JPS62116902A - Wide-band low dispersion optical fiber - Google Patents

Wide-band low dispersion optical fiber

Info

Publication number
JPS62116902A
JPS62116902A JP60257423A JP25742385A JPS62116902A JP S62116902 A JPS62116902 A JP S62116902A JP 60257423 A JP60257423 A JP 60257423A JP 25742385 A JP25742385 A JP 25742385A JP S62116902 A JPS62116902 A JP S62116902A
Authority
JP
Japan
Prior art keywords
refractive index
optical fiber
core
dispersion
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257423A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Kenji Nishide
西出 研二
Koichi Inada
稲田 浩一
Takeru Fukuda
福田 長
Suehiro Miyamoto
宮本 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60257423A priority Critical patent/JPS62116902A/en
Publication of JPS62116902A publication Critical patent/JPS62116902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain wide-band characteristics with small loss by providing three layers of clads whose refractive indexes are nearly equal to that of pure quartz glass and specified respectively outside a core and eliminating wavelength dispersion when wavelength is 1.3 and 1.7mum. CONSTITUTION:An optical fiber has the high-refractive-index core 1 in the center and the three layers of clads 2-4 around the core. The clad 2 is made of pure quartz glass and has a less refractive index. The clad 3 is relatively thick or 1.5 times as thick as the diameter of the core 1 and its refractive index is larger than that of the clad 2. The clad 4 has a refractive index substantially as large as the refractive index of the pure quartz glass. thus, the wavelength dispersion value is zero corresponding to at least two wavelengths in a wavelength area of 1.3-1.7mum and the small-loss, wide-band low dispersion optical fiber is manufactured efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、長距離、低損失、広帯域の光フアイバ伝送
系に最適な、広い波長域にわたって波長分散を低くした
石英系の光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a silica-based optical fiber that has low chromatic dispersion over a wide wavelength range and is optimal for long-distance, low-loss, broadband optical fiber transmission systems.

従来の技術 従来から良く知られているように、石英系光ファイバの
最小伝送損失を与える波長域は1.57tm〜1.6g
mにある。すなわち、長距1Ils中継光伝送を行なう
にはこの波長域が最も適しており、たとえば光フアイバ
伝送系の光源としてlOmW程度の出力を有するレーザ
ダイオードを用いれば250Km程度の無中継伝送が可
能であることが示されている。
Conventional Technology As is well known in the past, the wavelength range that provides the minimum transmission loss for silica-based optical fibers is 1.57tm to 1.6g.
It is in m. In other words, this wavelength range is most suitable for long-distance 1Ils relay optical transmission; for example, if a laser diode with an output of about 10mW is used as the light source of an optical fiber transmission system, non-repeater transmission of about 250 km is possible. It has been shown that

一方、伝送速度についてみると、光源の波長が単一スペ
クトルでないために所謂波長分散による伝送波形の歪の
影響がある。これまで最も良く使用されてきた第6図に
示すようなコア系約topm、コア争クラッド間の比屈
折率差Δ=0.3%の単一モードファイバでは、波長分
散は第7図の実線で示される曲線のようになり、波長1
.3゜mで零となるものの他の波長では零とならない。
On the other hand, regarding the transmission speed, since the wavelength of the light source is not a single spectrum, there is an effect of distortion of the transmission waveform due to so-called chromatic dispersion. In a single mode fiber with a core system of about topm and a relative refractive index difference Δ=0.3% between the core and cladding, as shown in Figure 6, which has been most commonly used so far, the chromatic dispersion is the solid line in Figure 7. The curve looks like this, and the wavelength is 1.
.. Although it becomes zero at 3°, it does not become zero at other wavelengths.

たとえば最も伝送損失が少なくなる波長1.557tm
での波長分散値は、この従来型単一モードファイバでは
約17〜20ps/Km/nmとなる。この意味は光源
のスペクトル幅1nm、ファイバ長IKm当り光パルス
の広がりが17〜20psあるということである。この
場合、たとえば光源のスペクトル幅が4nm(半値全幅
)、l100K伝送、波長分散が20ps/Km/nm
のとき、光パルス幅は8nsecとなり、せいぜい60
Mbit/see程度の情報しか送れないことになる。
For example, the wavelength with the least transmission loss is 1.557tm.
The wavelength dispersion value for this conventional single mode fiber is approximately 17 to 20 ps/Km/nm. This means that the spectral width of the light source is 1 nm and the spread of the optical pulse is 17 to 20 ps per fiber length IKm. In this case, for example, the spectral width of the light source is 4 nm (full width at half maximum), 1100K transmission, and the chromatic dispersion is 20 ps/Km/nm.
, the optical pulse width is 8 nsec, which is at most 60 nsec.
This means that only information on the order of Mbit/see can be sent.

そこで、これを改善するために考えられたのが波長分散
曲線を第7図の1点鎖線で示すようにシフトさせた分散
シフトファイバである。この分散シフトファイバでは、
零分散波長を1.51Lm帯にシフトさせるためにその
屈折率分布に工夫を要し、たとえば第8図のような屈折
率分布としている。
In order to improve this, a dispersion-shifted fiber was devised in which the wavelength dispersion curve was shifted as shown by the dashed line in FIG. In this dispersion shifted fiber,
In order to shift the zero dispersion wavelength to the 1.51 Lm band, the refractive index distribution must be modified, for example, as shown in FIG. 8.

ところで、一般に光ファイバの波長分散は、■材料分散
と■導波路分散との和で表わされるが、■材料分散は光
ファイバの屈折率分布にあまり左右されない。そこで、
■導波路分散を、■材料分散と異符号でかつ絶対値を等
しくして、第7図の1点鎖線で示す波長分散曲線のよう
に1.55゜m付近で波長分散を零としている。そのた
め実際にはΔが小さいと十分大きい導波路分散が得られ
ないので、Δ=0.7%以上にとる必要があり、第8図
の屈折率分布をとる光ファイバにおいても同様のパラメ
ータとしている。
Incidentally, the wavelength dispersion of an optical fiber is generally expressed as the sum of (1) material dispersion and (2) waveguide dispersion, but (2) material dispersion is not greatly affected by the refractive index distribution of the optical fiber. Therefore,
(2) The waveguide dispersion is set to have the opposite sign and the same absolute value as (2) the material dispersion, and the wavelength dispersion is made zero around 1.55° as shown in the wavelength dispersion curve shown by the dashed line in FIG. Therefore, in reality, if Δ is small, a sufficiently large waveguide dispersion cannot be obtained, so it is necessary to set Δ to 0.7% or more, and the same parameters are used for optical fibers with the refractive index distribution shown in Figure 8. .

このように、分散シフトファイバは様々な構造が研究さ
れてきたが、最近これを一歩すすめてさらに広い波長域
で低い分散値を得る試みがなされている。すなわち、第
9図に示すようなW型の屈折率分布を有し、波長分散曲
線が第10図の1点鎖線や点線で示すようにその傾きが
1.5gm帯で小さくかつ零分散波長が1.57zm帯
にあるような光ファイバである。
As described above, various structures of dispersion-shifted fibers have been studied, and recently attempts have been made to take this a step further and obtain low dispersion values over a wider wavelength range. In other words, it has a W-shaped refractive index distribution as shown in FIG. 9, the slope of the wavelength dispersion curve is small in the 1.5 gm band, and the zero dispersion wavelength is small, as shown by the dashed line and dotted line in FIG. This is an optical fiber in the 1.57zm band.

発明が解決しようとする問題点 第9図に示すようなW型圧折率分布を有する光ファイバ
を製造面から検討してみると次のような問題がある。
Problems to be Solved by the Invention When an optical fiber having a W-shaped refractive index distribution as shown in FIG. 9 is examined from the manufacturing standpoint, the following problems arise.

光ファイバの製造法にはMCVD法やOVD法、VAD
法などがあるが、OVD法やVAIN)法では第9図の
屈折率分布はあまり作りやすくない。すなわち、MCV
D法の場合には出発石英管の内側に一層一層透明化され
たガラス膜を積層させていくので各層に混入するドーパ
ントの量を調整すれば第9図の分布は比較的容易に作る
ことができる。このとき、光フアイバ最外層部はドーパ
ントの入っていない石英ガラスであり、内側部の屈折率
の低い部分には屈折率を下げるドーパントが、高い部分
には屈折率を高めるドーパントがそれぞれ使用される。
Optical fiber manufacturing methods include MCVD, OVD, and VAD.
However, it is not easy to create the refractive index distribution shown in FIG. 9 using the OVD method or the VAIN method. That is, MCV
In the case of method D, transparent glass films are layered one upon another inside the starting quartz tube, so the distribution shown in Figure 9 can be created relatively easily by adjusting the amount of dopant mixed into each layer. can. At this time, the outermost layer of the optical fiber is silica glass that does not contain a dopant, and a dopant that lowers the refractive index is used in the inner part with a low refractive index, and a dopant that increases the refractive index is used in the high part. .

石英の屈折率を下げるドーパントとしてはフッ素とホウ
素があるが、後者は1.3gm以上の波長においてファ
イバの伝送損失を高めるので、低損失光ファイバを必要
とする場合には使用できない。結局、フッ素が使用され
ることになる。屈折率を高めるドーパントとしてはGe
が使用されている。
Fluorine and boron are dopants that lower the refractive index of quartz, but the latter increases the transmission loss of the fiber at wavelengths above 1.3 gm, so it cannot be used when a low-loss optical fiber is required. In the end, fluorine was used. Ge is a dopant that increases the refractive index.
is used.

ところで、損失面で比較すると、MCVDファイバより
はVADファイバの方が優れている。これには、上記ド
ーパントのミクロ的なゆらぎによる散乱損失の程度が効
いていると思われる。すなわち、VAD法においては、
まず、ガラスの微粉末を発生させて、これを堆積させて
所謂ガラス微粉末焼結体をつくり、さらに高温(160
0°C前後)で透明ガラス化してプリフォーム(光フア
イバ母材)を作成する。プリフォーム工程以後はどの製
法も大差なく、紡糸工程でファイバに線引きされる。こ
のVAD法において一層ガラス微粉末状態を経由してプ
リフォームを作成するのでゆらぎが小さいものと思われ
る。
By the way, when compared in terms of loss, VAD fiber is superior to MCVD fiber. This seems to be due to the degree of scattering loss caused by the microscopic fluctuations of the dopant. That is, in the VAD method,
First, fine glass powder is generated and deposited to create a so-called glass fine powder sintered body, which is then heated to a high temperature (160°C).
A preform (optical fiber base material) is created by vitrifying it transparently at a temperature of around 0°C. After the preform process, there is no major difference between all manufacturing methods, and fibers are drawn in the spinning process. In this VAD method, since the preform is created through a state of fine glass powder, it is thought that the fluctuation is small.

ところが、このガラス微粉末状態ではフッ素を特定の部
位にドープしようとしても、フッ素の拡散・蒸発し易い
性質が作用して安定にプリフォーム中に固定できない。
However, in this state of fine glass powder, even if fluorine is doped into a specific region, it cannot be stably fixed in the preform due to the tendency of fluorine to diffuse and evaporate.

この状況はOVD法でも同じである。すなわち、仮にV
AD法やOVD法で第9図の分布を作る場合には、各屈
折率を有するカラス層毎に−H透明ガラス化してフッ素
ドーパントをガラス内に固定しながら、次いでガラス微
粉末堆積→透明化の工程を繰り返すこととなり、非常に
煩雑な製造工程となる。そのため、「長さ方向に一体化
して連続的にファイバプリフォームを作製することが可
能」であるというVAD法の本来の利点を生かすことが
できない。
This situation is the same with the OVD method. That is, if V
When creating the distribution shown in Figure 9 using the AD method or OVD method, each glass layer with each refractive index is made into -H transparent vitrified and the fluorine dopant is fixed in the glass, and then fine glass powder is deposited and then made transparent. This process is repeated, resulting in a very complicated manufacturing process. Therefore, it is not possible to take advantage of the inherent advantage of the VAD method, which is that it is possible to manufacture fiber preforms continuously by integrating them in the length direction.

結局、従来では屈折率を低くしなければならないのでフ
ッ素を使用せざるを得す、そのため低損失の広帯域低分
散光ファイバを効率良く製造できないという問題があっ
た。
As a result, in the conventional method, fluorine had to be used because the refractive index had to be lowered, and as a result, there was a problem in that it was not possible to efficiently manufacture a low-loss, wide-band, low-dispersion optical fiber.

この発明は、広帯域低分散光ファイバを本来的に低損失
でかつ製造効率の高いOVD法やVAD法で作製できる
ようにするためのファイバ構造を提供することを目的と
する。
An object of the present invention is to provide a fiber structure that allows a broadband low-dispersion optical fiber to be manufactured by the OVD method or VAD method, which inherently has low loss and has high manufacturing efficiency.

問題点を解決するための手段 この発明による広帯域低分散光ファイバは、石英ガラス
を主成分とする光ファイバであって、任意の屈折率分布
を有するコアをその中心に有し、該コアの外側に純粋石
英ガラスよりは低くない屈折率を有する第1のクラッド
と、その外側に第1のクラッドよりも高い屈折率を有す
る第2のクラッドと、さらにその周囲に実質的に純粋石
英ガラスと同程度の屈折率を有する第3のクラッドとを
形成し、波長1.3gm〜1.71Lmの債域において
少なくとも2つの波長で波長分散が零となっていること
を特徴とする。
Means for Solving the Problems The broadband low dispersion optical fiber according to the present invention is an optical fiber mainly composed of silica glass, which has a core having an arbitrary refractive index distribution at its center, and a core having an arbitrary refractive index distribution. a first cladding having a refractive index not lower than that of pure silica glass; a second cladding having a refractive index higher than the first cladding outside the first cladding; It is characterized by forming a third cladding having a refractive index of about 1.3 gm to 1.71 Lm, and having chromatic dispersion of zero at at least two wavelengths in the wavelength range of 1.3 gm to 1.71 Lm.

作    用 コアおよび各クラッドの屈折率は純粋石英ガラスより低
くする必要がなく、純粋石英ガラスより高くするだけで
ある。そのため、屈折率を高めるための単一のドーパン
トのみ用いればよくなる。
The refractive index of the working core and each cladding need not be lower than that of pure fused silica glass, only higher than that of pure fused silica glass. Therefore, it is sufficient to use only a single dopant to increase the refractive index.

すなわち、低くするドーパントであるフッ素を使用する
必要がないので、OVD法やVAD法などにより低損失
の広帯域低分散光ファイバを効率良く製造できる。
That is, since it is not necessary to use fluorine, which is a dopant to lower the dispersion, a low-loss, wide-band, low-dispersion optical fiber can be efficiently manufactured by the OVD method, VAD method, or the like.

実施例 この発明の一実施例にかかる光ファイバでは、第1図A
、Hに示すように、中心に屈折率の高いコアlが配され
、その周囲に3Nのクラッド2〜4が形成されてなる。
Embodiment In an optical fiber according to an embodiment of the present invention, FIG.
, H, a core l having a high refractive index is arranged at the center, and 3N claddings 2 to 4 are formed around it.

第1のクラッド2は、純粋石英ガラスより低くない屈折
率を有する。第2のクラッド3はその厚さが比較的厚く
、コアlの直径の少なくとも1.5倍より厚く形成され
ており、その屈折率は第1のクラッド2より高くされて
いる。第3のクラッド4は純粋石英ガラスの屈折率と実
質的に同程度の屈折率を有する。コア1と$2のクラッ
ド3には、基本的に、ガラス微粉末状態でも安定なドー
パント(たとえばGe)が含まれ、第1のクラッド2お
よび第3のクラッド4は基本的にドーパントのあまり入
っていないガラスとする。
The first cladding 2 has a refractive index no lower than pure silica glass. The second cladding 3 is relatively thick, at least 1.5 times the diameter of the core l, and has a refractive index higher than that of the first cladding 2. The third cladding 4 has a refractive index that is substantially the same as that of pure silica glass. The core 1 and the cladding 3 of $2 basically contain a dopant (for example, Ge) that is stable even in the state of fine glass powder, and the first cladding 2 and the third cladding 4 basically contain too much dopant. Not with glass.

具体的にVAD法によって製造してみたので説明する。I specifically manufactured it using the VAD method and will explain it.

第2図のようなコア用バーナ5、クラッド用バーナ6〜
8を有するVAD母材製造装置を用いて、第1図Bの屈
折率分布に対応するようGeが各層にドープされたガラ
ス微粉末焼結体9を作製した。これを加熱炉内に入れて
5OCI2蒸気(He雰囲気中)で脱OH基操作を行な
い、さらに1600℃のHe雰囲気中で透明ガラス化し
た。このとき母材の大きさは直径約50mm、長さ28
0mmであった。この母材を延伸して適当な内外径を有
する石英ガラス管内に挿入し、コラプスした後線引き紡
糸してファイバ化した。こうして作られた光ファイバの
屈折率分布は第3図のようになった。この光ファイバの
伝送損失特性および波長分散特性は第4図のようになっ
た。波長分散値は波長1.34m−1,フルmの範囲で
±3ps/Km/nmとなっており、非常に広い波長域
で低分散であることが確認できた。損失は波長1.55
gmで0.25dB/Kmであった。
Burner 5 for core, burner 6 for cladding as shown in Fig. 2
A fine glass powder sintered body 9 in which each layer was doped with Ge so as to correspond to the refractive index distribution shown in FIG. This was placed in a heating furnace, and OH group removal was performed using 5OCI2 vapor (in a He atmosphere), followed by transparent vitrification in a He atmosphere at 1600°C. At this time, the size of the base material is approximately 50 mm in diameter and 28 mm in length.
It was 0 mm. This base material was stretched, inserted into a quartz glass tube having appropriate inner and outer diameters, collapsed, and then drawn and spun to form a fiber. The refractive index distribution of the optical fiber thus produced was as shown in FIG. The transmission loss characteristics and wavelength dispersion characteristics of this optical fiber were as shown in FIG. The wavelength dispersion value was ±3 ps/Km/nm in the wavelength range of 1.34 m-1 and full m, and it was confirmed that the dispersion was low in a very wide wavelength range. Loss is wavelength 1.55
gm was 0.25 dB/Km.

なお、この光ファイバの第2クラツド3の影響により多
くの伝搬可能なモードが理論的に発生することになるが
、この不要モードを除去するにはモードフィルタを数K
m置きに挿入すればよい。
Note that many propagable modes will theoretically be generated due to the influence of the second cladding 3 of this optical fiber, but in order to remove these unnecessary modes, a mode filter of several K is required.
Just insert it every m.

モードフィルタとしては従来の1.3gm用単−モード
ファイバが適当である。
A conventional 1.3 gm single mode fiber is suitable as the mode filter.

また、コア1の屈折率分布としては上記の実施例のステ
ップ型に限らず、第5図A、 B、 C,Dのように三
角型、ガウス型、台形型あるいは中心にディップを有す
るものなど任意である。
Furthermore, the refractive index distribution of the core 1 is not limited to the step type shown in the above embodiments, but may also be triangular, Gaussian, trapezoidal, or with a dip in the center as shown in Figure 5 A, B, C, and D. Optional.

さらに、上記ではVAD法で作製したが、他の製造法を
適用してもよいことは勿論である。
Furthermore, although the VAD method was used for manufacturing in the above example, it is of course possible to apply other manufacturing methods.

発明の効果 この発明によれば、光ファイバの各層の屈折率は純粋石
英ガラスと同等かそれより高くするだけでよく、低くす
る必要がないので、屈折率を高めるための単一のドーパ
ントのみで広帯域低分散光ファイバを作製↑き、OVD
法やVAD法等の低損失でかつ製造効率の高い製造法に
よって製造することが可能となる。
Effects of the Invention According to this invention, the refractive index of each layer of the optical fiber only needs to be equal to or higher than that of pure silica glass, and there is no need to lower it; therefore, only a single dopant is needed to increase the refractive index. Fabrication of broadband low dispersion optical fiber and OVD
It becomes possible to manufacture by a manufacturing method with low loss and high manufacturing efficiency, such as a method or a VAD method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかる広帯域低分散光フ
ァイバを示すもので、第1図Aは断面図、第1図Bは屈
折率分布図、第2図は具体的な実施例での製造過程を示
す模式図、第3図は該具体的な実施例の光ファイバの屈
折率分布図、第4図は該具体的実施例の光ファイバの伝
送損失特性および波長分散特性を表わすグラフ、第5図
A、B、C,Dはそれぞれ変形例の屈折率分布図、第6
図は従来の典型的な単一モード光ファイバの屈折率分布
図、第7図は伝送損失特性および波長分散特性の従来例
を表わすグラフ、第8図は従来の分散シフト光ファイバ
の屈折率分布図、第9図は従来のW型光ファイバの屈折
率分布図、第1θ図はこのW型光ファイバ等の波長分散
曲線を表わすグラフである。 1・・・コア     2・・・第1クラツド3・・・
第2クラツド 4・・・第3クラツド5・・・コア用バ
ーナ 6〜8・・・クラッド用バーナ9・・・ガラス微
粉末焼結体 雫繁← 隻g口 適長CP宏 箋5目
FIG. 1 shows a broadband low-dispersion optical fiber according to an embodiment of the present invention, FIG. 1A is a cross-sectional view, FIG. 1B is a refractive index distribution diagram, and FIG. 2 is a specific example. 3 is a refractive index distribution diagram of the optical fiber of the specific example, and FIG. 4 is a graph showing the transmission loss characteristics and wavelength dispersion characteristics of the optical fiber of the specific example. , FIGS. 5A, B, C, and D are refractive index distribution diagrams of modified examples, respectively.
The figure is a refractive index distribution diagram of a typical conventional single-mode optical fiber, Figure 7 is a graph showing a conventional example of transmission loss characteristics and wavelength dispersion characteristics, and Figure 8 is a refractive index distribution of a conventional dispersion-shifted optical fiber. 9 is a refractive index distribution diagram of a conventional W-type optical fiber, and FIG. 1θ is a graph showing a wavelength dispersion curve of this W-type optical fiber. 1... Core 2... First cladding 3...
2nd cladding 4... 3rd cladding 5... Burner for core 6-8... Burner for cladding 9... Fine glass powder sintered body drops

Claims (1)

【特許請求の範囲】[Claims] (1)石英ガラスを主成分とする光ファイバであって、
任意の屈折率分布を有するコアをその中心に有し、該コ
アの外側に純粋石英ガラスよりは低くない屈折率を有す
る第1のクラッドと、その外側に第1のクラッドよりも
高い屈折率を有する第2のクラッドと、さらにその周囲
に実質的に純粋石英ガラスと同程度の屈折率を有する第
3のクラッドとを形成し、波長1.3μm〜1.7μm
の領域において少なくとも2つの波長で波長分散が零と
なっていることを特徴とする広帯域低分散光ファイバ。
(1) An optical fiber whose main component is silica glass,
A core having an arbitrary refractive index distribution at its center, a first cladding having a refractive index not lower than pure silica glass outside the core, and a refractive index higher than the first cladding outside the core. A second cladding having a wavelength of 1.3 μm to 1.7 μm is further formed around the second cladding, and a third cladding having a refractive index substantially the same as that of pure silica glass.
1. A broadband low-dispersion optical fiber characterized in that chromatic dispersion is zero at at least two wavelengths in the region.
JP60257423A 1985-11-16 1985-11-16 Wide-band low dispersion optical fiber Pending JPS62116902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257423A JPS62116902A (en) 1985-11-16 1985-11-16 Wide-band low dispersion optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257423A JPS62116902A (en) 1985-11-16 1985-11-16 Wide-band low dispersion optical fiber

Publications (1)

Publication Number Publication Date
JPS62116902A true JPS62116902A (en) 1987-05-28

Family

ID=17306161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257423A Pending JPS62116902A (en) 1985-11-16 1985-11-16 Wide-band low dispersion optical fiber

Country Status (1)

Country Link
JP (1) JPS62116902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309026A (en) * 2004-04-21 2005-11-04 Furukawa Electric Co Ltd:The Optical fiber and light signal processing apparatus using optical fiber
JP2014067053A (en) * 2004-01-16 2014-04-17 Imra America Inc Large core holey fiber
US9281650B2 (en) 2005-05-20 2016-03-08 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US9632243B2 (en) 2007-09-26 2017-04-25 Imra America, Inc. Glass large-core optical fibers
WO2021024689A1 (en) * 2019-08-05 2021-02-11 京セラ株式会社 Optical fiber power supply system and optical fiber cable

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067053A (en) * 2004-01-16 2014-04-17 Imra America Inc Large core holey fiber
US9645309B2 (en) 2004-01-16 2017-05-09 Imra America, Inc. Large core holey fibers
US10197727B2 (en) 2004-01-16 2019-02-05 Imra America, Inc. Large core holey fibers
JP2005309026A (en) * 2004-04-21 2005-11-04 Furukawa Electric Co Ltd:The Optical fiber and light signal processing apparatus using optical fiber
US9281650B2 (en) 2005-05-20 2016-03-08 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US9664849B2 (en) 2005-05-20 2017-05-30 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US10067289B2 (en) 2005-05-20 2018-09-04 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US9632243B2 (en) 2007-09-26 2017-04-25 Imra America, Inc. Glass large-core optical fibers
US10353144B2 (en) 2007-09-26 2019-07-16 Imra America, Inc. Glass large-core optical fibers
WO2021024689A1 (en) * 2019-08-05 2021-02-11 京セラ株式会社 Optical fiber power supply system and optical fiber cable
US11323186B2 (en) 2019-08-05 2022-05-03 Kyocera Corporation Power over fiber system and optical fiber cable

Similar Documents

Publication Publication Date Title
US3932162A (en) Method of making glass optical waveguide
JPH0727443Y2 (en) Silica-based single-mode optical fiber waveguide
US4339173A (en) Optical waveguide containing P2 O5 and GeO2
US3884550A (en) Germania containing optical waveguide
US6690868B2 (en) Optical waveguide article including a fluorine-containing zone
US4846867A (en) Method for producing glass preform for optical fiber
US20030024276A1 (en) Method of manufacture of an optical waveguide article including a fluorine-containing zone
JP2959877B2 (en) Optical fiber manufacturing method
DK152631B (en) PREFORM FOR WHICH A OPTICAL FILAMENT WITH HIGH BANDWISE AND INDEX GRADIENT CAN BE MADE, AND PROCEDURE FOR THE CREATION OF SUCH A PREFORM.
JP2021503630A (en) Low loss optical fiber with co-doped core of two or more halogens
CA1270680A (en) Low-loss silica optical waveguides
GB2116744A (en) Optical fiberguide
EP0851247A2 (en) Dispersion-shifted optical fibre and method of manufacturing the same
CA2360918A1 (en) Optical fiber preform having oh barrier and fabrication method thereof
JPS61191543A (en) Quartz base optical fiber
JPS62116902A (en) Wide-band low dispersion optical fiber
JPS61262708A (en) Single mode optical fiber for 1.5 micron band
JP2988524B2 (en) Optical fiber and method for manufacturing the same
JPS62297808A (en) Dispersion shift optical fiber
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
JPS638707A (en) Dispersion shift type optical fiber
CA1322851C (en) Method for producing preform for optical fiber
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3315786B2 (en) Optical amplifier type optical fiber
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications