systems were unable to purify nitrogen oxides in an oxygen-rich atmosphere, but the method of the present invention has made it possible to treat nitrogen oxides.

ざらに、酸化触媒と組合わせることにより、−酸化炭素
、炭化水素を除去出来、自動車排ガス規制を満足出来る
In general, by combining it with an oxidation catalyst, carbon oxides and hydrocarbons can be removed and automobile exhaust gas regulations can be satisfied.

(2)処理Vi置が大規模にならず、経済的である。(2) The processing Vi does not require a large scale and is economical.

(3)窒素酸化物の還元剤が歩出で処理出来るので経済
的である。
(3) It is economical because the reducing agent for nitrogen oxides can be treated by walking.

(4)副生物、廃水が出ないので、2次処理が不要であ
る。
(4) Since no by-products or wastewater are produced, secondary treatment is not necessary.

【図面の簡単な説明】 第1図は本発明の実施の1例を示すブに】ツク図である
。 図中C1およびC2はガス流路の切り換えバルブである
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, C1 and C2 are gas flow path switching valves.

Claims (2)

【特許請求の範囲】[Claims] (1)ガソリンエンジン排ガス中の窒素酸化物を、酸素
存在下、触媒と接触せしめることにより、触媒に酸化吸
収せしめ、該排ガスより窒素酸化物を除去し、触媒の窒
素酸化物吸収効率が低下した時点で排ガスの触媒上通過
をとめ、気体状の還元剤を用いて触媒に蓄積された窒素
酸化物を還元除去することにより、触媒の酸化吸収能を
再生させることを特徴とするガソリンエンジン排ガス中
の窒素酸化物を除去する方法。
(1) By bringing nitrogen oxides in gasoline engine exhaust gas into contact with a catalyst in the presence of oxygen, the catalyst oxidizes and absorbs the nitrogen oxides, removes nitrogen oxides from the exhaust gas, and reduces the nitrogen oxide absorption efficiency of the catalyst. Gasoline engine exhaust gas characterized in that the exhaust gas is stopped from passing over the catalyst at the point in time, and the nitrogen oxides accumulated on the catalyst are reduced and removed using a gaseous reducing agent, thereby regenerating the oxidation absorption ability of the catalyst. How to remove nitrogen oxides.
(2)当該触媒が、マンガン、鉄、コバルト、ニッケル
、銅、銀、亜鉛、クロム、モリブデン、タングステン、
バナジウム、ニオブ、タンタル、セリウム、ランタン、
チタン、ジルコニウム、アルミニウム、ケイ素、スズ、
鉛、リン、イオウ、カルシウム、マグネシウム、ストロ
ンチウム、バリウムよりなるアルカリ土類金属、リチウ
ム、ナトリウム、カリウム、ルビジウム、セシウムより
なるアルカリ金属および白金、パラジウム、ロジウム、
ルテニウムよりなる貴金属の群から選ばれた少なくとも
1種の元素の金属、酸化物または複合酸化物から成るこ
とを特徴とする特許請求の範囲(1)記載の方法。
(2) The catalyst is manganese, iron, cobalt, nickel, copper, silver, zinc, chromium, molybdenum, tungsten,
vanadium, niobium, tantalum, cerium, lanthanum,
titanium, zirconium, aluminum, silicon, tin,
alkaline earth metals consisting of lead, phosphorus, sulfur, calcium, magnesium, strontium, and barium, alkali metals consisting of lithium, sodium, potassium, rubidium, and cesium, and platinum, palladium, rhodium,
The method according to claim (1), characterized in that the method comprises a metal, oxide or composite oxide of at least one element selected from the group of noble metals consisting of ruthenium.
JP60257734A 1985-11-19 1985-11-19 Method for removing nitrogen oxide contained in exhaust gas of gasoline engine Pending JPS62117620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257734A JPS62117620A (en) 1985-11-19 1985-11-19 Method for removing nitrogen oxide contained in exhaust gas of gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257734A JPS62117620A (en) 1985-11-19 1985-11-19 Method for removing nitrogen oxide contained in exhaust gas of gasoline engine

Publications (1)

Publication Number Publication Date
JPS62117620A true JPS62117620A (en) 1987-05-29

Family

ID=17310352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257734A Pending JPS62117620A (en) 1985-11-19 1985-11-19 Method for removing nitrogen oxide contained in exhaust gas of gasoline engine

Country Status (1)

Country Link
JP (1) JPS62117620A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560991A1 (en) * 1991-10-03 1993-09-22 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
EP0582917A1 (en) * 1992-08-04 1994-02-16 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an engine
US5388403A (en) * 1993-03-12 1995-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5402641A (en) * 1992-07-24 1995-04-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US5404719A (en) * 1992-10-13 1995-04-11 Toyota Jidosha Kabushiki Kaisha Engine exhaust gas purification device
US5412945A (en) * 1991-12-27 1995-05-09 Kabushiki Kaisha Toyota Cho Kenkusho Exhaust purification device of an internal combustion engine
US5423181A (en) * 1992-09-02 1995-06-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of an engine
US5433074A (en) * 1992-07-30 1995-07-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5437153A (en) * 1992-06-12 1995-08-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5448887A (en) * 1993-05-31 1995-09-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5450722A (en) * 1992-06-12 1995-09-19 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5461857A (en) * 1993-06-11 1995-10-31 Toyota Jidosha Kabushiki Kaisha Engine exhaust gas purification device
US5471836A (en) * 1991-10-14 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5473890A (en) * 1992-12-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5483795A (en) * 1993-01-19 1996-01-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
EP0702134A2 (en) 1994-09-16 1996-03-20 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an engine
US5551231A (en) * 1993-11-25 1996-09-03 Toyota Jidosha Kabushiki Kaisha Engine exhaust gas purification device
US5575983A (en) * 1993-09-24 1996-11-19 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for purifying exhaust gases
EP0922840A2 (en) 1997-12-09 1999-06-16 Hitachi, Ltd. Method of purifying exhaust gas of internal combustion engine and apparatus thereof
US5951956A (en) * 1992-03-23 1999-09-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas and method for purifying exhaust gas
US5968462A (en) * 1994-02-04 1999-10-19 Toyota Jidosha Kabushiki Kaisha Process for purifying exhaust gases
US6010673A (en) * 1992-09-21 2000-01-04 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas
EP0994243A2 (en) * 1998-10-14 2000-04-19 Nissan Motor Co., Ltd. Exhaust gas purifying device
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US6308515B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6308697B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines
US6327847B1 (en) 2000-03-17 2001-12-11 Ford Global Technologies, Inc. Method for improved performance of a vehicle
US6370868B1 (en) 2000-04-04 2002-04-16 Ford Global Technologies, Inc. Method and system for purge cycle management of a lean NOx trap
US6374597B1 (en) 2000-03-17 2002-04-23 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6389803B1 (en) 2000-08-02 2002-05-21 Ford Global Technologies, Inc. Emission control for improved vehicle performance
US6427437B1 (en) 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6434930B1 (en) 2000-03-17 2002-08-20 Ford Global Technologies, Inc. Method and apparatus for controlling lean operation of an internal combustion engine
US6438944B1 (en) 2000-03-17 2002-08-27 Ford Global Technologies, Inc. Method and apparatus for optimizing purge fuel for purging emissions control device
US6477832B1 (en) 2000-03-17 2002-11-12 Ford Global Technologies, Inc. Method for improved performance of a vehicle having an internal combustion engine
US6481199B1 (en) 2000-03-17 2002-11-19 Ford Global Technologies, Inc. Control for improved vehicle performance
US6487849B1 (en) 2000-03-17 2002-12-03 Ford Global Technologies, Inc. Method and apparatus for controlling lean-burn engine based upon predicted performance impact and trap efficiency
US6487850B1 (en) 2000-03-17 2002-12-03 Ford Global Technologies, Inc. Method for improved engine control
US6499293B1 (en) 2000-03-17 2002-12-31 Ford Global Technologies, Inc. Method and system for reducing NOx tailpipe emissions of a lean-burn internal combustion engine
EP1053390A4 (en) * 1998-02-04 2003-05-21 Goal Line Environmental Tech Regeneration of catalyst/absorber
US6594989B1 (en) 2000-03-17 2003-07-22 Ford Global Technologies, Llc Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
US6708483B1 (en) 2000-03-17 2004-03-23 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine based upon predicted performance impact
US6810659B1 (en) 2000-03-17 2004-11-02 Ford Global Technologies, Llc Method for determining emission control system operability
US6843051B1 (en) 2000-03-17 2005-01-18 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine to purge trap of stored NOx
US6863874B1 (en) 1998-10-12 2005-03-08 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
US7861516B2 (en) 2003-06-18 2011-01-04 Johnson Matthey Public Limited Company Methods of controlling reductant addition
WO2015159698A1 (en) * 2014-04-18 2015-10-22 株式会社アツミテック Exhaust gas purification system, catalyst and exhaust gas purification method
EP3043038A1 (en) * 2015-01-12 2016-07-13 Inergy Automotive Systems Research (Société Anonyme) NOx reduction system

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560991B1 (en) * 1991-10-03 1997-07-30 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
EP0560991A1 (en) * 1991-10-03 1993-09-22 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
US5473887A (en) * 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5471836A (en) * 1991-10-14 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5412945A (en) * 1991-12-27 1995-05-09 Kabushiki Kaisha Toyota Cho Kenkusho Exhaust purification device of an internal combustion engine
US5951956A (en) * 1992-03-23 1999-09-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas and method for purifying exhaust gas
US5437153A (en) * 1992-06-12 1995-08-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5450722A (en) * 1992-06-12 1995-09-19 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5402641A (en) * 1992-07-24 1995-04-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US5433074A (en) * 1992-07-30 1995-07-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
EP0582917A1 (en) * 1992-08-04 1994-02-16 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an engine
US5472673A (en) * 1992-08-04 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5423181A (en) * 1992-09-02 1995-06-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of an engine
US6010673A (en) * 1992-09-21 2000-01-04 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas
US5404719A (en) * 1992-10-13 1995-04-11 Toyota Jidosha Kabushiki Kaisha Engine exhaust gas purification device
US5473890A (en) * 1992-12-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5483795A (en) * 1993-01-19 1996-01-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5388403A (en) * 1993-03-12 1995-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5448887A (en) * 1993-05-31 1995-09-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US5461857A (en) * 1993-06-11 1995-10-31 Toyota Jidosha Kabushiki Kaisha Engine exhaust gas purification device
US5575983A (en) * 1993-09-24 1996-11-19 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for purifying exhaust gases
US5551231A (en) * 1993-11-25 1996-09-03 Toyota Jidosha Kabushiki Kaisha Engine exhaust gas purification device
US5968462A (en) * 1994-02-04 1999-10-19 Toyota Jidosha Kabushiki Kaisha Process for purifying exhaust gases
EP0702134A3 (en) * 1994-09-16 1996-07-03 Toyota Motor Co Ltd An exhaust gas purification device for an engine
US6409973B1 (en) 1994-09-16 2002-06-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
EP0702134A2 (en) 1994-09-16 1996-03-20 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an engine
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US7093432B2 (en) 1996-06-10 2006-08-22 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6397582B1 (en) 1996-06-10 2002-06-04 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
EP0922840A2 (en) 1997-12-09 1999-06-16 Hitachi, Ltd. Method of purifying exhaust gas of internal combustion engine and apparatus thereof
US6305161B1 (en) 1997-12-09 2001-10-23 Hitachi, Ltd. Method of purifying exhaust gas of internal combustion engine and apparatus thereof
EP1053390A4 (en) * 1998-02-04 2003-05-21 Goal Line Environmental Tech Regeneration of catalyst/absorber
US6863874B1 (en) 1998-10-12 2005-03-08 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
EP0994243A2 (en) * 1998-10-14 2000-04-19 Nissan Motor Co., Ltd. Exhaust gas purifying device
EP0994243A3 (en) * 1998-10-14 2003-01-15 Nissan Motor Co., Ltd. Exhaust gas purifying device
US6308697B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines
US6374597B1 (en) 2000-03-17 2002-04-23 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6434930B1 (en) 2000-03-17 2002-08-20 Ford Global Technologies, Inc. Method and apparatus for controlling lean operation of an internal combustion engine
US6438944B1 (en) 2000-03-17 2002-08-27 Ford Global Technologies, Inc. Method and apparatus for optimizing purge fuel for purging emissions control device
US6477832B1 (en) 2000-03-17 2002-11-12 Ford Global Technologies, Inc. Method for improved performance of a vehicle having an internal combustion engine
US6481199B1 (en) 2000-03-17 2002-11-19 Ford Global Technologies, Inc. Control for improved vehicle performance
US6487849B1 (en) 2000-03-17 2002-12-03 Ford Global Technologies, Inc. Method and apparatus for controlling lean-burn engine based upon predicted performance impact and trap efficiency
US6487850B1 (en) 2000-03-17 2002-12-03 Ford Global Technologies, Inc. Method for improved engine control
US6490856B2 (en) 2000-03-17 2002-12-10 Ford Global Technologies, Inc. Control for improved vehicle performance
US6499293B1 (en) 2000-03-17 2002-12-31 Ford Global Technologies, Inc. Method and system for reducing NOx tailpipe emissions of a lean-burn internal combustion engine
US6308515B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6427437B1 (en) 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6594989B1 (en) 2000-03-17 2003-07-22 Ford Global Technologies, Llc Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine
US6327847B1 (en) 2000-03-17 2001-12-11 Ford Global Technologies, Inc. Method for improved performance of a vehicle
US6708483B1 (en) 2000-03-17 2004-03-23 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine based upon predicted performance impact
US6810659B1 (en) 2000-03-17 2004-11-02 Ford Global Technologies, Llc Method for determining emission control system operability
US6843051B1 (en) 2000-03-17 2005-01-18 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine to purge trap of stored NOx
US6370868B1 (en) 2000-04-04 2002-04-16 Ford Global Technologies, Inc. Method and system for purge cycle management of a lean NOx trap
US6389803B1 (en) 2000-08-02 2002-05-21 Ford Global Technologies, Inc. Emission control for improved vehicle performance
US7861516B2 (en) 2003-06-18 2011-01-04 Johnson Matthey Public Limited Company Methods of controlling reductant addition
WO2015159698A1 (en) * 2014-04-18 2015-10-22 株式会社アツミテック Exhaust gas purification system, catalyst and exhaust gas purification method
EP3043038A1 (en) * 2015-01-12 2016-07-13 Inergy Automotive Systems Research (Société Anonyme) NOx reduction system
WO2016113260A1 (en) * 2015-01-12 2016-07-21 Plastic Omnium Advanced Innovation And Research Nox reduction system
CN107109984A (en) * 2015-01-12 2017-08-29 全耐塑料高级创新研究公司 NOx reduction system

Similar Documents

Publication Publication Date Title
JPS62117620A (en) Method for removing nitrogen oxide contained in exhaust gas of gasoline engine
JPS62106826A (en) Method for removing nitrogen oxide in diesel exhaust gas
JPS6297630A (en) Method for removing nitrogen oxide from nitrogen oxide-containing gas
US5599758A (en) Regeneration of catalyst/absorber
CA2193638C (en) Exhaust gas treating systems
Zhang et al. Advances in De-NO x methods and catalysts for direct catalytic decomposition of NO: A review
AU737467B2 (en) Regeneration of catalyst/absorber
KR101098247B1 (en) Catalyst for removing NOx in the emission gases of lean burn engines and stationary sources
CA2397226C (en) Process, catalyst system, and apparatus for treating sulfur compound containing effluent
Zhou et al. Marine emission pollution abatement using ozone oxidation by a wet scrubbing method
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
CN105498447A (en) Low-temprature flue gas denitration and poisoning-prevention system
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JPH1033947A (en) Removal of nitrogen oxide in exhaust gas
JPH0587291B2 (en)
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
Efstathiou et al. Lean Burn DeNO x ApplicationsStationary and Mobile Sources
JP2002349248A (en) Nitrogen oxide in diesel engine exhaust gas removing method and device
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
KR102142862B1 (en) PULSE CONTROL SYSTEM FOR REDUCING NOx, METHOD FOR REDUCING NOx USING THE SAME, AND INTERNAL COMBUSTION ENGINE INCLUDING THE SAME
CA2207275C (en) Regeneration of catalyst/absorber