JPS62114820A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS62114820A
JPS62114820A JP25377985A JP25377985A JPS62114820A JP S62114820 A JPS62114820 A JP S62114820A JP 25377985 A JP25377985 A JP 25377985A JP 25377985 A JP25377985 A JP 25377985A JP S62114820 A JPS62114820 A JP S62114820A
Authority
JP
Japan
Prior art keywords
machining
stored
electrical
feed rate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25377985A
Other languages
Japanese (ja)
Other versions
JPH0626765B2 (en
Inventor
Sadafumi Shichizawa
七沢 禎文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60253779A priority Critical patent/JPH0626765B2/en
Publication of JPS62114820A publication Critical patent/JPS62114820A/en
Publication of JPH0626765B2 publication Critical patent/JPH0626765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make the basic data gathering of optimum machining ever so easy as well as to make it usable at a moment, by storing coordinate values of all axes during machining at every fixed time by means of a numerical control system, and judging a feed rate to machining electric conditions. CONSTITUTION:First, whether it is in machining or not is detected, and when YES is the case, each coordinate value of X, Y and Z is read by a step 13 after the elapse of the preset time by a step 11, and whether a variation with the coordinate value of the last time is smaller than the preset value or not is judged by a step 14. If it is smaller, the coordinate value at this time is set down to a feed rate and stored so as to correspond to 1 to 1 with machining electric conditions by a step 15, and when the machining electric condition is selected, this feed rate is used whereby optimum machining is performable. When NO is the case with a step 11, the coordinate value is cleared by a step 16, thus processing is over. Also when NO is the case with steps 12 and 14, it comes to an end as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、対向して位1ηされている電極と被。[Detailed description of the invention] [Industrial application field] In this invention, the electrodes are placed opposite to each other and are coated with each other.

加工物の間に電圧を印加して加工する放電加工装置に関
するものである。
The present invention relates to an electrical discharge machining device that applies voltage between workpieces to machine them.

〔従来の技術〕[Conventional technology]

従来この種の装置は、第2図の構成図に示すらのがあっ
た。これは、x、y方向に加工テーブル(1)を移動せ
しめるモータ(2)、(3)と、電極(4)を上下の2
方向に移動せしめるモータ(5)とを備え、これらモー
タ(2)、(3)、(5)は数値制御装置(6)(以下
これをNC装置という)により制御される。また、電極
(4)と被加工物(7)の間には加工用電源(8)より
パルス状の電圧が印加されており、これにより放電加工
を実行するものである。なお、この加工用電源(8)は
上記NC装置(6)により制御され、そして加工電気条
件が切換えられるものである。
Conventionally, there has been a device of this type as shown in the block diagram of FIG. This consists of motors (2) and (3) that move the processing table (1) in the x and y directions, and two upper and lower electrodes (4).
These motors (2), (3), and (5) are controlled by a numerical control device (6) (hereinafter referred to as an NC device). Further, a pulsed voltage is applied between the electrode (4) and the workpiece (7) from a machining power source (8), thereby performing electrical discharge machining. The machining power source (8) is controlled by the NC device (6), and the machining electrical conditions are switched.

以上の構成より成る放電加工装置において、最適な加工
状態を保ち、そして所望の形状に放電加工を行うには、
加工の深さ、加工電気条件、クリアランス、揺動加工代
など、多くのパラメータに依存している。したがって、
この最適値を一義的に求めることは非常に難しく、多く
の基礎データと作業者の勘と経験に頼っていたのが現状
である。
In the electrical discharge machining device with the above configuration, in order to maintain the optimum machining condition and perform electrical discharge machining into the desired shape,
It depends on many parameters such as machining depth, machining electrical conditions, clearance, and swing machining allowance. therefore,
It is extremely difficult to unambiguously determine this optimal value, and the current situation is that it relies on a lot of basic data and the intuition and experience of the operator.

従来は、上記基礎データを第3図に示すごとき加工条件
推奨表としてメーカーが提供していたが、これらのデー
タは電極形状および面積、被加工物の材質などが異なる
と、これを充分に利用することはできなかった。したが
って、ユーザーが最適な加工を得んとする場合は、自ら
加工に合った基礎データを採取する必要があった。ここ
でいう最適な加工とは、第4図に示すごとく荒加工の工
程(a)で加工したときの加工面の荒さ具合(g)を、
次の工程(b)では加工電気条件を変えてその荒さ具合
を(g/2)に、さらに次の工程(C)では(g/4)
にし、そして最終的な工程(d)で所望の形状に仕上げ
るものである。このとき適切な送り蛍を選ぶ必要があり
、送り量が少ないと、荒い加工面が残り次の加工条件で
の加工時間が多くかかる。これに対して、送り量が多い
と所望の形状より大きく加工してしまうごとになる。
In the past, manufacturers provided the above basic data as a recommended machining condition table as shown in Figure 3, but these data cannot be fully utilized if the electrode shape and area, material of the workpiece, etc. differ. I couldn't. Therefore, if a user wants to obtain optimal processing, it is necessary for the user to collect basic data suitable for the processing. The optimum machining here refers to the roughness (g) of the machined surface when machining in the rough machining step (a) as shown in Figure 4.
In the next step (b), the machining electrical conditions are changed to reduce the roughness to (g/2), and in the next step (C), the roughness is reduced to (g/4).
Then, in the final step (d), it is finished into the desired shape. At this time, it is necessary to select an appropriate feed rate; if the feed rate is small, a rough machined surface will remain and it will take a long time to process the next process. On the other hand, if the feed rate is large, the shape will be machined to a size larger than the desired shape.

[Q明が解決しようとする問題点コ ここで加工条件毎に、時間と加工量(送り量)の関係を
示した特性の一例は第5図のようになる。
[Problems that Q Ming attempts to solve Here, an example of the characteristics showing the relationship between time and processing amount (feed amount) for each processing condition is as shown in FIG.

すなわち、この特性線図で縦軸に送り量をとり、横軸に
は時間をとると、図からも明らかなように時間の経過と
ともに、送り量(加工の進み具合)が著しく低下(飽和
)する。これは、急激に加工面積が広くなることに起因
する。したがって、ユーザーはダイヤルゲージ等を観察
しながら、送り量が飽和する時点を測定し、その時点に
おける基礎データを採取するために、ばく大な作業量と
時間を費やすことになる。
In other words, if we plot the feed rate on the vertical axis and time on the horizontal axis in this characteristic diagram, it is clear from the diagram that the feed rate (machining progress) decreases significantly (saturates) as time passes. do. This is due to the sudden increase in the processing area. Therefore, the user has to spend a large amount of work and time to measure the point at which the feed rate reaches saturation while observing a dial gauge, etc., and to collect basic data at that point.

この発明は、上記のような問題点を解消するためになさ
れたもので、前述のNC装置により、基礎データの採取
を可能とすることを目的とする。
This invention was made to solve the above-mentioned problems, and it is an object of the invention to make it possible to collect basic data using the above-mentioned NC device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る基礎データ採取方法は、一定時間fiに
加工中における全軸の座標値を記憶することにより、加
工電気条件に対する送り量の判定を行い、最適条件を求
めることを可能にしたものである。
The basic data collection method according to the present invention makes it possible to determine the feed rate for the machining electrical conditions and find the optimal conditions by storing the coordinate values of all axes during machining for a certain period of time fi. be.

〔作用〕[Effect]

この発明における基礎データ採取方法は、記憶された座
標値の変化により、加工の進み方の飽和状聾を検出し、
そのときの送り量を測定する。
The basic data collection method in this invention detects saturation in the progress of machining based on changes in stored coordinate values,
Measure the amount of feed at that time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。第1図はその動作
を説明するだめの流れ図である。まず、ステップ(11
)で加工中であるか否かの検出を行い、これが(yes
)であれば、次のステップ(12)に進む。ここで、予
め設定されている一定時間を経過すると、(yes)で
あるから次のステップ(13)で各軸X、Y、Zの座標
値を読み取り、こらがステップ(14)で前回の座標値
との変化が予め設定されている値(δ)より小さいかど
うかを判定する。もし座標値の変化分が(δ)より小さ
ければこれは(yes)であるから、次のステップ(1
5)へ進む。そしてこのときに、そのときの座標値を送
り量として加工電気条件と一対一・に対応するようにし
、これを記憶しておく。以後、加工電気条件が選ばれた
場合、上記の処理で求められた送り量を自動的に用いる
ことにより;最適な加工を行うことができる。なお、上
記のステップ。
An embodiment of the present invention will be described below. FIG. 1 is a flowchart illustrating its operation. First, step (11
) to detect whether or not processing is in progress, and this indicates (yes).
), proceed to the next step (12). Here, when a preset certain period of time has elapsed, the answer is (yes), so in the next step (13), the coordinate values of each axis X, Y, and Z are read, and these are the previous coordinates in step (14). It is determined whether the change from the value is smaller than a preset value (δ). If the change in coordinate value is smaller than (δ), this is (yes), so the next step (1
Proceed to 5). At this time, the coordinate value at that time is set as the feed amount so that it corresponds one-to-one with the machining electrical conditions, and this is stored. Thereafter, when machining electrical conditions are selected, optimal machining can be performed by automatically using the feed amount determined in the above process. Note that the above steps.

(11)で(no)と判定された場合には、ステップ(
16)で座標値をクリアして処理が終了する。また、ス
テップ(12)および(I4)で(no)と判定された
ときも終了すること勿論である。
If it is determined (no) in (11), step (
In step 16), the coordinate values are cleared and the process ends. It goes without saying that the process also ends when the determination in steps (12) and (I4) is (no).

なお、上記実施例では、すべてNC装置で制御を行って
いるが、時間毎に読み込む座標値をプリンター等に出力
し、その解析は人の手にゆだねるということにしてもよ
い。また同じく座標値信号をR3−232C等の通信回
線により他のコンピュータに送り、これを他のコンピュ
ータで解析するようにしてもよい。
In the above embodiment, all control is performed by an NC device, but it is also possible to output the coordinate values read every time to a printer or the like and leave the analysis to humans. Similarly, the coordinate value signal may be sent to another computer via a communication line such as R3-232C, and the signal may be analyzed by the other computer.

更に上記実施例では、一つの加工電気条件に対し一つの
送り量として記憶しているが、電極面積。
Furthermore, in the above embodiment, one feed amount is stored for one machining electrical condition, but the electrode area.

被加工物の材質等の種類に応じて、一つの加工電気条件
に対し複数の送り量として記憶するようにしてもよい。
Depending on the type of material etc. of the workpiece, one machining electrical condition may be stored as a plurality of feed amounts.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、加工電気条件に対する
送り量をNC装置が測定し、これを記憶しているため、
最適な加工のための基礎データが容易に採取でき、かつ
、そのデータを即時使用することができるという効果が
ある。
As described above, according to the present invention, since the NC device measures the feed amount for the machining electrical conditions and stores it,
This has the advantage that basic data for optimal processing can be easily collected and the data can be used immediately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による放電加工装置の動作を
説明するための流れ図、第2図は従来の放電加工装置の
構成図、第3図は加工条件等を示す基礎データ表、第4
図は最適加工の加工状態を示す説明図、第5図は加工の
進み具合を示す特性線図である。 図中、(1)は加工テーブル、(2)はX軸モータ、(
3)はY軸モータ、(4)ハ電極、(5)ハZ軸モータ
、(6)ハNC装置、(7)は被加工物、(8)は加工
用電源である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a flowchart for explaining the operation of an electric discharge machining apparatus according to an embodiment of the present invention, Fig. 2 is a configuration diagram of a conventional electric discharge machining apparatus, and Fig. 3 is a basic data table showing machining conditions, etc. 4
The figure is an explanatory diagram showing the machining state of optimum machining, and FIG. 5 is a characteristic diagram showing the progress of machining. In the figure, (1) is the processing table, (2) is the X-axis motor, (
3) is a Y-axis motor, (4) is an electrode, (5) is a Z-axis motor, (6) is an NC device, (7) is a workpiece, and (8) is a processing power source. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)数値制御装置を含みそしてZ軸方向に移動する電
極とX、Yに移動する加工テーブル上に載置されている
被加工物との間に電圧を印加して加工する放電加工装置
において、一定時間毎に前記X、Y、Z各軸の位置を読
み取りこれを記憶するとともに、加工電気条件を記憶し
両記憶内容を外部へ出力するようにしたことを特徴とす
る放電加工装置。
(1) In an electrical discharge machining device that includes a numerical control device and processes by applying a voltage between an electrode that moves in the Z-axis direction and a workpiece placed on a processing table that moves in the X and Y directions. An electric discharge machining apparatus characterized in that the positions of the X, Y, and Z axes are read and stored at fixed time intervals, machining electrical conditions are stored, and both stored contents are outputted to the outside.
(2)記憶装置の内容から3軸の位置の変化とある設定
値との大小を判別し、これが飽和状態で加工電気条件と
加工送り量の関係とを再記憶することを特徴とする特許
請求の範囲第1項記載の放電加工装置。
(2) A patent claim characterized in that the magnitude of the change in the position of the three axes and a certain set value is determined from the contents of the storage device, and the relationship between the machining electrical conditions and the machining feed amount is re-stored in a saturated state. The electrical discharge machining apparatus according to item 1.
(3)特許請求の範囲第2項記載の放電加工装置におい
て、電極面積、被加工物の材質等により、一つの加工電
気条件に対し複数の加工送り量の関係を記憶するように
したことを特徴とする放電加工装置。
(3) In the electric discharge machining apparatus according to claim 2, a plurality of machining feed rate relationships are stored for one machining electrical condition depending on the electrode area, material of the workpiece, etc. Characteristic electrical discharge machining equipment.
JP60253779A 1985-11-14 1985-11-14 Die-sinking EDM method Expired - Lifetime JPH0626765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253779A JPH0626765B2 (en) 1985-11-14 1985-11-14 Die-sinking EDM method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253779A JPH0626765B2 (en) 1985-11-14 1985-11-14 Die-sinking EDM method

Publications (2)

Publication Number Publication Date
JPS62114820A true JPS62114820A (en) 1987-05-26
JPH0626765B2 JPH0626765B2 (en) 1994-04-13

Family

ID=17256028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253779A Expired - Lifetime JPH0626765B2 (en) 1985-11-14 1985-11-14 Die-sinking EDM method

Country Status (1)

Country Link
JP (1) JPH0626765B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411733A (en) * 1987-07-02 1989-01-17 Mitsubishi Electric Corp Electric discharge machine
JPH01316130A (en) * 1988-06-13 1989-12-21 Sodick Co Ltd Electric discharge machine
CN104400165A (en) * 2014-10-27 2015-03-11 北京建筑大学 Adaptive filtering method and device of electric spark machining discharging state signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261896A (en) * 1975-11-18 1977-05-21 Inoue Japax Res Inc Electric spark machine
JPS56102428A (en) * 1980-01-21 1981-08-15 Mitsubishi Electric Corp Discharge machining apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261896A (en) * 1975-11-18 1977-05-21 Inoue Japax Res Inc Electric spark machine
JPS56102428A (en) * 1980-01-21 1981-08-15 Mitsubishi Electric Corp Discharge machining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411733A (en) * 1987-07-02 1989-01-17 Mitsubishi Electric Corp Electric discharge machine
JPH01316130A (en) * 1988-06-13 1989-12-21 Sodick Co Ltd Electric discharge machine
CN104400165A (en) * 2014-10-27 2015-03-11 北京建筑大学 Adaptive filtering method and device of electric spark machining discharging state signal

Also Published As

Publication number Publication date
JPH0626765B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US4633409A (en) Numerical control device
JPH03178731A (en) Electric discharge machine
JPS62114820A (en) Electric discharge machine
JPS597523A (en) Wire-cut electric discharge machine
JPS62163109A (en) Numerical controller
JPH07214416A (en) Turn broaching method and device therefor
JPH0694090B2 (en) Wire electric discharge machining method and apparatus
JPS60175555U (en) Processing reference point correction device for NC machine tools
JPH04131910A (en) Method and device for setting work coordinate shift variable of numerically controlled lathe
JPH0649263B2 (en) Work coordinate system setting control method
JP2663931B2 (en) Graphic display method of numerical controller
JPH11123637A (en) Measuring method for tool size of nc system
JP2697972B2 (en) Electric discharge machining method and apparatus
JP4205255B2 (en) Electric discharge machining apparatus and electric discharge machining method
JPH08150540A (en) Interference preventing device for machine tool
JPH11207528A (en) Device for wire electric discharge machining
JP2926524B2 (en) Numerical controller with trial cutting function
JP2581535B2 (en) Machine tool coordinate system setting device
JPS62130130A (en) Numerically controlled electric discharge machining device
JPH01154869A (en) Automatic multi-layer welding equipment
JPH03169490A (en) Follow-up control method for three-dimensional laser beam machine
JPH04279287A (en) Resistance welding equipment
JPH0839357A (en) Electric discharge machining system
JPH0639681A (en) Tool correcting value input system of numerically controlled machine tool
JPS6219353A (en) Automatic setup mechanism