JPS62114610A - Method for making porous polyolefin membrane hydrophilic - Google Patents

Method for making porous polyolefin membrane hydrophilic

Info

Publication number
JPS62114610A
JPS62114610A JP60253561A JP25356185A JPS62114610A JP S62114610 A JPS62114610 A JP S62114610A JP 60253561 A JP60253561 A JP 60253561A JP 25356185 A JP25356185 A JP 25356185A JP S62114610 A JPS62114610 A JP S62114610A
Authority
JP
Japan
Prior art keywords
membrane
porous
water
monomer
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60253561A
Other languages
Japanese (ja)
Inventor
Hajime Ito
元 伊藤
Kazutami Mitani
和民 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60253561A priority Critical patent/JPS62114610A/en
Priority to US06/928,163 priority patent/US4678813A/en
Priority to EP86115619A priority patent/EP0222365A3/en
Priority to US07/030,745 priority patent/US4717479A/en
Publication of JPS62114610A publication Critical patent/JPS62114610A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To carry out treatment for providing hydrophilicity of excellent durability, by heating polymerizing surface active monomer with polymerizable unsaturated link having HLB value of 2-20 and polymerization catalyst that are held on a porous surface of a porous polyolefin membrane. CONSTITUTION:A porous membrane having pores with a diameter of 0.01-5mum using ethylene, propylene, 4-methyl-1-pentene, fluoro-polyolefin, etc. After surface active monomer is held on the porous surface of at least a part of a said porous membrane, said monomer is polymerized by heating. Monomer has a molecular weight of under 10,000, HLB value of 2-20, and polymerizable unsaturated linkages. Hydrophilic part is composed of ethylene oxide, sulfonic acid groups, quaternary ammonium group, etc. After the addition of polymerization catalyst, solution of monomer is pressurized into pores of porous membranes to be polymerized by heating at a temperature of 30-100 deg.C for 1min-5hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水処理や血液浄化等の分野で使用されるポリオ
レフィン多孔質膜の親水化法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for making a porous polyolefin membrane hydrophilic, which is used in fields such as water treatment and blood purification.

〔従来の技術〕[Conventional technology]

ポリオレフィン多孔質膜は機械的性質や耐薬品性が優れ
ているためにその適用分野が急速に拡大している。しか
し、ポリオレフィン多孔質膜は疎水性であるのでそのま
までは水を透過させることが難しく、水を始めとする親
水性液体を透過させるためには親水化処理が必要である
Polyolefin porous membranes have excellent mechanical properties and chemical resistance, so their application fields are rapidly expanding. However, since polyolefin porous membranes are hydrophobic, it is difficult for water to pass through them as is, and a hydrophilic treatment is required to allow water and other hydrophilic liquids to pass through them.

ポリオレフィンの表面改質による親水化法については種
々の方法が検討されているが、表面形状が複雑な多孔質
膜の親水化に対して表面が滑らかなフィルム状物等の親
水化法を単純に適用することは出来ない。
Various methods have been studied for making polyolefins hydrophilic by surface modification, but in contrast to making porous membranes with complex surface shapes hydrophilic, a simple method for making hydrophilic materials such as film-like materials with smooth surfaces has been proposed. It cannot be applied.

ポリオレフィン多孔質膜の親水化法としては、有機溶剤
湿潤・水置換法、物理的吸着法及び化学的表面変性法等
が知られている。有機溶剤湿潤・水置換法は、水との相
溶性が良好なアルコ−pやケトン等の有機溶剤によって
ポリオレフィン多孔質膜の微細孔部を含めた表面全体を
湿潤処理した後、該有機溶剤を水で置換する方法である
が、この方法では保存中や使用中に一旦細孔内の水が抜
けるとその部分は疎水性に戻シ水を透過できなくなるの
で、多孔質膜の周囲に常時水を充たしておくことが必要
であり、取り扱いが煩雑である。物理的吸着法はポリエ
チレングリコ−〜や界面活性剤等の親水性物質を多孔質
膜の表面に吸着させて多孔質膜に親水性を付与する方法
(例えば特開昭54−153872号、特開昭59−2
4752号等)であり、操作は簡単であるが、長時間に
亘って使用しているうちに該親水性物質が脱離するので
必ずしも十分な親水化法であるとは言えない。
Known methods for making porous polyolefin membranes hydrophilic include organic solvent wetting/water displacement methods, physical adsorption methods, and chemical surface modification methods. The organic solvent wetting/water displacement method involves moistening the entire surface of a polyolefin porous membrane, including the micropores, with an organic solvent that has good compatibility with water, such as alco-p or ketone, and then removing the organic solvent. This method replaces water with water, but in this method, once the water in the pores escapes during storage or use, the area returns to hydrophobicity and becomes unable to pass through, so water is constantly kept around the porous membrane. It is necessary to satisfy the requirements, and handling is complicated. The physical adsorption method is a method in which a hydrophilic substance such as polyethylene glycol or a surfactant is adsorbed onto the surface of a porous membrane to impart hydrophilicity to the porous membrane (for example, Japanese Patent Application Laid-Open No. 153872/1989, Showa 59-2
No. 4752, etc.) and is easy to operate, but it cannot necessarily be said to be a sufficient hydrophilization method because the hydrophilic substance is desorbed during long-term use.

化学的変性法としては親水性単量体を多孔質フィルムの
表面に保持させた状赳で放射線を照射する方法(特開昭
56−58535号)あるいは疎水性樹脂多孔性構造物
に水溶性高分子や界面活性剤を含浸させた状態でプラズ
マ処理する方法(特開昭56−157457号)等が提
案されているが、細孔表面の親水化が不十分であり、こ
れらの方法では十分な親水化処理が達成できない。また
、放射線照射や光照射等を実施すると膜基質が劣化し機
械的強度が低下するという問題が生じる。
Chemical modification methods include a method in which a hydrophilic monomer is held on the surface of a porous film and then irradiated with radiation (Japanese Patent Application Laid-Open No. 56-58535), or a method in which a hydrophobic resin porous structure is irradiated with radiation. Methods such as plasma treatment in a state impregnated with molecules or surfactants have been proposed (Japanese Unexamined Patent Publication No. 56-157457), but these methods are insufficient to make the pore surface hydrophilic. Hydrophilic treatment cannot be achieved. Further, when radiation irradiation, light irradiation, etc. are carried out, the membrane substrate deteriorates and mechanical strength decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたように従来の技術においては一時的な親水化
であるために取り扱いが不便であったり、細孔表面の親
水化が十分に行なえない等の開門があシ、現在のところ
ポリオレフィン多孔質膜に対する有効な親水化法は確立
されていない。
As mentioned above, in the conventional technology, there are problems such as inconvenience in handling due to temporary hydrophilization, and inability to sufficiently hydrophilize the pore surface.Currently, polyolefin porous No effective method for making membranes hydrophilic has been established.

本発明の目的は従来技術の問題点を解消しポリオレフィ
ン多孔質膜の機械的強度を低下させることなく細孔表面
のほぼ全面に亘って耐久性の優れた親水性を付与するこ
とを可能にしたポリオレフィン多孔質膜の親水化法を提
供することにある。
The purpose of the present invention is to solve the problems of the prior art, and to make it possible to impart highly durable hydrophilicity to almost the entire surface of the pores without reducing the mechanical strength of the polyolefin porous membrane. An object of the present invention is to provide a method for making a porous polyolefin membrane hydrophilic.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の要旨は、HLB値が2〜2oであり重合性不飽
和結合を有する単量体(以下界面活性七ツマ−と称す)
及び重合触媒をポリオレフィン多孔質膜の少くとも一部
の細孔表面上に保持させた状態で加熱型°合することを
特徴とするポリオレフィン多孔質膜の親水化法にある。
The gist of the present invention is to use a monomer having an HLB value of 2 to 2o and having a polymerizable unsaturated bond (hereinafter referred to as a surfactant monomer).
and a method for making a porous polyolefin membrane hydrophilic, characterized by carrying out heating-type polymerization while holding a polymerization catalyst on at least some of the pore surfaces of the porous polyolefin membrane.

本発明のポリオレフィン多孔質膜に用いられるポリオレ
フィンとしてはエチレン、プロピレン、4−メチ/l/
−1−ペンテン、5−メチル−1−ブテン等の群から選
ばれる重合体または共重合体あるいはフッ素化ポリオレ
フィン等を挙げることができる。また該多孔質膜として
は中空糸膜、平膜、管状膜等の任意の形態のものを用い
ることができ、用途に応じて種々の細孔径のものを使用
することができるが、好ましい例として細孔径が0.0
1〜5μm程度のものを挙げることができる。
Polyolefins used in the polyolefin porous membrane of the present invention include ethylene, propylene, 4-methy/l/
Examples include polymers or copolymers selected from the group such as -1-pentene and 5-methyl-1-butene, and fluorinated polyolefins. Further, the porous membrane can be in any form such as a hollow fiber membrane, a flat membrane, or a tubular membrane, and can have various pore diameters depending on the purpose. Pore diameter is 0.0
Examples include those having a diameter of about 1 to 5 μm.

木う6明の界面活性モノマーはその分子内に親水性部分
と疎水性部分を有しており、適度な親水性と疎水性を示
すことがx姿であり、イオン性や非イオン性は問題にさ
れない。また分子量については特に限定されないが多孔
質膜の細孔部分への浸透性を考11;(すると分子量は
10000以下程度であることが好1しく、5000以
下であることがより好ましい。
The surface-active monomer of Kokuu6mei has a hydrophilic part and a hydrophobic part in its molecule, and its x form shows appropriate hydrophilicity and hydrophobicity, and ionicity and nonionicity are problematic. Not be left behind. The molecular weight is not particularly limited, but the permeability into the pores of the porous membrane is taken into consideration (11).The molecular weight is preferably about 10,000 or less, more preferably 5,000 or less.

本発明の界面活性モノマーとしてはHLB値が2〜20
であって重合可能な不飽和結合を有する任意の単量体を
用いることができ、たとえば重合可t1目な不飽和結合
としてビニル結合、アリル結合等の2小結合あるいはジ
アセチレン等03重結合を有する単量体を挙げることが
でき、また親水性部分としてエチレンオキサイド、リン
酸エステル、スルホン酸基又はその塩、水酸基、カルボ
ン酸基又はその塩、4級アンモニウム基等を有し、疎水
性部分としてメチレン基、アルキ/L/ 7A 、フェ
ニル基、ビニル基、アリル基、アセチレン結合等の炭化
水素鎖、及びプロピレンオキサイド、ブテンオキサイド
等の03  以上のアルキレンオキサイド等を有する単
量体を挙げることができる。
The surface active monomer of the present invention has an HLB value of 2 to 20.
Any monomer having a polymerizable unsaturated bond can be used. For example, a double bond such as a vinyl bond or an allyl bond or a triple bond such as diacetylene is used as a polymerizable unsaturated bond. In addition, hydrophilic portions include ethylene oxide, phosphoric acid esters, sulfonic acid groups or salts thereof, hydroxyl groups, carboxylic acid groups or salts thereof, quaternary ammonium groups, etc., and hydrophobic portions. Examples include monomers having hydrocarbon chains such as methylene groups, alkyl/L/7A, phenyl groups, vinyl groups, allyl groups, acetylene bonds, and alkylene oxides of 03 or more such as propylene oxide and butene oxide. can.

その具体例としてたとえば以下の一般式(1)〜αυで
表わされる化合物や04式、(2)式の化合物寺を挙げ
ることができる。
Specific examples thereof include compounds represented by the following general formulas (1) to αυ, and compounds represented by formulas 04 and (2).

H2C=CR,C00(EO)バR2)m (EO)n
 COCR1スCR2(’)R2C=CRlCOO(R
2)t(EO)m (R2)nCOCR+ =CR2(
”)H2c=cR,coo(Eo)z(R+)m(EO
)nRs      (3)H2C=CR,C○○(”
e )m (Eo)t(R2)rry  R3(’)R
2C= CR+ COO(E O)1(R2)mCOC
IR+ =CR2(5)H2C冨CRICOO((CH
2)40 )kCOCRH=C%      (6)H
,C=CRIC00(EO)zPo(OH)OR4(8
)H,C=CR,CH,C0CH,CH(OH)CH2
)hS03M     (9))(、C=CHCH2/
  \、 H2C=CR,Coo(EO)lCOCR,=CH,(
ロ)CH3CH,C三c’c三CC0OHUCH3(C
H2)、、CTCC=C(CH2)13COONa  
     03R,、R,、R3、R4、R,、馬及び
Mは以下のように定義されるが、エチレンオキサイドや
プロピレンオキサイドの鎖長あるいはアルキル 等の選定の仕方によっては本発明の範囲外の化合物が含
まれるが、本発明においてはこれらの鎖長を適当に選択
してHLB値が2〜20の範囲にある化合物を用いる。
H2C=CR,C00(EO)barR2)m(EO)n
COCR1sCR2(')R2C=CRlCOO(R
2) t(EO)m (R2)nCOCR+ =CR2(
”)H2c=cR, coo(Eo)z(R+)m(EO
) nRs (3) H2C=CR, C○○(”
e )m (Eo)t(R2)rry R3(')R
2C=CR+COO(E O)1(R2)mCOC
IR+ = CR2 (5) H2C Tomi CRICOO ((CH
2)40)kCOCRH=C% (6)H
, C=CRIC00(EO)zPo(OH)OR4(8
)H, C=CR, CH, C0CH, CH(OH)CH2
) hS03M (9)) (, C=CHCH2/
\, H2C=CR,Coo(EO)lCOCR,=CH,(
b) CH3CH, C3c'c3CC0OHUCH3(C
H2),,CTCC=C(CH2)13COONa
03R, , R, , R3, R4, R, , Ma and M are defined as below, but depending on the chain length of ethylene oxide or propylene oxide or the way of selecting alkyl, etc., compounds may be outside the scope of the present invention. However, in the present invention, the chain length of these compounds is appropriately selected and a compound having an HLB value in the range of 2 to 20 is used.

t,m,n,m’、klh;整数 EO;エチレンオキサイド R,;水素またはメチル基 R,;プロピレンオキサイドまたはプロピレンオキサイ
ドとエチレンオキサイドと の化合物 R, 、R4、R, 、R6 :  炭素数4〜2 0
のアルキル基M;アルカリ金属 本発明における界面活性モノマーのHLBI直は2〜2
0の範囲であるが、5〜15の範囲のものが特に好適で
ある。尚、本発明におけるHLB値はディピース( D
avies)の方法(プログレス セカンド インター
ナショナル コングVス オブ サーフェス アクティ
ビイティ1、426、(1?57))によって求めた値
を採用した。
t, m, n, m', klh; integer EO; ethylene oxide R; hydrogen or methyl group R; propylene oxide or a compound of propylene oxide and ethylene oxide R, , R4, R, , R6: carbon number 4 ~20
Alkyl group M; alkali metal The HLBI value of the surface-active monomer in the present invention is 2 to 2.
0, but those in the range of 5 to 15 are particularly preferred. In addition, the HLB value in the present invention is D
The value determined by the method of AVIES (Progress Second International Cong Vs. Surface Activity 1, 426, (1?57)) was adopted.

本発明における重合触媒としてはラジオ)V重合開始剤
として知られている種々の過酸化物、アゾ化合物、レド
ックス開始剤等を用いることができる。その例として、
たとえばベンシイμパーオギサイド、ジクミルパーオギ
サイド、ラウロイロパーオキサイド、アゾビスイソブチ
ルニトリル の組み合せ、ペンゾイルバーオギサイドとジメチルアニ
リンとの組み合せ、ベンゾフェノン等を挙げることがで
きる。
As the polymerization catalyst in the present invention, various peroxides, azo compounds, redox initiators, etc. known as radio)V polymerization initiators can be used. As an example,
Examples include benzoyl peroxide, dicumyl peroxide, lauroyl peroxide, a combination of azobisisobutylnitrile, a combination of penzoyl peroxide and dimethylaniline, and benzophenone.

本発明においては界面活性モノマーと重合触媒をポリオ
レフィン多孔質膜の少なくとも一部の細孔表面上に保持
させるが、少なくとも一部重合触媒が保持されていても
いなくてもよい。
In the present invention, the surface-active monomer and the polymerization catalyst are retained on the surface of at least some of the pores of the polyolefin porous membrane, but the polymerization catalyst may or may not be retained at least in part.

本発明に訃いて界面活性モノマーと重合触媒とをポリオ
レフィン多孔質膜の細孔表面上に保持濾せる方法として
はイ」(々の方法を採用することができるが、界面活t
’tモノマーと重合触媒を含む溶液を用いる方法が簡便
である。即ち、界面活性モノマー及び重合触媒を溶媒と
しての有機溶剤または水に溶解させた溶液を調製し、ポ
リオレフィン多孔質膜をそのle液液中浸漬する方法、
あるいはポリオレフィン多孔質膜で膜モジュールを製作
した後この溶液を多孔質膜内に圧入する方法等を採用す
ることができる。
As a method of retaining and filtering the surface-active monomer and the polymerization catalyst on the pore surface of the polyolefin porous membrane according to the present invention, various methods can be adopted.
A method using a solution containing a monomer and a polymerization catalyst is simple. That is, a method of preparing a solution in which a surface-active monomer and a polymerization catalyst are dissolved in an organic solvent or water as a solvent, and immersing a polyolefin porous membrane in the le liquid;
Alternatively, a method can be adopted in which a membrane module is manufactured using a porous polyolefin membrane and then this solution is pressurized into the porous membrane.

溶媒としては、界面活性上ツマ−を溶解することが可能
な水又は有機溶剤が用いられるが、重合触媒をも溶解で
きる溶媒を用いることが望ましい。但し、溶媒として水
を用いる場合界面活性モノマーを予じめ水に溶解してお
けば本来水に溶解しない重合触媒であっても界面活性上
ツマ−の界面活性によって水中にミクロに分散し実質的
に溶解したように作用するので、水に溶解しない重合触
媒を用いる場合も溶媒として水を用いることができる。
As the solvent, water or an organic solvent capable of dissolving the surfactant is used, but it is desirable to use a solvent capable of dissolving the polymerization catalyst as well. However, when water is used as a solvent, if the surface-active monomer is dissolved in water in advance, even if the polymerization catalyst is not inherently soluble in water, it will be microdispersed in water due to the surface activity of the additive. Since the polymer acts as if dissolved in water, water can be used as a solvent even when using a polymerization catalyst that does not dissolve in water.

界面活性上ツマ−と前記重合触媒とを同時に溶解できる
有機溶剤としては、メタノール、エタノール、ブタノー
ル、プロパノ−p1クロロホルム、酢酸、トルエン、ベ
ンゼン、アセトン、メチルエチルケトン、メチルイソブ
チμケトン、テトラヒドロフラン、ジメチルアセトアミ
ド、ジメチルアセトアミド、ジメチルスルホキシド等を
挙げることができる。
Examples of organic solvents that can simultaneously dissolve the surfactant and the polymerization catalyst include methanol, ethanol, butanol, propano-p1 chloroform, acetic acid, toluene, benzene, acetone, methyl ethyl ketone, methyl isobutyμ ketone, tetrahydrofuran, dimethylacetamide, and dimethyl. Examples include acetamide and dimethyl sulfoxide.

溶液中における界面活性上ツマー1溶媒、重合触媒の組
成としては界面活性上ツマー100重量部に対して、溶
媒50〜10000重量部、重合触媒0.001〜10
0重量部程度の条件を採用することができるが、界面活
性上ツマー100重量部に対して溶媒500〜1000
0重量部、重合触媒(LO1〜30重量部程度の条件で
あればより好ましい。
The composition of the surfactant Zumer 1 solvent and polymerization catalyst in the solution is 100 parts by weight of the surfactant Zumer, 50 to 10,000 parts by weight of the solvent, and 0.001 to 10 parts of the polymerization catalyst.
Although conditions of approximately 0 parts by weight can be adopted, 500 to 1000 parts by weight of the solvent to 100 parts by weight of the surfactant
It is more preferable if the amount of the polymerization catalyst (LO) is about 0 parts by weight and about 1 to 30 parts by weight.

ポリオレフィン多孔質膜の表面は疎水性であるので特に
溶媒として水を用いる場合は界面活性上ツマ−を含む水
溶液が側孔内に浸透する際、界面活性上ツマ−が細孔表
面においてその親水性基を外側に向けて吸着されやすい
ので重合によってこの状態を固定すれば極めて効率的に
親水性を付与することができる。尚、溶媒として水を用
いることは作業性や作業環境等の点からも好ましいとい
える。
Since the surface of a polyolefin porous membrane is hydrophobic, especially when water is used as a solvent, when an aqueous solution containing a surface-active tumer permeates into the side pores, the surface-active tumer will increase its hydrophilicity on the pore surface. Since it is easy to be adsorbed with the groups facing outward, hydrophilicity can be imparted extremely efficiently if this state is fixed by polymerization. Note that it is preferable to use water as a solvent from the viewpoint of workability, working environment, etc.

まだ溶媒として有機溶剤を用いる場合は溶液が短時間で
ポリオレフィン多孔質膜の細孔内に浸透すること、及び
該細孔内からの溶媒除去が容易である等の利点がある。
When an organic solvent is used as the solvent, there are advantages such as the solution permeating into the pores of the polyolefin porous membrane in a short time and the solvent being easily removed from the pores.

尚前記の配向吸着を利用しないで界面活性上ツマ−が細
孔表面において無秩序に配向した状態で重合が行なわれ
た場合においても、形成された重合体層はポリオレフィ
ンと比較すると親水性の程度が大きいので、該重合体層
が保持されている細孔表面は、該重合体が保持されてい
ない細孔表面と比較すると、相対的に親水性を有してい
るのでポリオレフィン多孔質膜に対して親水性を付与す
ることができる。
Furthermore, even when polymerization is carried out in a state in which the surfactant polymers are randomly oriented on the pore surface without using the above-mentioned oriented adsorption, the formed polymer layer has a lower degree of hydrophilicity than polyolefin. Because of its large size, the pore surface on which the polymer layer is retained is relatively hydrophilic compared to the pore surface where the polymer is not retained, so Can impart hydrophilicity.

娠前記の溶液を用いてポリオレフィン多孔質膜に対して
&漬処理または圧入処理する際の浸漬時間または圧入時
間はおよそ0.5秒〜50分間程度であり、ポリオレフ
ィン多孔質膜に対する濡れ特性が良好な溶液を用いた場
合程短時間で実施することができる。
When applying the above solution to the polyolefin porous membrane by dipping or press-fitting, the dipping time or press-fitting time is about 0.5 seconds to 50 minutes, and the wetting properties for the polyolefin porous membrane are good. It can be carried out in a shorter time if a suitable solution is used.

このようにして界面活性上ツマ−と重合触媒とを少くと
も一部の細孔表面に保持されたポリオレフィン多孔質膜
は周囲の余分な液を除去され、更に必要に応じて細孔内
部の溶媒を除去された後加熱処理される。
In this way, the polyolefin porous membrane retains the surfactant and the polymerization catalyst on at least some of the pore surfaces, and excess liquid in the surroundings is removed, and if necessary, the solvent inside the pores is removed. is removed and then heat treated.

本発明においては上記界面活性モノマーと重合触媒を保
持せしめたポリオレフィン多孔質膜を加熱して重合を行
う。重合方法としては熱、光あるいは放射線をエネルギ
ーとして利用する方法があるが、熱エネルギーを利用す
る場合は多孔質膜の細孔部分まで均一温度に加熱するこ
とができるので界面活性上ツマ−が保持されている全て
の細孔表面上において均一に重合することができる点、
及び、重合温度を適度に設定することによって膜の構造
を変化させることなくかつ膜基質を劣化させることなく
重合することができる点に特徴がある。一方、光エネル
ギーを利用する場合は光の散乱等によって多孔質膜の1
f4Il孔部分まで光が十分に到達しないという問題が
あり、また放射線エネルギーを利用する場合は模基質の
劣化が著しいという問題がある。
In the present invention, polymerization is carried out by heating a polyolefin porous membrane holding the above-mentioned surface-active monomer and polymerization catalyst. Polymerization methods include methods that use heat, light, or radiation as energy, but when using thermal energy, it is possible to heat even the pores of the porous membrane to a uniform temperature, which increases the surface activity and maintains the surface activity. The point that polymerization can be uniformly carried out on all pore surfaces,
Another feature is that by appropriately setting the polymerization temperature, polymerization can be carried out without changing the structure of the membrane or deteriorating the membrane substrate. On the other hand, when using light energy, one part of the porous membrane is
There is a problem that light does not sufficiently reach the f4Il hole portion, and when radiation energy is used, there is a problem that the simulated substrate deteriorates significantly.

多孔質膜の細孔表面上に保持された界面活性上ツマ−は
この加熱処理によって該細孔表面に対してグラフト重合
し、あるいは該細孔表面上において重合するので、少く
とも一部の細孔表面はこれらの重合物によって被覆され
る。尚、加熱処理の際雰囲気内に酸素が存在すると重合
反応が著しく阻害されるので窒素雰囲気等の不活性ガス
雰囲気あるいは真空等の実質的に酸素が存在しない状態
にて加熱処理することが望ましい。
The surfactant polymer retained on the pore surface of the porous membrane is graft-polymerized to the pore surface or polymerized on the pore surface by this heat treatment, so that at least some of the pores are polymerized. The pore surfaces are coated with these polymers. The presence of oxygen in the atmosphere during the heat treatment will significantly inhibit the polymerization reaction, so it is desirable to conduct the heat treatment in an inert gas atmosphere such as a nitrogen atmosphere or in a substantially oxygen-free state such as a vacuum.

加熱処理における重合温度は前記重合触媒の分解温度以
上であり、また多孔質膜の膜構造を変化させることなく
かつ膜基質を損傷しない程度以下の温度とすることが望
ましく、通常は50〜100℃程度の温度を採用するこ
とができる。また加熱時間は重合触媒の種類と加P8温
度に依存するが通常は1分間〜5時間程度、より好まし
くは5分間〜60分間程度である。
The polymerization temperature in the heat treatment is preferably higher than the decomposition temperature of the polymerization catalyst and lower than the temperature that does not change the membrane structure of the porous membrane and damage the membrane substrate, and is usually 50 to 100°C. Temperatures of degrees can be adopted. The heating time depends on the type of polymerization catalyst and the P8 temperature, but is usually about 1 minute to 5 hours, more preferably about 5 minutes to 60 minutes.

加熱処理後は適当なrd謀によって多孔質膜の周囲に存
在する未反応上ツマ−や遊離したホモポリマー等の不要
成分を除去することが望ましい。多孔V膜の表面上に形
成されるポリマーが未架橋ポリマーの場合は未反応上ツ
マ−を溶解させるがポリマーを溶解させない溶媒を用い
ることが好ましい。また該ポリマーが架橋ポリマーの場
合は未反応上ツマ−を溶解できる溶媒を用いれば良い。
After the heat treatment, it is desirable to remove unnecessary components such as unreacted polymers and free homopolymers existing around the porous membrane by a suitable RD strategy. When the polymer formed on the surface of the porous V membrane is an uncrosslinked polymer, it is preferable to use a solvent that dissolves unreacted polymers but does not dissolve the polymer. In addition, when the polymer is a crosslinked polymer, a solvent capable of dissolving unreacted polymers may be used.

本発明のポリオレフィン多孔質膜の親水化法において、
細孔表面に保持される重合体の量は、ポリオレフィン多
孔質膜の凍量に対しておよそ0.5〜50重散慢程度で
あることが好ましく、より好ましくは1〜50重量%、
特に好ましくは2〜15市量チであυ、またポリオレフ
ィン多孔質膜の細孔表面積に対しておよそ(1,2〜5
0■/m”程度であることが好ましく、より好ましくは
0.5〜20 岬/m”、特に好ましくは1.0〜10
η/扉2である。
In the method for hydrophilizing a polyolefin porous membrane of the present invention,
The amount of the polymer retained on the pore surface is preferably approximately 0.5 to 50% by weight, more preferably 1 to 50% by weight, relative to the frozen amount of the porous polyolefin membrane.
Particularly preferably, the commercial weight is 2 to 15 υ, and approximately (1,2 to 5
It is preferably about 0 m/m", more preferably 0.5 to 20 cape/m", particularly preferably 1.0 to 10
η/door 2.

本発明においてはHLB値が2〜20の単量体が用いら
れるが、HLB値が20より大きい単量体を用いる場合
は、単量体の親水性の程度カ大キ<疎水性のポリオレフ
ィンとの親和性が不十分であるために該単量体をポリオ
レフィン多孔質膜の細孔表面上に保持させることが困難
であり、従って重合体層を該細孔表面上に保持させるこ
とも困難である。また仮に該細孔表面上に重合体層が形
成されたとしても該重合体層は水溶性であるので水中で
使用している間に溶解脱離する。またこのような水溶性
の重合体に架橋構造を導入して核細孔表面上に水不溶性
の架橋重合体層を形成できたとしても該架橋重合体層は
水中で膨潤するので多孔質膜の細孔径が小さくなるとい
う欠点が生じる。また、HLB値が2より小さい単量体
は疎水性の程度が大きいのでポリオレフィン多孔質j換
の表面に吸着されやすく重合体層をポリオレフィン多孔
質膜の細孔表面上に形成することは容易であるが、該重
合体層の親水性の程度が不十分であるので実質的に親水
性を付与することができない。
In the present invention, a monomer with an HLB value of 2 to 20 is used, but when using a monomer with an HLB value greater than 20, the degree of hydrophilicity of the monomer is greater than the hydrophobic polyolefin. Due to insufficient affinity, it is difficult to retain the monomer on the pore surface of the polyolefin porous membrane, and therefore it is also difficult to retain the polymer layer on the pore surface. be. Furthermore, even if a polymer layer is formed on the surface of the pores, the polymer layer is water-soluble and will be dissolved and desorbed during use in water. Furthermore, even if a crosslinked structure is introduced into such a water-soluble polymer to form a water-insoluble crosslinked polymer layer on the surface of the core pores, the crosslinked polymer layer will swell in water, causing problems in the porous membrane. The disadvantage is that the pore size becomes smaller. In addition, monomers with an HLB value of less than 2 have a high degree of hydrophobicity, so they are easily adsorbed on the surface of the porous polyolefin membrane, making it easy to form a polymer layer on the pore surface of the porous polyolefin membrane. However, since the degree of hydrophilicity of the polymer layer is insufficient, it is not possible to substantially impart hydrophilicity.

本発明のポリオレフィン多孔質膜の親水化法区 によれば親水性を有する重合体層が、ポリオレフィン多
孔質膜に対してプロット重合あるいはアンカー効果等に
よって強固に密着させることが可能であり、該重合体層
は使用中において脱離する可能性が極めて低く、通常の
界面活性剤吸着法に比較すると長期間に亘って親水性を
付与することができる。
According to the method for making a porous polyolefin membrane hydrophilic according to the present invention, it is possible to firmly adhere a hydrophilic polymer layer to a porous polyolefin membrane by plot polymerization or an anchor effect. The possibility of the combined layer being desorbed during use is extremely low, and hydrophilicity can be imparted for a longer period of time compared to conventional surfactant adsorption methods.

また重合方法として加熱重合法を採用しているのでポリ
オレフィン多孔質膜の機械的強度を低下させることなく
親水化することができる。
Furthermore, since a heating polymerization method is adopted as the polymerization method, it is possible to make the porous polyolefin membrane hydrophilic without reducing its mechanical strength.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

尚、実施例において透水圧、水透過率及びアルコール親
水化法での水透過率はそれぞれ有効膜面積が165 c
m2  の試験膜モジュールを用い次の方法によって測
定した。また重合体層の保持量と表面被覆率の測定及び
屈曲疲労試験は次の方法によって実施しだ。
In addition, in the examples, the water permeability, water permeability, and water permeability in the alcohol hydrophilization method were determined based on the effective membrane area of 165 c.
The measurement was carried out using a test membrane module of m2 according to the following method. In addition, measurements of the retained amount and surface coverage of the polymer layer and a bending fatigue test were carried out using the following method.

(1)透水圧;試験膜モジュールの一方(中空糸膜の場
合は中空糸の内側)から1分間毎にα1睦/傭2の割合
で水圧を上げながら25℃の水を供給し、透過水量が3
0−と50−になる時の水圧を測定する。続いて横軸に
水圧をまた縦軸に透過水量をプロットし、プロットした
2点を結ぶ直線が横軸と交わる点の圧力値を求めその値
を透水圧とする。
(1) Water permeation pressure: Water at 25°C is supplied from one side of the test membrane module (the inside of the hollow fiber in the case of a hollow fiber membrane) while increasing the water pressure at a rate of α1 / 2 every minute, and the amount of permeated water is increased. is 3
Measure the water pressure when it reaches 0- and 50-. Next, the water pressure is plotted on the horizontal axis and the amount of permeated water is plotted on the vertical axis, and the pressure value at the point where the straight line connecting the two plotted points intersects with the horizontal axis is determined, and that value is taken as the permeable pressure.

(2)水透過率;試験膜モジューpの一方(中空糸膜の
場合は中空糸の内側)から25℃の水を流し、膜間差圧
を50■Hgとした状態で透過水量を測定し、その値か
ら水透過率(t/m1・hr・−H,9)を求める。
(2) Water permeability: Water at 25°C was flowed through one side of the test membrane module P (inside the hollow fiber in the case of a hollow fiber membrane), and the amount of permeated water was measured with the intermembrane pressure differential set to 50 ■Hg. , the water permeability (t/m1·hr·−H, 9) is determined from that value.

(3)アpコー/V親水化法での水透過率;親水化処理
していない試験膜モジューμの一方(中空糸膜の場合社
中空糸膜の内側)からエタノ−潤させた後、水を100
 dl minの流量で15分間流し、細孔内部に存在
するエタノ−1しを水で置換する。続いて(2)に記載
した方法により水透過率を測定する。
(3) Water permeability in Apcor/V hydrophilization method: After moistening with ethanol from one side of the test membrane module μ (inside of the hollow fiber membrane in the case of a hollow fiber membrane) that has not been hydrophilized, 100 water
The water is allowed to flow for 15 minutes at a flow rate of dl min to replace the ethanol present inside the pores with water. Subsequently, water permeability is measured by the method described in (2).

(4)重合体層の保持量 ポリオレフィン多孔質膜の単位重量に対して保持されて
いる重合体層の重量%を測定する。
(4) Retention amount of polymer layer The weight % of the polymer layer retained with respect to the unit weight of the polyolefin porous membrane is measured.

(5)表面被覆率 JIS  K676B(1971)に記載の表面張力5
4 dyn / 3のぬれ試験用標準液(青色)中に多
孔質膜を1分間浸漬した後風乾し、該多孔質膜の横切断
面10カ所を光学顕微鏡によって観察して膜厚に対する
着色部分の厚みの割合(@を求めこれを表面被覆率とす
る。
(5) Surface coverage ratio Surface tension 5 described in JIS K676B (1971)
The porous membrane was immersed in a standard solution for wetting test (blue) of 4 dyn/3 for 1 minute, air-dried, and 10 cross-sections of the porous membrane were observed with an optical microscope to determine the coloring area relative to the membrane thickness. Determine the thickness ratio (@) and use this as the surface coverage.

(6)屈曲疲労試験 中空糸膜に対し50g/で11の荷重をかけた状態で屈
曲角度を90度として中空糸膜が破断するまでの屈曲回
数をitu定する。
(6) Bending fatigue test With a load of 50 g/11 applied to the hollow fiber membrane, the bending angle is set to 90 degrees, and the number of bends until the hollow fiber membrane breaks is determined.

実施例1 空孔率68チ、膜厚70μm1  内径270μm、ア
ルコ−)v親水化法による水透過率が1.5t/m2・
hr−IIIIHg  であるポリエチレン多孔質中空
糸膜を用いて有効膜面積163 cpn”  の膜モジ
ュールを製作し、該膜モジュールの中空糸膜の内側から
第1表の組成の溶液を7.5 yd / minで10
分間圧入した後、該膜モジュールを窒素中にとり出し余
分な液を除去し、史にそのままの状態で16時間風乾し
た。
Example 1 Porosity: 68 cm, film thickness: 70 μm, inner diameter: 270 μm, water permeability by alcohol)v hydrophilization method: 1.5 t/m2.
A membrane module with an effective membrane area of 163 cpn'' was fabricated using a polyethylene porous hollow fiber membrane of hr-IIIHg, and a solution having the composition shown in Table 1 was applied from the inside of the hollow fiber membrane of the membrane module at a rate of 7.5 yd/ 10 in min
After being press-fitted for a minute, the membrane module was taken out into nitrogen to remove excess liquid and air-dried for 16 hours in its original state.

次に該膜モジュールを窒素雰囲気中において60℃で3
0分間加熱処理し、ついでアセトンを用いて十分に洗浄
することによって親水化処理した多孔質膜を得た。
Next, the membrane module was placed in a nitrogen atmosphere at 60°C for 3 hours.
A hydrophilic porous membrane was obtained by heating for 0 minutes and then thoroughly washing with acetone.

続いて重合体層の保持量及び親水化前後の透水圧を測定
した。
Subsequently, the amount retained in the polymer layer and the water permeability pressure before and after hydrophilization were measured.

また親水化処理の耐久性評価を目的として親水化処理後
の試験膜モジュールを用いて膜面積13!当たシロ00
−の水を流した後、乾燥処理し再度透水圧を測定する操
作を5回繰り返した。この5サイク〜の水洗乾燥後の透
水圧は水洗乾燥前と全く同一であり、本実施例親水化処
理の耐久性が確認された。
In addition, for the purpose of evaluating the durability of the hydrophilic treatment, a test membrane module after the hydrophilic treatment was used, and the membrane area was 13! Hit Shiro 00
- After draining the water, drying treatment and measuring the water permeability pressure again were repeated 5 times. The water permeability pressure after 5 cycles of washing and drying was exactly the same as before washing and drying, confirming the durability of the hydrophilic treatment of this example.

これらの結果を第1表に示す。These results are shown in Table 1.

実施例2〜6 空孔率68チ、膜厚60μ瓜、内径270μm1アルコ
ール親水化法による水透過率が1.St/m2・hr・
鴫Hg であるポリエチレン多孔質中空糸膜を、それぞ
れ第1表の組成の溶液にそれぞれ3秒間ずつ浸漬した後
溶液中から窒素中に取り出し余分な液を除去した。次に
16時間風乾した後それぞれの多孔質膜を窒素雰囲気中
において60℃で50分間加熱処理することによって多
孔質膜の細孔表面上に重合体層を保持せしめ、ついでア
セトンにて十分に洗浄することによって親水化処理した
多孔質膜を得、重合体層の保持量及び透水圧を測定した
Examples 2 to 6 Porosity: 68 mm, membrane thickness: 60 μm, inner diameter: 270 μm, water permeability by alcohol hydrophilization method: 1. St/m2・hr・
A polyethylene porous hollow fiber membrane made of Hg was immersed in each solution having the composition shown in Table 1 for 3 seconds each, and then taken out from the solution into nitrogen to remove excess liquid. Next, after air-drying for 16 hours, each porous membrane was heat-treated at 60°C for 50 minutes in a nitrogen atmosphere to retain the polymer layer on the pore surface of the porous membrane, and then thoroughly washed with acetone. A hydrophilized porous membrane was obtained by this, and the retention amount and water permeability of the polymer layer were measured.

実施例2及び4については表面被覆率の測定及び屈曲疲
労試験及び耐久性の評価を実施した。
For Examples 2 and 4, surface coverage measurements, bending fatigue tests, and durability evaluations were performed.

親水化処理品の表面被覆率はそれぞれ90〜100%及
び95〜100チであり細孔表面のほぼ全面に重合体層
が形成されていることが確認された。また破断に至るま
での屈曲回数はおよそ45000回及び48000回で
あり、未処理のポリエチレン多孔質中空糸膜の5ooo
The surface coverage of the hydrophilized products was 90 to 100% and 95 to 100%, respectively, and it was confirmed that a polymer layer was formed on almost the entire surface of the pores. In addition, the number of bending cycles before breaking was approximately 45,000 and 48,000 times, and the untreated polyethylene porous hollow fiber membrane
.

回と比較して殆んど変化しておらず、多孔質膜の強度が
殆んど変化していないことが確認された。また実施例1
と同様にして5サイクルの水洗乾燥を実施し耐久性を評
価したところいずれの巻合も良好な結果が得られた。
It was confirmed that there was almost no change in the strength of the porous membrane compared to the previous test. Also, Example 1
When the durability was evaluated by carrying out 5 cycles of water washing and drying in the same manner as above, good results were obtained for all windings.

これらの結果を第1表に示す。These results are shown in Table 1.

実施例7 空孔率70%、膜厚42μm1  アルコール親水化法
による水透過率がA5A/m”・hr−mHgであるポ
リエチレン多孔質平膜を第1表の組成の溶液に5秒間浸
漬した後溶液中から窒素中に取り出し余分な液を除去し
、更に16時間風乾した。
Example 7 After immersing a polyethylene porous flat membrane with a porosity of 70% and a membrane thickness of 42 μm and a water permeability of A5A/m"·hr-mHg by alcohol hydrophilization method for 5 seconds in a solution having the composition shown in Table 1. The solution was taken out into nitrogen to remove excess liquid, and was further air-dried for 16 hours.

次に該多孔質膜を窒素雰囲気中において70℃で20分
間加熱処理し、次いでアセトンにて十分に洗浄すること
によって親水化処理した多孔質膜を得、続いて重合体層
の保持量及び透水圧を測定した。
Next, the porous membrane was heat-treated at 70°C for 20 minutes in a nitrogen atmosphere, and then thoroughly washed with acetone to obtain a hydrophilized porous membrane. Water pressure was measured.

これらの結果を第1表に示す。These results are shown in Table 1.

実施例8 空孔率45チ、膜厚22μm1内径200μm1アルコ
ール親水化法による水透過率がα8t/m2・hrφ■
Hg であるポリプロピレン多孔質中空糸膜を第1表の
組成の溶液中に5秒間浸漬した後、該膜モジュー/L/
を窒素中にとり出し余分な液を除去し更に16時間風乾
した。次に該膜モジュールを窒素雰囲気中において80
℃で20分間加熱処理し、ついでアセトンにて十分に洗
浄することによって親水化処理した多孔質膜を得た。
Example 8 Porosity: 45 cm, film thickness: 22 μm, inner diameter: 200 μm, water permeability by alcohol hydrophilization method: α8t/m2・hrφ■
After immersing a polypropylene porous hollow fiber membrane of Hg in a solution having the composition shown in Table 1 for 5 seconds, the membrane module /L/
The sample was taken out in nitrogen, excess liquid was removed, and the sample was further air-dried for 16 hours. Next, the membrane module was placed in a nitrogen atmosphere for 80 minutes.
A hydrophilic porous membrane was obtained by heating at .degree. C. for 20 minutes and then thoroughly washing with acetone.

続いて実施例2と同様にして重合体層の保持量及び親水
化前後と5サイクル水洗乾燥後の透水圧を測定した。
Subsequently, in the same manner as in Example 2, the amount retained in the polymer layer and the water permeability pressure before and after hydrophilization and after 5 cycles of water washing and drying were measured.

これらの結果を第1表に示す。These results are shown in Table 1.

比較例1及び2 第1表に示した組成の溶液を用いその他の条件は実施例
2と全く同一にしてそれぞれ親水化処理し、性能を評価
し、第1表の結果を得た。
Comparative Examples 1 and 2 Using solutions having the compositions shown in Table 1 and using the same conditions as in Example 2, each was subjected to hydrophilic treatment, and the performance was evaluated, and the results shown in Table 1 were obtained.

透水圧はそれぞれe、、 3に97cm”及び1α7 
kg/cm”るとかなり高い値であり十分な親水性が付
与できていないことがわかる。
The permeability pressure is e, 3, 97cm” and 1α7, respectively.
kg/cm'' is a fairly high value, indicating that sufficient hydrophilicity cannot be imparted.

比較例5 第1表に示した組成の溶液を用いその他の条件は実施例
8と全く同一にして親水化処理し、性能を評価し、第2
表の結果を得た。透水圧は11、5 ′Kg/譚2であ
り、これは実施例8の0.5ゆ/cm2と比較するとか
なり高い値であり、十分な親水性が付与できていないこ
とがわかる。
Comparative Example 5 A solution having the composition shown in Table 1 was subjected to hydrophilic treatment under the same conditions as in Example 8, and the performance was evaluated.
Obtained the results in the table. The water permeability pressure was 11.5'Kg/tan2, which is a considerably higher value compared to 0.5Y/cm2 in Example 8, indicating that sufficient hydrophilicity was not imparted.

比較例4及び5 実施例2と同一のポリエチレン多孔質中空糸膜をそれぞ
れ第1表の組成の(e!Dに5秒間ずつ浸漬した後溶液
中から取り出し余分な液を除去し更に16時間風乾した
。次にそれぞれの多孔質膜を窒素雰囲気中において2 
kWの高圧水銀灯(入力80W/CM+のタイプ)を2
0−の距離から3秒間照射することによって界面活性上
ツマ−を重合させ、続いてアセトンを用いテ十分に洗浄
し親水化処理した多孔質膜を得た。
Comparative Examples 4 and 5 The same polyethylene porous hollow fiber membrane as in Example 2 was immersed in (e!D) having the composition shown in Table 1 for 5 seconds each, then taken out from the solution, excess liquid removed, and air-dried for 16 hours. Next, each porous membrane was placed in a nitrogen atmosphere for 2 hours.
2 kW high-pressure mercury lamps (input 80W/CM+ type)
The surface active material was polymerized by irradiation for 3 seconds from a distance of zero, and then thoroughly washed with acetone to obtain a hydrophilic porous membrane.

次に透水圧を測定したところ第1表の如く#1ぼ良好な
結果が得られた。一方、屈曲疲労試験による破断に至る
までの屈曲回数はそれぞれおよそ500回及び500回
であった。これは本発明の熱重合量の値と比較すると著
しく小さく、光重合法では多孔質膜の強度低下が著しい
ことがわかる。
Next, the water permeability pressure was measured, and as shown in Table 1, results as good as #1 were obtained. On the other hand, the number of bending cycles until breakage in the bending fatigue test was approximately 500 and 500, respectively. This is significantly smaller than the value of the thermal polymerization amount of the present invention, and it can be seen that the strength of the porous membrane is significantly reduced by the photopolymerization method.

比較例6 実施例2において加熱重合させる代わりに電子線照射装
置を用い加速電圧200 kv、電子流a1mA、温度
80℃以下の条件にて該多孔質膜に対して電子線を20
 M rad照射することによって重合させ、その他の
条件は実施例2と同一にして実施し親水化処理した多孔
質膜を得、重合体層の保持量及び透水圧を測定したとこ
ろ第1表の如くほぼ良好な結果が得られた。一方、屈曲
疲労試験による破断に至るまでの屈曲回数はおよそ10
0回であった。
Comparative Example 6 Instead of heating and polymerizing in Example 2, an electron beam irradiation device was used to irradiate the porous membrane with an electron beam at an acceleration voltage of 200 kV, an electron current of 1 mA, and a temperature of 80° C. or less.
Polymerization was carried out by M rad irradiation, and the other conditions were the same as in Example 2 to obtain a hydrophilized porous membrane, and the retained amount and water permeability of the polymer layer were measured, as shown in Table 1. Almost good results were obtained. On the other hand, the number of bending cycles until rupture in a bending fatigue test is approximately 10.
It was 0 times.

本発明の熱重合法と比較すると放射線重合法では多孔質
膜の強度低下が極めて著しいことがわかる。
It can be seen that when compared with the thermal polymerization method of the present invention, the strength of the porous membrane is extremely reduced in the radiation polymerization method.

比較例7 実施例2と同一のポリエチレン多孔質中空糸膜を第1表
の組成の溶液に1分間浸漬した後、空気中にとり出し室
温で16時間風乾した後膜モジュールを製作した。膜モ
ジュールにて透水圧を測定したところl 2 kg7m
”という値が得られ界面活性上ツマー付着法により親水
性を付与できたが、実施例2と同様にして水洗・乾燥テ
ストを1回実施したところ透水圧はF!−Okg/m2
に上昇した。付着法では一時的な親水性が付与されるだ
けであることがわかる。
Comparative Example 7 The same polyethylene porous hollow fiber membrane as in Example 2 was immersed in a solution having the composition shown in Table 1 for 1 minute, then taken out into the air and air-dried at room temperature for 16 hours to produce a membrane module. The water permeability pressure measured in the membrane module was 1 2 kg 7 m.
” was obtained, and hydrophilicity could be imparted by the Zummer adhesion method on surface activity. However, when a water washing and drying test was conducted once in the same manner as in Example 2, the water permeability pressure was F!-Okg/m2.
rose to It can be seen that the attachment method only imparts temporary hydrophilicity.

(注1 ) H2C−CI(Coo(KO)1□(PO
)、、(EO)1.CH。
(Note 1) H2C-CI(Coo(KO)1□(PO
),, (EO)1. CH.

(注2)H,CツCHCOO(KO)14COCH−C
H。
(Note 2) H, C TSCH COO (KO) 14 COCH-C
H.

(注5 ) H,C−CHCOO((C)!、)40 
)s C0CI(−CH。
(Note 5) H,C-CHCOO((C)!,)40
)s C0CI(-CH.

(注4 ) H,C−CHCOO(PO)so (EO
)、、C0CH−CH。
(Note 4) H,C-CHCOO(PO)so (EO
),,C0CH-CH.

(注5 ) H,C−CHCOO(PO)5゜(EO)
s C0CH−CH。
(Note 5) H,C-CHCOO(PO)5゜(EO)
sC0CH-CH.

(注6 ) H2C=CHC00(EO)12 (PO
)2o (EO)12C0CH−CH2(注8 ) H
2C−C1(C00(PO)、、C0CH−CH。
(Note 6) H2C=CHC00(EO)12 (PO
)2o (EO)12C0CH-CH2 (Note 8) H
2C-C1(C00(PO),,C0CH-CH.

(注9)(注1)〜(注8)において(EO)及び(p
o)はそれぞれエチレンオキサイド及びプロピレンオキ
サイドを表わす。
(Note 9) In (Note 1) to (Note 8), (EO) and (p
o) represent ethylene oxide and propylene oxide, respectively.

〔発明の効果〕〔Effect of the invention〕

実施例の結果から明らかなように、本発明の方法を採用
することによってポリオレフィン多孔質膜の強度を低下
させることなく、耐久性の優れた親水化処理を行なうこ
とができる。
As is clear from the results of the Examples, by employing the method of the present invention, it is possible to perform hydrophilic treatment with excellent durability without reducing the strength of the polyolefin porous membrane.

Claims (1)

【特許請求の範囲】[Claims] HLB値が2〜20であり重合性不飽和結合を有する単
量体及び重合触媒をポリオレフィン多孔質膜の少なくと
も一部の細孔表面上に保持させた状態で加熱重合するこ
とを特徴とするポリオレフィン多孔質膜の親水化法。
A polyolefin having an HLB value of 2 to 20 and characterized in that it is thermally polymerized with a monomer having a polymerizable unsaturated bond and a polymerization catalyst retained on the surface of at least some pores of a porous polyolefin membrane. Hydrophilization method for porous membranes.
JP60253561A 1985-11-11 1985-11-12 Method for making porous polyolefin membrane hydrophilic Pending JPS62114610A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60253561A JPS62114610A (en) 1985-11-12 1985-11-12 Method for making porous polyolefin membrane hydrophilic
US06/928,163 US4678813A (en) 1985-11-11 1986-11-07 Hydrophilized porous polyolefin membrane and production process thereof
EP86115619A EP0222365A3 (en) 1985-11-11 1986-11-11 Hydrophilized porous polyolefin membrane and production process thereof
US07/030,745 US4717479A (en) 1985-11-11 1987-03-27 Hydrophilized porous polyolefin membrane and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253561A JPS62114610A (en) 1985-11-12 1985-11-12 Method for making porous polyolefin membrane hydrophilic

Publications (1)

Publication Number Publication Date
JPS62114610A true JPS62114610A (en) 1987-05-26

Family

ID=17253077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253561A Pending JPS62114610A (en) 1985-11-11 1985-11-12 Method for making porous polyolefin membrane hydrophilic

Country Status (1)

Country Link
JP (1) JPS62114610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004198A1 (en) * 1987-11-04 1989-05-18 Mitsubishi Rayon Co., Ltd. Porous membrane and process for its production
JPH0286822A (en) * 1988-05-02 1990-03-27 Terumo Corp Hydrophilic porous membrane, production thereof and liquid filter using the same membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004198A1 (en) * 1987-11-04 1989-05-18 Mitsubishi Rayon Co., Ltd. Porous membrane and process for its production
US4961853A (en) * 1987-11-04 1990-10-09 Mitsubishi Rayon Co., Ltd. Porous membranes and production processes thereof
JPH0286822A (en) * 1988-05-02 1990-03-27 Terumo Corp Hydrophilic porous membrane, production thereof and liquid filter using the same membrane

Similar Documents

Publication Publication Date Title
US4678813A (en) Hydrophilized porous polyolefin membrane and production process thereof
US5232642A (en) Process of making porous polypropylene hollow fiber membrane of large pore diameter
US5049275A (en) Modified microporous structures
JP3084292B2 (en) Porous composite membrane and method
EP0513390B1 (en) Porous hollow fiber membrane of polyethylene and production thereof
CA1104008A (en) Hydrophilic porous structures and process for production thereof
US4695592A (en) Hydrophilized porous membrane and production process thereof
EP0186758B2 (en) Porous membrane having hydrophilic surface and process of its manufacture
AU633449B2 (en) Process for surface modifying a support membrane
JP5773566B2 (en) Permanently hydrophilic porous film and method for forming the same
JP2019507011A5 (en)
WO2009113541A1 (en) Composite separation membrane
US5814372A (en) Process for forming porous composite membrane
US4876289A (en) Hydrophilized porous membrane and production process thereof
JPS62114610A (en) Method for making porous polyolefin membrane hydrophilic
JPS63190602A (en) Hydrophilic porous membrane and its manufacture
US5330830A (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JPH0768141A (en) Hollow fiber membrane and humidifying method using the same membrane
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JPS62112638A (en) Porous membrane
JP3040129B2 (en) Composite membrane
JPS62163703A (en) Hydrophilic porous membrane and its production
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JP2885878B2 (en) Separation membrane
JP2004154613A (en) Manufacturing method of functional porous membrane