JPS6210940B2 - - Google Patents

Info

Publication number
JPS6210940B2
JPS6210940B2 JP54019089A JP1908979A JPS6210940B2 JP S6210940 B2 JPS6210940 B2 JP S6210940B2 JP 54019089 A JP54019089 A JP 54019089A JP 1908979 A JP1908979 A JP 1908979A JP S6210940 B2 JPS6210940 B2 JP S6210940B2
Authority
JP
Japan
Prior art keywords
glass
composition
powder
cao
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54019089A
Other languages
Japanese (ja)
Other versions
JPS55113641A (en
Inventor
Yoshinori Kokubu
Jiro Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1908979A priority Critical patent/JPS55113641A/en
Publication of JPS55113641A publication Critical patent/JPS55113641A/en
Publication of JPS6210940B2 publication Critical patent/JPS6210940B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Inorganic Insulating Materials (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱処理により結晶化する絶縁性ガラス
及びこのガラス粉末に耐火物フイラーを混合した
組成物であつて、主として、厚膜集積回路のクロ
スオーバー用の電気絶縁層の形成のために好適に
使用される組成物に関する。 アルミナ等の基板上に、抵抗体、および導体を
印刷により形成し厚膜回路等の種々の電気回路を
製作する場合、電気絶縁層又はクロスオーバーと
してガラス組成物が用いられている。これらガラ
ス層は、電気的絶縁層であると同時に導体および
抵抗体を周囲の環境から保護するためにも有効で
あり、いわゆるカバーコートの目的で使用される
場合も多い。 標準的な厚膜集積回路の製作に当つては、主と
してアルミナからなるセラミツク基板上に、導体
ペーストを印刷し焼成した後クロスオーバー用誘
電体ガラスペーストを印刷焼成し、次いで抵抗体
用ペーストを印刷し焼成した後、抵抗体あるいは
導体の保護のためガラス被覆膜を印刷し焼成す
る。多層配線化する場合には、前記の工程が更に
複数回繰り返えされる。 従来、2回以上の高温焼成を必要される回路の
製作にクロスオーバーとして使用される誘電体ガ
ラスとしては、高温安定性を得るため、850〜950
℃の焼成により結晶化する結晶性ガラスのタイプ
のものが用いられている。 (例えば、特公昭46−42917号:51−6168号;51−
10844号;52−34645号参照)。 しかしながら、省エネルギーの観点より及び焼
成時の回路の電気的特性の劣化の抑制のため、よ
り低温度での焼成により電気的諸特性特に電気抵
抗、誘電率、誘電損失が優れているクロスオーバ
ー層を形成しうるガラス粉末組成物の開発が要請
されている。 本発明者は、SiO2−Al2O3−CaO−ZnO−TiO2
−B2O3系の特定組成範囲のガラスが前記要請を
満足することを見い出した。 本発明は、 重量%表示で、 SiO2 20〜45% Al2O3 5〜25 CaO 5〜25 ZnO 15.5〜30 TiO2 5〜20 B2O3 1〜8 BaO 0〜10 SrO 0〜10 Sb2O3 0〜3 SnO2 0〜3 Bi2O3 0〜3 の組成を有し、850℃を越えない温度で熱処理す
ることにより結晶化する絶縁性ガラス組成物に関
する。 更に、本発明のより好ましい態様においては、
前記組成のガラスの粉末に、アルミナ、ジルコ
ン、コージエライト、ジルコニア及びベリリヤか
らなる群より選ばれた少くても1種の耐火物フイ
ラー粉末を重量比で15%以下混合してなるフイラ
ーを含む絶縁性ガラス組成物が提供される。 ガラスの組成限定の理由を説明する。 SiO2は、ガラスのネツトワークフオーマーで
あり、本発明のガラスを焼成熱処理し結晶化した
とき析出するアノルサイト(CaO、
Al2O32SiO2)結晶を構成する成分である。SiO2
20%ではガラスの軟化点が低くなり過ぎ、熱処理
時結晶化する前にガラスが軟化し流動し過ぎる。
SiO2>45%では、ガラス化が困難であると供
に、結晶化のための熱処理温度が900℃を越える
高温が必要となる。 Al2O3も又析出するアノルサイト結晶を構成す
る必須成分である。Al2O3<5%では、アノルサ
イトの析出が難しい。Al2O3>25%では、ガラス
が熔解時失透してしまう。 CaOも又アノルサイトを構成する必須成分であ
るCaO<5%では、アノルサイトの析出が難し
い。CaO>25℃では、ガラスが熔解時失透してし
まう。また、ガラス転移点、結晶析出温度が高く
なり過ぎ、850℃以下の熱処理でガラスの結晶化
が困難となる。 ZnOはガラス化のためのフラツクスとして働
く。ZnO<15.5%では、ガラスの転移点が高くな
り過ぎ、またガラス化が困難となる。 ZnO>30%ではガラスの軟化点が低くなり過
ぎ、熱処理時結晶化する前に軟化流動を起し、フ
アインパターンの絶縁被覆層の焼付形成が困難と
なる。 TiO2は、結晶化をコントロールするために含
有される。TiO2<5%より少ないと結晶化のた
めの熱処理温度が高くなり過ぎる。TiO2>20%
では、結晶化のコントロールの作用が弱くなり好
ましくない。 B2O3は、ガラスの熔解時のフラツクスとして
用いられる。B2O3<1%では、ガラスの熔解性
が悪くなる。B2O3>8%では、ガラスの軟化点
が低くなり過ぎ、熱処理時、結晶前に軟化流動す
る。 以上必須成分のより好ましい組成範囲は次の通
り、 SiO2 25〜45% Al2O3 10〜20 CaO 10〜20 ZnO 20〜27 TiO2 8〜15 B2O3 2〜5 BaO及びSrOは、いずれも必須成分ではない
が、10%まで好ましくは8%まで導入することに
よりガラスの熔解性を向上させうる。しかし、
BaO>10%では、ガラスの熱膨腸係数が高くなり
過ぎる。一方、SrO>10%では、結晶化のための
熱処理温度が高くなり過ぎる。 Sb2O3、SnO2及びBi2O3は、ガラスの熔解性の
向上、あるいはガラスの耐水性の向上のため3%
以下、好ましくは2%以下含有されうる。 以上の如き組成のガラスの調製に当つては、常
法に従い、目標組成になるように各成分の原料を
秤量調合してバツチを調製し、バツチを1400〜
1500℃で1〜3時間加熱しバツチを熔解しガラス
化する。熔解ガラスを水砕し又はフレーク状に成
形し、ガラス片をボールミル等で微粉砕し、平均
粒径1〜5μmのガラス粉末とし、厚膜回路塗布
用に供する。 本発明のより好ましい態様においては、前記の
ガラス粉末に15%までの耐火物フイラー粉末を置
換して混合することにより、ガラス粉末と耐火物
フイラーとからなる組成物の熱処理時の結晶化の
促進、結晶化後の残留ガラスによる流動性の抑制
あるいは厚膜回路の導体、抵抗体とクロスオーバ
ー層との接触界面における反応性の減少等の効果
を与えることができる。フイラーとしては、アル
ミナ(α−アルミナ)、ジルコン、コージエライ
ト、ジルコニア特に安定化ジルコニア、及びベリ
リアが用いられる。 15%を越えるフイラーの含有は、厚膜回路のア
ルミナ基板との接着性を低下させるので好ましく
ない。フイラーのうち、アルミナあるいはベリリ
アは、熱伝導率の高い物質であり、これらをフイ
ラーとして用いると、クロスオーバー層の高熱伝
導性が期待できる。特に、厚膜回路の高集積化に
伴ない、必然的に熱放散性の大きいクロスオーバ
ーガラス絶縁層が要求され、その意味においてア
ルミナ又はベリリアの使用が好ましい。 前記フイラーをガラス粉末に混合するに当つて
は、ガラスの粉砕時にボールミル等の粉砕機中に
混入するのが好ましい。 尚、ガラスの粉砕及び/又はフイラーの混合に
当つては、乾式、湿式のいずれでもよいが、厚膜
回路へのスクリーン印刷に用いる場合には、ガラ
ス及びフイラーの粒子のトツプサイズは小さい方
が好ましく、また平均粒径も1〜2μmとするの
が好ましい。このような微粉砕された粉末を得る
ためには湿式の粉砕機の使用が望ましい。 本発明の組成物を使用するに当つては、被接着
物例えば厚膜回路に仮止めするため、スラリー及
至ペースト状にして塗布又は印刷に供する。バイ
ンダーとしては周知のビヒクル剤、例えばエチル
セルロースとαテルピネオール、ニトロセルロー
ズと酢酸イソアミル、ブチルカルビトールアセテ
ートあるいは純水が用いられ、特に限定されな
い。 粉末組成物ペースト又はスラリーを塗布又は印
刷した後、150℃程度で15分間以内の熱処理でビ
ヒクルを蒸発させた後、10〜50℃/minの速度で
焼成温度まで昇温する。焼成熱処理に当つては、
800〜950℃好ましくは800〜850℃に5〜15分間保
持することにより、ガラス粉末は軟化流動して緻
密な膜を形成した後結晶化する。 本発明に係る組成物は、厚膜回路のクロスオー
バー絶縁層の形成に好適に使用され、導体ペース
トと交互に何層にも亘つて印刷し、上部及び下部
の導体層と同時焼成が可能であり、同時焼成によ
つても導体の剥離、また上・下導体層間の電気的
短絡等の問題はない。尚、この組成物によつて多
層のクロスオーバー層の形成が可能である理由
は、焼成後の絶縁膜の表面の平滑度が優れている
からである。 また、焼成後の熱膨脹係数は、55〜70×10-7
-1(50〜350℃)であり、アルミナ質の回路基板
に適当である。電気的特性に関して、誘電率及び
誘電損失は共に小さい。
The present invention relates to an insulating glass that is crystallized by heat treatment and a composition obtained by mixing this glass powder with a refractory filler, which is preferably used mainly for forming an electrical insulating layer for a crossover of a thick film integrated circuit. The present invention relates to a composition in which: When producing various electrical circuits such as thick film circuits by printing resistors and conductors on substrates such as alumina, glass compositions are used as electrical insulating layers or crossovers. These glass layers are effective not only as electrical insulating layers but also for protecting conductors and resistors from the surrounding environment, and are often used for the purpose of so-called cover coats. In manufacturing standard thick film integrated circuits, a conductor paste is printed and fired on a ceramic substrate mainly made of alumina, then a dielectric glass paste for crossover is printed and fired, and then a resistor paste is printed. After firing, a glass coating film is printed and fired to protect the resistor or conductor. In the case of multilayer wiring, the above steps are repeated multiple times. Conventionally, dielectric glasses used as crossovers in the production of circuits that require two or more high-temperature firings have been used to achieve high-temperature stability.
A type of crystalline glass that is crystallized by firing at ℃ is used. (For example, Special Publication No. 46-42917: 51-6168; 51-
No. 10844; see No. 52-34645). However, from the viewpoint of energy saving and to suppress deterioration of the electrical characteristics of the circuit during firing, a crossover layer with excellent electrical properties, especially electrical resistance, dielectric constant, and dielectric loss, is created by firing at a lower temperature. There is a need to develop glass powder compositions that can be formed. The present inventor has discovered that SiO2 - Al2O3 - CaO-ZnO- TiO2
It has been found that -B 2 O 3 -based glass having a specific composition range satisfies the above requirements. In the present invention, in weight%, SiO 2 20-45% Al 2 O 3 5-25 CaO 5-25 ZnO 15.5-30 TiO 2 5-20 B 2 O 3 1-8 BaO 0-10 SrO 0-10 The present invention relates to an insulating glass composition having a composition of Sb 2 O 3 0-3 SnO 2 0-3 Bi 2 O 3 0-3 and crystallized by heat treatment at a temperature not exceeding 850°C. Furthermore, in a more preferred embodiment of the present invention,
An insulating material containing a filler made by mixing glass powder having the above composition with at least 15% by weight of at least one refractory filler powder selected from the group consisting of alumina, zircon, cordierite, zirconia, and beryllia. A glass composition is provided. The reason for limiting the composition of glass will be explained. SiO 2 is a network former of glass, and is an anorthite (CaO,
Al 2 O 3 2SiO 2 ) It is a component that makes up the crystal. SiO 2
At 20%, the softening point of the glass becomes too low, causing the glass to soften and flow too much before crystallizing during heat treatment.
When SiO 2 >45%, vitrification is difficult and a high heat treatment temperature exceeding 900° C. is required for crystallization. Al 2 O 3 is also an essential component constituting the precipitated anorthite crystals. When Al 2 O 3 <5%, it is difficult to precipitate anorsite. If Al 2 O 3 >25%, the glass will devitrify when melted. CaO is also an essential component constituting anorsite, and when CaO<5%, it is difficult to precipitate anorsite. If CaO>25℃, the glass will devitrify when melted. In addition, the glass transition point and crystal precipitation temperature become too high, making it difficult to crystallize the glass by heat treatment at 850°C or lower. ZnO acts as a flux for vitrification. When ZnO<15.5%, the transition point of the glass becomes too high and vitrification becomes difficult. When ZnO>30%, the softening point of the glass becomes too low, causing softening flow before crystallization during heat treatment, making it difficult to bake and form an insulating coating layer of a fine pattern. TiO2 is included to control crystallization. When TiO 2 is less than 5%, the heat treatment temperature for crystallization becomes too high. TiO2 >20%
In this case, the effect of crystallization control becomes weaker, which is not preferable. B 2 O 3 is used as a flux when melting glass. When B 2 O 3 <1%, the solubility of the glass deteriorates. When B 2 O 3 >8%, the softening point of the glass becomes too low, and the glass softens and flows before crystallization during heat treatment. More preferable composition ranges of the above essential components are as follows: SiO 2 25-45% Al 2 O 3 10-20 CaO 10-20 ZnO 20-27 TiO 2 8-15 B 2 O 3 2-5 BaO and SrO are Although none of these are essential components, the solubility of glass can be improved by introducing up to 10%, preferably up to 8%. but,
When BaO>10%, the thermal expansion coefficient of the glass becomes too high. On the other hand, when SrO>10%, the heat treatment temperature for crystallization becomes too high. Sb 2 O 3 , SnO 2 and Bi 2 O 3 are added at 3% to improve the solubility of glass or the water resistance of glass.
The content is preferably 2% or less. In preparing the glass having the above composition, according to the conventional method, the raw materials for each component are weighed and mixed to obtain the target composition, and batches are prepared.
Heat at 1500°C for 1 to 3 hours to melt and vitrify the batch. The molten glass is pulverized or formed into flakes, and the glass pieces are pulverized using a ball mill or the like to obtain glass powder with an average particle size of 1 to 5 μm, which is used for thick film circuit coating. In a more preferred embodiment of the invention, the glass powder is mixed with up to 15% of a refractory filler powder to promote crystallization during heat treatment of the composition comprising the glass powder and the refractory filler. This can provide effects such as suppressing fluidity due to residual glass after crystallization or reducing reactivity at the contact interface between a conductor or resistor of a thick film circuit and a crossover layer. As fillers, alumina (α-alumina), zircon, cordierite, zirconia, especially stabilized zirconia, and beryllia are used. A filler content exceeding 15% is undesirable because it reduces the adhesion of the thick film circuit to the alumina substrate. Among fillers, alumina and beryllia are substances with high thermal conductivity, and when these are used as fillers, high thermal conductivity of the crossover layer can be expected. In particular, as thick film circuits become more highly integrated, a cross-over glass insulating layer with high heat dissipation properties is inevitably required, and in this sense it is preferable to use alumina or beryllia. When mixing the filler with glass powder, it is preferable to mix it into a pulverizer such as a ball mill when pulverizing the glass. Incidentally, when crushing the glass and/or mixing the filler, either a dry method or a wet method may be used, but when used for screen printing on thick film circuits, the top size of the glass and filler particles should be smaller. Preferably, the average particle size is also preferably 1 to 2 μm. In order to obtain such a finely ground powder, it is desirable to use a wet grinder. When using the composition of the present invention, it is made into a slurry or paste form and subjected to coating or printing in order to temporarily bond it to an object to be adhered, such as a thick film circuit. As the binder, well-known vehicle agents such as ethyl cellulose and α-terpineol, nitrocellulose and isoamyl acetate, butyl carbitol acetate, or pure water can be used, but are not particularly limited. After applying or printing the powder composition paste or slurry, the vehicle is evaporated by heat treatment at about 150° C. for 15 minutes or less, and then the temperature is raised to the firing temperature at a rate of 10 to 50° C./min. For firing heat treatment,
By holding the glass powder at 800 to 950°C, preferably 800 to 850°C for 5 to 15 minutes, the glass powder softens and flows to form a dense film and then crystallizes. The composition according to the present invention is suitably used for forming a crossover insulating layer of a thick film circuit, and can be printed in multiple layers alternately with a conductor paste and fired simultaneously with the upper and lower conductor layers. Even with simultaneous firing, there are no problems such as peeling of the conductor or electrical short circuit between the upper and lower conductor layers. The reason why it is possible to form a multilayer crossover layer with this composition is because the surface smoothness of the insulating film after firing is excellent. In addition, the thermal expansion coefficient after firing is 55 to 70 × 10 -7 °C
-1 (50~350℃), suitable for alumina circuit boards. Regarding electrical properties, both dielectric constant and dielectric loss are small.

【表】 表−1上段に示す組成のガラスを熔解し、冷却
後、平均粒径2μmに微粉砕した。その際サンプ
ル3、4、5については、表中段に示す量のアル
ミナをガラスの微粉砕時に混合した。この場合、
サンプル組成物中ガラス粉末の量はフイラーの残
量である。 DTA特性 各サンプルの粉末1.0gを示差熱分析機のホル
ダーに入れ、室温より10℃/minの昇温速度で温
度を上昇させ熱分析曲線を描き、その曲線に現わ
れる最初の吸熱開始温度を、転移点(℃)として
表に示した。ガラスの結晶化を示す2つのピーク
を第1及び第2結晶化ヒーク温度として表に示し
た。 焼成物の諸特性 (1) 熱膨脹係数 各粉末試験を棒状に圧縮成形した後、850℃
で10分間加熱したものの熱膨脹係数(50〜350
℃平均)を測定し、表に示した。 (2) 誘電率(ε)、誘電損失(tanδ) 各試料の焼成品(850℃、10分間)の25℃、
1MHZにおける誘電率及び誘電損失を測定し、
表に示した。誘電率は9以下、誘電損失は2×
10-3以下であることが望ましい。 (3) 体積抵抗率ρ(ohm.cm) 各試料の焼成品(850℃、10分間)の150℃に
おける体積抵抗率を測定し、表に示した。この
値は1014ohm.cm以上であることが要求され
る。 (4) 耐酸性 各試料の焼成品(850℃、10分間)を、20%
のシユー酸水溶液に入れ、90℃に10分間加温
し、試料の重量損失割合(%)を測定し、その
値を表に示す。この値は、0.3%以下であるこ
とが好ましい。 本発明に係るガラス組成物の焼成物は、以上の
特性の外抵抗体の抵抗値変化率、表面粗さ、ハン
ダ付性、熱伝導率等の特性も優れていることが判
明している。
[Table] Glass having the composition shown in the upper row of Table 1 was melted, cooled, and then finely ground to an average particle size of 2 μm. At that time, for Samples 3, 4, and 5, alumina was mixed in the amount shown in the middle row of the table when the glass was pulverized. in this case,
The amount of glass powder in the sample composition is the remaining amount of filler. DTA characteristics Place 1.0 g of powder of each sample in the holder of a differential thermal analyzer, raise the temperature from room temperature at a heating rate of 10°C/min, draw a thermal analysis curve, and find the first endothermic onset temperature that appears on the curve. It is shown in the table as the transition point (°C). Two peaks indicating glass crystallization are shown in the table as the first and second crystallization heat temperatures. Characteristics of fired products (1) Coefficient of thermal expansion After compression molding each powder test into a rod shape, 850℃
Coefficient of thermal expansion (50 to 350) after heating for 10 minutes at
°C average) was measured and shown in the table. (2) Dielectric constant (ε), dielectric loss (tanδ) of each sample fired product (850℃, 10 minutes) at 25℃,
Measure the dielectric constant and dielectric loss at 1MHZ,
Shown in the table. Dielectric constant is 9 or less, dielectric loss is 2×
It is desirable that it be 10 -3 or less. (3) Volume resistivity ρ (ohm.cm) The volume resistivity of each sample fired product (850°C, 10 minutes) at 150°C was measured and shown in the table. This value is required to be greater than or equal to 10 14 ohm.cm. (4) Acid resistance The fired product (850℃, 10 minutes) of each sample was 20%
The sample was placed in an aqueous oxalic acid solution and heated to 90°C for 10 minutes, and the weight loss rate (%) of the sample was measured, and the values are shown in the table. This value is preferably 0.3% or less. It has been found that the fired product of the glass composition according to the present invention has excellent properties such as the rate of change in resistance value of the external resistor, surface roughness, solderability, and thermal conductivity as described above.

Claims (1)

【特許請求の範囲】 1 重量%表示で、 SiO2 20〜45% Al2O3 5〜25 CaO 5〜25 ZnO 15.5〜30 TiO2 5〜20 B2O3 1〜8 BaO 0〜10 SrO 0〜10 Sb2O3 0〜3 SnO2 0〜3 Bi2O3 0〜3 の組成を有し、850℃を越えない温度で熱処理す
ることにより主結晶としてアノルサイト結晶を析
出する絶縁性ガラス組成物。 2 重量%表示で、 SiO2 25〜45% Al2O3 10〜20 CaO 10〜20 ZnO 20〜27 TiO2 8〜15 B2O3 2〜5 の組成を有する特許請求の範囲第1項記載の絶縁
性ガラス組成物。 3 重量%表示で、 SiO2 20〜45% Al2O3 5〜25 CaO 5〜25 ZnO 15.5〜30 TiO2 5〜20 B2O3 1〜8 BaO 0〜10 SrO 0〜10 Sb2O3 0〜3 SnO2 0〜3 Bi2O3 0〜3 の組成を有し、850℃を越えない温度で熱処理す
ることにより主結晶としてアノルサイト結晶を析
出するガラス粉末にアルミナ、ジルコン、コージ
エライト、ジルコニア及びベリリアからなる群よ
り選ばれた少なくとも1種の耐火物フイラー粉末
を重量比で15%以下混合してなるフイラーを含む
絶縁性ガラス組成物。 4 前記ガラス粉末は重量%で、 SiO2 25〜45% Al2O3 10〜20 CaO 10〜20 ZnO 20〜27 TiO2 8〜15 B2O3 2〜5 の組成を有し、前記耐火物フイラーはアルミナ粉
末であり、重量比で ガラス粉末 90〜99% アルミナ粉末 1〜10 の割合で混合されてなる特許請求の範囲第3項記
載のフイラーを含む絶縁性ガラス組成物。
[Claims] 1 In weight%, SiO 2 20-45% Al 2 O 3 5-25 CaO 5-25 ZnO 15.5-30 TiO 2 5-20 B 2 O 3 1-8 BaO 0-10 SrO An insulating glass having a composition of 0 to 10 Sb 2 O 3 0 to 3 SnO 2 0 to 3 Bi 2 O 3 0 to 3, and which precipitates anorthite crystals as the main crystals by heat treatment at a temperature not exceeding 850°C. Composition. 2. Claim 1 having the following composition in weight%: SiO 2 25-45% Al 2 O 3 10-20 CaO 10-20 ZnO 20-27 TiO 2 8-15 B 2 O 3 2-5 The insulating glass composition described. 3 In weight%, SiO 2 20-45% Al 2 O 3 5-25 CaO 5-25 ZnO 15.5-30 TiO 2 5-20 B 2 O 3 1-8 BaO 0-10 SrO 0-10 Sb 2 O The glass powder has a composition of 3 0-3 SnO 2 0-3 Bi 2 O 3 0-3 and precipitates anorsite crystals as the main crystals by heat treatment at a temperature not exceeding 850°C, and contains alumina, zircon, cordierite, An insulating glass composition containing a filler formed by mixing at least one refractory filler powder selected from the group consisting of zirconia and beryllia at a weight ratio of 15% or less. 4 The glass powder has a composition in weight percent of SiO 2 25-45% Al 2 O 3 10-20 CaO 10-20 ZnO 20-27 TiO 2 8-15 B 2 O 3 2-5, and 4. The insulating glass composition containing a filler as claimed in claim 3, wherein the filler is alumina powder, and is mixed in a weight ratio of 90 to 99% glass powder and 1 to 10 parts alumina powder.
JP1908979A 1979-02-22 1979-02-22 Insulating glass composition Granted JPS55113641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1908979A JPS55113641A (en) 1979-02-22 1979-02-22 Insulating glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1908979A JPS55113641A (en) 1979-02-22 1979-02-22 Insulating glass composition

Publications (2)

Publication Number Publication Date
JPS55113641A JPS55113641A (en) 1980-09-02
JPS6210940B2 true JPS6210940B2 (en) 1987-03-09

Family

ID=11989721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1908979A Granted JPS55113641A (en) 1979-02-22 1979-02-22 Insulating glass composition

Country Status (1)

Country Link
JP (1) JPS55113641A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417913A (en) * 1981-10-26 1983-11-29 Motorola, Inc. Lower temperature glass and hermetic seal means and method
US4349635A (en) * 1981-10-26 1982-09-14 Motorola, Inc. Lower temperature glass and hermetic seal means and method
JPS59130005A (en) * 1983-01-18 1984-07-26 旭硝子株式会社 Composition for thick film circuit insulating layer
JPS60235744A (en) * 1984-05-04 1985-11-22 Asahi Glass Co Ltd Composition for ceramic base
US4788163A (en) * 1987-08-20 1988-11-29 General Electric Company Devitrifying glass frits
US4863517A (en) * 1987-08-20 1989-09-05 General Electric Company Via fill ink composition for integrated circuits
JPH07101774B2 (en) * 1988-09-21 1995-11-01 日本電装株式会社 Integrated circuit device
KR100592603B1 (en) * 2002-05-20 2006-06-23 엔지케이 스파크 플러그 캄파니 리미티드 Dielectric ceramic
JP7185181B2 (en) * 2018-10-04 2022-12-07 日本電気硝子株式会社 Semiconductor device coating glass and semiconductor coating material using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962526A (en) * 1972-06-14 1974-06-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962526A (en) * 1972-06-14 1974-06-18

Also Published As

Publication number Publication date
JPS55113641A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
US3848079A (en) Pointed circuits with crystallized glass low k crossover dielectrics
JPH03197333A (en) Crystallizable glass and thick membranous composition thereof
JPS6331422B2 (en)
US3950174A (en) Electrically insulating coating glass
US3816172A (en) Nonreducible partially crystallized crossover dielectrics
JPS6218494B2 (en)
JPS6210940B2 (en)
JP2521124B2 (en) Glass-ceramics for electronic packing, thermally crystallizable glass used therefor, and substrates using the same glass-ceramics
US3684536A (en) Bismuthate glass-ceramic precursor compositions
US3741780A (en) Metallizing compositions containing bismuthate glass-ceramic conductor binder
JP3096136B2 (en) Glass composition for low-temperature fired substrate and substrate obtained therefrom
JPS59207851A (en) Dielectric glass in multilayer circuit and thick film circuit containing same
JPS62278145A (en) Sintered material of glass ceramic
JPS636499B2 (en)
JPS58156552A (en) Inorganic composition for insulating ceramic paste
JPS63107838A (en) Glass-ceramic sintered body
JPS5983957A (en) Crystallized glass material
JP2713376B2 (en) Glass composition for insulating layer
JPH01141837A (en) Material for dielectric body for circuit substrate
JPS62137897A (en) Insulating layer compound
JPH0452561B2 (en)
JPS6379739A (en) Sintered glass ceramic body
JPS6350345A (en) Glass ceramic sintered body
JPS6243937B2 (en)
JPS6221739B2 (en)