JPS6195248A - Apparatus for confirming and distributing specimen - Google Patents

Apparatus for confirming and distributing specimen

Info

Publication number
JPS6195248A
JPS6195248A JP21624684A JP21624684A JPS6195248A JP S6195248 A JPS6195248 A JP S6195248A JP 21624684 A JP21624684 A JP 21624684A JP 21624684 A JP21624684 A JP 21624684A JP S6195248 A JPS6195248 A JP S6195248A
Authority
JP
Japan
Prior art keywords
sample
reaction
dispensing
container
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21624684A
Other languages
Japanese (ja)
Inventor
Ryuichiro Kodama
児玉 隆一郎
Hiroyasu Uchida
裕康 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21624684A priority Critical patent/JPS6195248A/en
Publication of JPS6195248A publication Critical patent/JPS6195248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To enhance the use efficiency of a reaction container and to maximize the number of replaceable specimen containers, by making a transfer process from a measuring item confirming position to a distribution position synchronous to a pretreatment process for pretreating the specimen to be distributed corresponding to the reaction container. CONSTITUTION:After the bar code label 61 of a specimen container 5 is read at a reading position 64, serum is distributed in a reaction container 2 at a sampling position according to a measuring position 50. The reaction container 2 is washed with water at washing positions 54-57 and, after the absorbancy of distilled water is measured at the washing position 56, said container 2 passes an emitting position 51, a reagent distribution position 52 and a stirring position 53 and receives the measurement of absorbancy by luminous flux 32 and a spectrometer 30. If the measured absorbancy value of distilled water is subtracted from this reaction process measured data, the original data of the specimen to be measured is obtained. At this time, because the transfer process from the bar code reading position to the sampling position is synchronous to the pretreatment process of the reaction container, items to be measured in the future are confirmed with respect to all of the reaction containers prior to entering pretreatment.

Description

【発明の詳細な説明】 [発明の利用分野〕 本発明は、試料の測定項目を認識する手段及び媒体に係
り、例えば血清円台まれる成分を測定する自動分析装置
に好適な試料認識分注装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a means and medium for recognizing measurement items of a sample, and for example, a method for recognizing and dispensing a sample suitable for an automatic analyzer that measures components contained in serum samples. Regarding equipment.

〔発明の背景〕[Background of the invention]

現在の病院等に於ける臨床検査で実施されてい。 This is currently being carried out in clinical tests at hospitals, etc.

る血液検査は、一定量の被測定試料を反応容器にり、測
定項目に対応した試薬を添加して化学反応を起させ、分
光光度計等によって比色測定或いは反応速度測定を行っ
て、この測定結果によシ分析成分の濃度値或いは特定な
単位として分析結果を得るという方式が多い。このよう
な分析法に於いて各試料に対応する測定項目は通常複数
個依頼され、従って1つの試料は一般に複数個の反応容
器へ分注される。
In blood tests, a certain amount of the sample to be measured is placed in a reaction container, a reagent corresponding to the measurement item is added to cause a chemical reaction, and a colorimetric or reaction rate measurement is performed using a spectrophotometer. There are many methods in which analysis results are obtained as concentration values of analytical components or specific units based on measurement results. In such an analysis method, a plurality of measurement items corresponding to each sample are usually requested, and therefore one sample is generally dispensed into a plurality of reaction vessels.

試料の依頼項目の認識する方法には大きく分けて次の2
種類がある。すなわち、試料の設定位置に識別番号を設
けてこの番号に対応する依頼項目を登録するという方法
と試料容器側面に依頼項目を認識するための認識媒体例
えばバーコードラベルを添付しこれを認識手段例えばバ
ーコード読み取り器及びバーコードと依頼項目との対応
表によシ測定すべき項目を認識する方法である。
There are two main ways to recognize sample request items:
There are different types. That is, one method is to set an identification number at the setting position of the sample and register the requested item corresponding to this number, and the other is to attach a recognition medium such as a barcode label to the side of the sample container to recognize the requested item and use a recognition means such as a barcode label to recognize the requested item. This is a method of recognizing items to be measured using a barcode reader and a correspondence table between barcodes and requested items.

前者においては、依頼項目の登録と試料の設定を同時に
行うか、或いは依頼項目の登録後に試料とその設定位置
の対応表を作成しこの表に従って試料を設定するか、に
よシ試料の取り違えを防止する必要がある。しかし、後
者においては、試料自体から依頼項目を認識することが
できるので、依頼項目の登録と試料の設定という2つの
作業を分離でき、試料とその設定位置の対応表を作成し
この表に従って試料を設定するという作業も発生しない
。しかも、依頼する項目が認識される以前ならば試料容
器の交換が可能なので、たとえば緊急検体を先に測定す
るとき一般検体との交換により対処でき、作業者は自由
に試料の測定順番をスケジュールすることができる。従
って、後者の方法は極めて有用な方法である。
In the former case, it is better to register the requested items and set the samples at the same time, or to create a correspondence table of samples and their setting positions after registering the requested items and set the samples according to this table. It is necessary to prevent this. However, in the latter case, the requested items can be recognized from the sample itself, so the two tasks of registering the requested items and setting the sample can be separated, and a correspondence table between samples and their setting positions can be created and the sample can be sampled according to this table. There is no need to set up the . Moreover, since sample containers can be exchanged before the requested item is recognized, for example, if an emergency sample is to be measured first, it can be replaced with a general sample, and workers can freely schedule the order in which samples are measured. be able to. Therefore, the latter method is extremely useful.

ところで、反応容器は試料が分注され試薬が注入され光
束を横ぎり、その光束は分光され、項目選択に応じた波
長選択を通して光吸収が測定される。一般に1つの反応
容器が何回も使用される自動分析装置では、試料の脂質
等による汚れが反応容器に付く。そこで、試料分注に先
立って蒸溜水の入った反応容器の光吸収を測定するとい
う前処理を導入し、この光吸収を試料分注後の測定デー
タから減算することにより、脂質等の汚れによる測定デ
ータの誤差を防止する。光吸収を測定するには選択され
る波長延いては依頼項目が必要となるので、試料分注以
前に将来分注される試料の測定項目を装置が認識しなく
てはならない。
By the way, a sample is dispensed and a reagent is injected into the reaction container, and a light beam traverses the reaction vessel.The light beam is divided into spectra, and light absorption is measured through wavelength selection according to the item selection. In automatic analyzers in which a single reaction vessel is generally used many times, the reaction vessel is contaminated by sample lipids and the like. Therefore, we introduced a preprocessing method that measures the light absorption of a reaction vessel containing distilled water prior to sample dispensing, and subtracted this light absorption from the measurement data after sample dispensing. Prevent errors in measurement data. Measuring optical absorption requires the selected wavelength as well as the requested items, so the device must recognize the measurement items of the sample to be dispensed in the future before dispensing the sample.

試料容器列において、依頼項目の認識位置が分注位置か
ら十分遠い位置にあればそれだけ早目に依頼項目が認識
されるが、逆に、反応容器に測定項目が割付けられた試
料の数が増えたことになり、試料容器列中多くの試料容
器が交換不可能となる。
In the sample container row, if the recognition position of the requested item is far enough from the dispensing position, the requested item will be recognized earlier, but conversely, the number of samples with measurement items assigned to reaction containers will increase. As a result, many sample containers in the sample container row cannot be replaced.

また、依頼項目を認識してから分注されるまでの時間が
長くなるので、自動分析装置を起動してから実際に分注
されるまでの時間が長くなる。
Furthermore, since it takes a long time from recognizing the requested item to dispensing, the time from starting the automatic analyzer to actually dispensing becomes long.

一方、試料容器列において、依頼項目の認識位置が分注
位置から十分近い位置にあれば、依頼項目のg識が反応
容器の前処理に対し遅れ、測定項目が割り付けられない
、すなわち空の反応容器が現われる。
On the other hand, in the sample container row, if the recognition position of the requested item is sufficiently close to the dispensing position, the recognition of the requested item will be delayed with respect to the preprocessing of the reaction container, and the measurement item will not be assigned, that is, the empty reaction A container appears.

このように従来の方法は、試料容器列において依頼項目
の認識位置を分注位置から十分遠い位置にすると交換可
能な試料が減り、また自動分析装置を起動してから実際
に分注が始まるまでの時間が長くなり、試料容器列にお
いて依頼項目の認識位置を分注位置から十分近い位置に
すると反応容器の使用効率が落ちるという問題があった
In this way, in the conventional method, if the recognition position of the requested item is set sufficiently far from the dispensing position in the sample container row, the number of samples that can be exchanged will be reduced, and the time between starting the automatic analyzer and actually starting dispensing will decrease. , and if the recognition position of the requested item in the sample container row is set sufficiently close to the dispensing position, there is a problem that the efficiency of using the reaction containers decreases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来方法の問題点を解決し、交
換可能な試料の数とスルーブツトと反応容器の使用効率
をともに満足できる試料認識分注装置を提供することに
ある。
An object of the present invention is to solve the problems of the conventional method and to provide a sample recognition and dispensing device that can satisfy both the number of exchangeable samples and the efficiency of using throughputs and reaction vessels.

〔発明の概要〕[Summary of the invention]

本発明は、試料列における分注位置と依頼項目認識位置
との間にある試料支持部材個数と、被分注列における分
注位置と前処理開始位置との間にある被分注支持部材個
数とを等しくすることKよυ、目的を実現しようとする
ものである。
The present invention is based on the number of sample supporting members between the dispensing position and the requested item recognition position in the sample row, and the number of dispensing support members between the dispensing position and the preprocessing start position in the dispensing row. To make K and υ equal, it is an attempt to realize the purpose.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図に従って詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図に、本発明の一実施例の構成を示した。FIG. 1 shows the configuration of an embodiment of the present invention.

反応テーブル1は、その円周上に複数個の測定セルを兼
ねた反応容器2を有し、回転軸3を中心に自由に回転で
きる。試料テーブル4は、その円周上に複数個の試料容
器5を有し、回転軸6を中心に自由に回転できる。試料
容器5側面にはバーコードラベル61が添付しである。
The reaction table 1 has a plurality of reaction vessels 2 serving as measurement cells on its circumference, and can freely rotate around a rotation axis 3. The sample table 4 has a plurality of sample containers 5 on its circumference and can freely rotate around a rotation axis 6. A barcode label 61 is attached to the side of the sample container 5.

バーコード読み取り器62はバーコード読み取シ機構6
3に接続され、バーコード読み取り機構63の上下によ
り上下しバーコードラベル61に記されているノ(−コ
ードが読み取られ制御装置に送られる。制御装置にはあ
らかじめ測定すべき項目とバーコードとの対応表が記憶
されている。試料吸排管7は、分注機構に接続されてお
り、この分注機構の吸排動作により、試料の吸排ができ
る。また、試料吸排管7は、分注機構の回転動作により
、回転軸8を中心に、反応テーブル1と試料テーブル4
の間を自由に回転でき、試料吸排管7の回転通過経路下
に、試料吸排管洗浄機構9が設置しである。試料の分注
は、試薬吐出管10.流路11、流路12、流路13、
流路切換器14、及び、試薬分注器15から成る試薬分
注機構によシ行なわれる。撹拌棒20は攪拌機構に接続
され、攪拌機構の回転動作により回転し、上下動作によ
り上下し、また前後動作により反応容器2と攪拌洗浄機
構21の間を前後する。分光器は光源ランプ31と相対
し、反応テーブル1が回転すると反応容器2が光束32
を通過し、その時に、光吸収測定が行なわれるように設
置しである。反応容器洗浄吸排管40は洗浄機構に接続
され、洗浄機構の上下動作によシ上下し、吸排動作によ
シ液体の吸排を行なう。
The barcode reader 62 is a barcode reading mechanism 6
3, and is moved up and down by the barcode reading mechanism 63, and the - code written on the barcode label 61 is read and sent to the control device. The sample suction and discharge tube 7 is connected to the dispensing mechanism, and the sample can be sucked and discharged by the suction and discharge operation of this dispensing mechanism. The reaction table 1 and the sample table 4 are rotated around the rotation axis 8 by
A sample suction/discharge tube cleaning mechanism 9 is installed under the rotating path of the sample suction/discharge tube 7. The sample is dispensed using the reagent discharge tube 10. Channel 11, channel 12, channel 13,
This is carried out by a reagent dispensing mechanism consisting of a flow path switching device 14 and a reagent dispensing device 15. The stirring rod 20 is connected to the stirring mechanism, rotates by the rotational action of the stirring mechanism, moves up and down by the up-and-down action, and moves back and forth between the reaction vessel 2 and the stirring cleaning mechanism 21 by the back-and-forth action. The spectrometer faces the light source lamp 31, and when the reaction table 1 rotates, the reaction container 2 emits a light beam 32.
It is set up so that the light absorption measurements are taken at that time. The reaction vessel cleaning suction/drainage pipe 40 is connected to the cleaning mechanism, moves up and down by the up and down movement of the cleaning mechanism, and sucks and drains liquid by the suction/drainage movement.

以下、図に従って自動分析の動作原理を説明する。被測
定試料、例えば血清を収容した試料容器5がバーコード
読み取シ位置64に供給されると、バーコード読み取り
器62が試料容器に添付されたバーコードラベル61を
読む。読み取られたバーコードは制御装置に送られ、あ
らかじめ記憶されているバーコードと測定項目との対応
表によシ測るべき項目を認識する。上記試料容器5は、
移送過程を経てサンプリング位置50に供給されると、
制御装置がバーコードを用いて認識した測定項目に従っ
て、試料吸排管7の先端が上記試料容器5内に浸され、
血清の一定量を吸入し試料吸排管7内に保持する。その
後、試料吸排管7は反応テーブル1の吐出位置51まで
移動し、吐出位置51に移送されている反応容器2内に
、保持していた血清を吐出する。反応容器2は一項目に
ついて反応測定を行なうため、一般に複数項目の指定か
める試料容器5からは項・目数外だけ上記分注動作が行
なわれる。上記分注動作が終ると、上記反応容器2は移
送過程を経て、試薬分注位置52に到達する。試薬分注
器15によシ、試薬容器16内試薬を試薬吐出管10か
ら反応容器2内へ吐出できる。上記動作によシ、被測定
試料は、試薬上混和して反応を開始する。その後、再び
移送過程を経て攪拌位置53に到達した反応容器2は、
撹拌棒20によシ攪拌され、ニジスムーズな反応が続行
される。撹拌棒20は、攪拌後に、攪拌洗浄機構21に
より水洗いされる。その後、さらに移送過程を経て上記
反応容器2は洗浄位置に到達する。この間、すなわち、
試薬吐出位置52から洗浄位置54に至るまでの移送期
間中、上記反応容器2が光束32を通過する毎に、光吸
収測定が分光器30で行なわれ、制御装置がバーコード
を用いて認識した測定項目に従って波長選択が行なわれ
る。
The operating principle of automatic analysis will be explained below according to the diagram. When a sample container 5 containing a sample to be measured, for example, serum, is supplied to a barcode reading position 64, a barcode reader 62 reads a barcode label 61 attached to the sample container. The read barcode is sent to the control device, which recognizes the item to be measured based on a pre-stored correspondence table between barcodes and measurement items. The sample container 5 is
Once supplied to the sampling position 50 through the transfer process,
According to the measurement items recognized by the control device using the barcode, the tip of the sample suction and discharge tube 7 is immersed in the sample container 5,
A certain amount of serum is aspirated and held in the sample suction/discharge tube 7. Thereafter, the sample intake/discharge tube 7 moves to the discharge position 51 of the reaction table 1 and discharges the held serum into the reaction container 2 which has been transferred to the discharge position 51. Since the reaction container 2 performs reaction measurement for one item, the above-mentioned dispensing operation is generally performed only for items other than the number of items from the sample container 5 which can hold a plurality of specified items. When the dispensing operation is completed, the reaction container 2 reaches the reagent dispensing position 52 through a transfer process. The reagent dispenser 15 can discharge the reagent in the reagent container 16 from the reagent discharge tube 10 into the reaction container 2 . Through the above operation, the sample to be measured is mixed with the reagent and a reaction is started. Thereafter, the reaction vessel 2 which has reached the stirring position 53 through the transfer process again,
The mixture is stirred by the stirring rod 20 to continue a smooth reaction. After stirring, the stirring rod 20 is washed with water by the stirring cleaning mechanism 21. Thereafter, the reaction container 2 reaches the cleaning position through a further transfer process. During this time, i.e.
During the transfer period from the reagent discharge position 52 to the washing position 54, each time the reaction container 2 passes the light beam 32, a light absorption measurement is performed by the spectrometer 30, and the control device recognizes it using a bar code. Wavelength selection is performed according to the measurement item.

さて、洗浄位置54に到達した上記反応容器2は洗浄位
置55,56.57を経て水洗いされ、その後の移送過
程を経て、吐出位置50より再度反応容器2として使用
される。以上の動作は、全て制御装置によシ制御される
Now, the reaction vessel 2 that has reached the washing position 54 is washed with water through washing positions 55, 56, and 57, and is used as the reaction vessel 2 again from the discharge position 50 through the subsequent transfer process. All of the above operations are controlled by the control device.

上記動作説明より、反応容器2は周期的に水洗いされる
が、被測定試料のため次第に試料中脂質等で汚れていき
、正確な測定ができなくなる。この解決策として既に、
特許xxxxがあるが、この汚れが直接、測定データに
悪影響を与えないよう次のような過程を設けた。
From the above explanation of the operation, the reaction container 2 is periodically washed with water, but as it is a sample to be measured, it gradually becomes contaminated with lipids in the sample, making it impossible to perform accurate measurements. As a solution, we have already
Although there is a patent XXXX, the following process was established to prevent this dirt from directly adversely affecting the measurement data.

洗浄位置54,55.56では、いずれも、残液の吸い
出し及び蒸溜水吐出の二工程によシ、反応容器2を洗浄
する。洗浄位置56で蒸溜水を満たされた反応容器2は
、一度光束32を通過し、蒸溜水の光吸収測定が行なわ
れる。この光吸収匝は、反応容器2の汚れなどによる光
吸収値である。
At each of the cleaning positions 54, 55, and 56, the reaction vessel 2 is cleaned through two steps: sucking out residual liquid and discharging distilled water. The reaction vessel 2 filled with distilled water at the cleaning position 56 once passes through the light beam 32, and the light absorption of the distilled water is measured. This light absorption value is the light absorption value due to dirt on the reaction container 2, etc.

その後反応容器2内の蒸溜水は、洗浄位置57において
吸い出される。次に、本反応容器2は吐出位置51に移
送され、分注機構によシ被測定試料が分注され、その後
反応過程が分光器によシ測定される。この反応過程測定
データから、前記蒸溜水の光吸収測定値を減算すれば、
反応容器の汚れなどによる光吸収は、相殺され、被測定
試料本来のデータを得たことになる。
The distilled water in the reaction vessel 2 is then sucked out at the washing position 57. Next, the reaction container 2 is transferred to the discharge position 51, a sample to be measured is dispensed by the dispensing mechanism, and the reaction process is then measured by a spectrometer. If the optical absorption measurement value of the distilled water is subtracted from this reaction process measurement data,
Light absorption due to dirt in the reaction container is canceled out, and data original to the sample to be measured is obtained.

以上の過程を行なうには、被測定試料が反応容器2に分
注される前に、測定されるべき項目が認識されなくては
ならず、従って前以てバーコードを読まなくてはならな
い。
To carry out the above process, the item to be measured must be recognized before the sample to be measured is dispensed into the reaction container 2, and therefore the barcode must be read in advance.

第2図に上記過程のタイミングチャートを記す。FIG. 2 shows a timing chart of the above process.

時間軸101を中心に、上には試料容器位置座標102
、下には反応容器番号座標103を配している。試料容
器位置座標102上にはサンプリング位置及びバーコー
ド読み取υ位置が目盛られており、その右側には、試料
テーブルの円周上にある試料容器位置番号が書かれてい
る。本タイミング列においては、試料テーブル上の第一
番目の試料容器からバーコードが読まれ、サンプリング
位置に送られ、分注される。また第一番目の試料は1項
目、第二番目の試料は1項目、第三番目の試料は2項目
、第四番目の試料は4項目、第五番目の試料は1項目、
第六番目の試料は1項目、第七番目の試料は1項目、第
八番目の試料は1項目、第九番目の試料は1項目、と仮
定している。丸付き数字106は、この時点で対応する
番号の試料容器のバーコードが読まれ、制御装置が測定
すべき項目を認識したことを意味する。反応容器番号座
標103上には反応容器番号が記され、この番号順に反
応容器は試料吐出−へ移送される。反応容器番号座標1
03の右には、実線104の分注前処理、点線105の
反応過程を示す。実線104上の数字は試料容器位置番
号であり、対応する番号の試料容器から反応容器へ分注
が行なわれたことを示す。本実施例では分注の3工程前
に測定項目をg識し、前処理に役立てなくてはならない
ので、これに合せて、サンプリング位置の3つ試料容器
分子前にバーコード読み取シ位置を設定している。第2
図は、バーコード読み取シ位置からサンプリング位It
までの移送工程と反応容器の前処−理工程が同期してい
るので、全ての反応容器において前処理に入る前にバー
コード延いては将来測定すべき項目が認識されているこ
とを示す。
Centered on the time axis 101, the sample container position coordinates 102 are shown above.
, and below are reaction vessel number coordinates 103. The sampling position and the barcode reading υ position are scaled on the sample container position coordinate 102, and the sample container position number on the circumference of the sample table is written on the right side. In this timing sequence, the barcode is read from the first sample container on the sample table, sent to the sampling position, and dispensed. Also, the first sample has 1 item, the second sample has 1 item, the third sample has 2 items, the fourth sample has 4 items, the fifth sample has 1 item,
It is assumed that the sixth sample has one item, the seventh sample has one item, the eighth sample has one item, and the ninth sample has one item. The circled number 106 means that at this point the bar code of the sample container with the corresponding number has been read and the control device has recognized the item to be measured. Reaction container numbers are written on the reaction container number coordinates 103, and the reaction containers are transferred to the sample discharge in the order of this number. Reaction container number coordinate 1
To the right of 03, a solid line 104 shows the dispensing pretreatment and a dotted line 105 shows the reaction process. The numbers on the solid line 104 are sample container position numbers, indicating that the sample container with the corresponding number was dispensed into the reaction container. In this example, it is necessary to know the measurement items before the three steps of dispensing and use them for preprocessing, so in line with this, barcode reading positions are set in front of the three sample container molecules at the sampling position. are doing. Second
The figure shows the sampling position It from the barcode reading position.
Since the transfer process and the pretreatment process of the reaction vessels are synchronized, the barcodes and the items to be measured in the future are recognized in all reaction vessels before starting the pretreatment.

第3図は、バーコード読み取り位置とサンプリング位置
との間を第2図に比べて1試料容器分せばめた場合のタ
イミングチャート!4Jである。本タイミング例は、全
ての試料が1項目しか依頼嘔れていない例でるる。バー
コード読み取シ位置からサンプリング位置までの試料容
器移送過程が反応容器の前処理過程に比べ時間が短いの
で反応容器が分注位置に到着するまで1工程の分注待ち
110゜111.112,113が生じバーコード読み
取シが遅れる。このため前以て測定すべき項目を認識で
きず空きとなる反応容器114,115゜116が現れ
る。これによシ例えば117では分注が行なわれない。
Figure 3 is a timing chart when the barcode reading position and sampling position are separated by one sample container compared to Figure 2! It is 4J. This timing example is an example in which all samples have only one item requested. The process of transferring the sample container from the barcode reading position to the sampling position takes less time than the pretreatment process of the reaction container, so there is a one-step dispensing wait until the reaction container arrives at the dispensing position110°111.112,113 This causes a delay in barcode reading. For this reason, the reaction vessels 114, 115 and 116 appear empty because the items to be measured cannot be recognized in advance. As a result, no dispensing is performed at 117, for example.

第3図は、反応容器の使用効率が第2図に比べ劣る。In FIG. 3, the usage efficiency of the reaction vessel is inferior to that in FIG. 2.

第4図は、バーコード読み取シ位置とサンプリング位置
との間を第2図に比べて1試料容器分広げた場合のタイ
ミングチャート例でるる。本タイミング例では、第一番
目の試料は1項目、第二番目の試料は1項目、第三番目
の試料は2項目、第四番目の試料は4項目、第五番目の
試料は1項目、第六番目の試料は1項目、第七番目の試
料は1項目、第八番目の試料は1項目、第九番目の試料
は1項目、と仮定している。本例では、バーコード読み
取り位置からサンプリング位置までの試料容器移送過程
が反応容器の前処理過程に比べて時間が長いため、十分
前に測定項目を認識でき、反応容器の空きはできない2
.シかし、バーコード読み取り位置からサンプリング位
置へ試料容器が移送される時間が長いため、分注が始ま
るまで時間がかかる。また、バーコード読み取シ位置と
テンプリング位置との間にあるサンプルは、既にいくつ
かの反応容器で対応する前処理がなされているので、交
換することができない。よって試料テーブル上で交換を
禁止された試料容器の数が増す。
FIG. 4 shows an example of a timing chart when the distance between the barcode reading position and the sampling position is widened by one sample container compared to FIG. 2. In this timing example, the first sample has 1 item, the second sample has 1 item, the third sample has 2 items, the fourth sample has 4 items, the fifth sample has 1 item, It is assumed that the sixth sample has one item, the seventh sample has one item, the eighth sample has one item, and the ninth sample has one item. In this example, the process of transferring the sample container from the barcode reading position to the sampling position takes longer than the pretreatment process of the reaction container, so the measurement items can be recognized well in advance and the reaction container cannot be left empty.
.. However, since it takes a long time to transport the sample container from the barcode reading position to the sampling position, it takes time until dispensing starts. Furthermore, the sample located between the barcode reading position and the template position cannot be exchanged because it has already undergone corresponding pretreatment in some reaction vessels. Therefore, the number of sample containers on the sample table whose exchange is prohibited increases.

以上、本実施例によれば、反応容器の使用効率を最大に
し、バーコードを読んでから分注が行なわれるまでの時
間を最小にし、また試料テーブル上で交換することので
きる試料容器の数を最大にする効果がある。
As described above, according to this embodiment, the usage efficiency of reaction vessels is maximized, the time from reading the barcode to dispensing is minimized, and the number of sample vessels that can be exchanged on the sample table is It has the effect of maximizing the

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、バーコード読み取
9位置に対応する測定項目認識位置から分注位置までの
試料支持部材の移送工程と反応容器に対応する被分注試
料支持部材の前処理工程が同期しているので、全ての反
応容器に将来測定すべき項目が割シ付けられ反応容器の
使用効率は100%になる。また自動分析装置の起動後
実際に分注されるまでの待ち時間は最小になり、試料列
中交換可能な試料容器は最大になる。
As described above, according to the present invention, the step of transferring the sample support member from the measurement item recognition position corresponding to the barcode reading position 9 to the dispensing position and the step of transporting the sample support member to be dispensed corresponding to the reaction container. Since the processing steps are synchronized, items to be measured in the future are assigned to all reaction vessels, and the reaction vessel usage efficiency is 100%. Furthermore, the waiting time from when the automatic analyzer is activated until actual dispensing is minimized, and the number of exchangeable sample containers in the sample queue is maximized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す構成図、第2図
は第1図の動作順序を示すタイミングチャート図、第3
図はバーコード読み取シ位置とサンプリング位置との間
を第2図に比べて1試料容器分せばめた場合、反応容器
の使用効率が第2図に比べ劣ることを示すタイミングチ
ャート図、第4図はバーコード読み取9位置とサンプリ
ング位置との間を第2図に比べて1試料容器分広げた場
合、第2図に比べ分注が始まるまで時間がかかシ試料テ
ーブルーヒで交換を禁止された試料容器の数が増すこと
を示すタイミングチャート図である。 l・・・反志テーブル、2・・・反応容器、4・・・試
料テーブル、5・・・試料容器、7・・・試料吸排管、
50・・・サンプリング位置、51・・・吐出位置、6
1・・・バーコードラベル、62・・・バーコード読み
取シ器、64・・・バーコード読み取り位置。
FIG. 1 is a configuration diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a timing chart showing the operation order of FIG. 1, and FIG.
Figure 4 is a timing chart showing that when the barcode reading position and sampling position are separated by one sample container compared to Figure 2, the reaction vessel usage efficiency is inferior to Figure 2. When the distance between the barcode reading position 9 and the sampling position is expanded by one sample container compared to Fig. 2, it takes longer to start dispensing compared to Fig. 2, and changing the sample table is prohibited. FIG. 3 is a timing chart diagram showing an increase in the number of sample containers. l...Reaction table, 2...Reaction container, 4...Sample table, 5...Sample container, 7...Sample suction and exhaust pipe,
50...Sampling position, 51...Discharge position, 6
1... Barcode label, 62... Barcode reader, 64... Barcode reading position.

Claims (1)

【特許請求の範囲】 1、複数の試料支持部材から成る試料列と、試料の測定
すべき項目を認識するための認識手段と、各試料支持部
材に固定された認識媒体と、複数の分注される試料の支
持部材からなる被分注列と、前記試料列から前記被分注
列へ試料を分注する分注機構と、から構成される分注装
置において、前記試料列における分注位置と前記認識媒
体を認識する位置との間にある試料支持部材個数と、前
記被分注列における分注位置と分注される前に将来分注
されるべき試料のために支持部材に対し前処理を開始す
る位置との間にある支持部材個数を等しくすることを特
徴とする試料認識分注装置。 2、特許請求の範囲第1項において、前記試料列におけ
る分注位置と前記認識媒体を認識する位置との間にある
試料支持部材個数と、前記被分注列における分注位置と
分注される前に将来分注されるべき試料のために支持部
材に対し前処理を開始する位置との間にある支持部材個
数とを較べたとき、前者個数の方が後者個数より多いこ
とを特徴とする試料認識分注装置。
[Claims] 1. A sample array consisting of a plurality of sample support members, recognition means for recognizing items to be measured on the sample, a recognition medium fixed to each sample support member, and a plurality of dispensing units. A dispensing apparatus comprising: a dispensing column consisting of a support member for a sample to be dispensed; and a dispensing mechanism dispensing a sample from the sample column to the dispensing column; and the position where the recognition medium is recognized. A sample recognition and dispensing device characterized in that the number of supporting members between the position and the position where processing is started is made equal. 2. In claim 1, the number of sample supporting members located between the dispensing position in the sample row and the position for recognizing the recognition medium, and the number of sample supporting members located between the dispensing position in the sample row and the position at which the recognition medium is recognized; When comparing the number of support members between the position where pretreatment is started for the support member for the sample to be dispensed in the future before the sample is dispensed in the future, the number of the former is larger than the number of the latter. Sample recognition and dispensing device.
JP21624684A 1984-10-17 1984-10-17 Apparatus for confirming and distributing specimen Pending JPS6195248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21624684A JPS6195248A (en) 1984-10-17 1984-10-17 Apparatus for confirming and distributing specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21624684A JPS6195248A (en) 1984-10-17 1984-10-17 Apparatus for confirming and distributing specimen

Publications (1)

Publication Number Publication Date
JPS6195248A true JPS6195248A (en) 1986-05-14

Family

ID=16685561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21624684A Pending JPS6195248A (en) 1984-10-17 1984-10-17 Apparatus for confirming and distributing specimen

Country Status (1)

Country Link
JP (1) JPS6195248A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291963U (en) * 1988-12-29 1990-07-20
US10001497B2 (en) 2013-03-15 2018-06-19 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US10197585B2 (en) 2013-03-15 2019-02-05 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US10267818B2 (en) 2013-03-15 2019-04-23 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291963U (en) * 1988-12-29 1990-07-20
US10001497B2 (en) 2013-03-15 2018-06-19 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US10197585B2 (en) 2013-03-15 2019-02-05 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US10267818B2 (en) 2013-03-15 2019-04-23 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
US10775398B2 (en) 2013-03-15 2020-09-15 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US11125766B2 (en) 2013-03-15 2021-09-21 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
US11435372B2 (en) 2013-03-15 2022-09-06 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US11536739B2 (en) 2013-03-15 2022-12-27 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods

Similar Documents

Publication Publication Date Title
JP3063584B2 (en) Automatic analyzer
US7341691B2 (en) Automatic analyzing apparatus
US5439646A (en) Blood coagulation analyzer
US20090137048A1 (en) Automatic analyzer and analysis method for use in the same
CN102265166A (en) Automatic analyzing apparatus, and specimen batching method in automatic analyzing apparatus
JPH0348161A (en) Plural item analyzer and operation thereof
JP2000146987A (en) Apparatus and method for autoanalysis
JP4102739B2 (en) Automatic analyzer
JP2970114B2 (en) Automatic analyzer
KR20060058682A (en) Method for increasing capacity in an automatic clinical analyzer by using modular reagent delivery means
JP5337600B2 (en) Automatic analyzer and control method of automatic analyzer
JPS6195248A (en) Apparatus for confirming and distributing specimen
US20220341956A1 (en) Automatic analyzer
JPH08313538A (en) Automatic analytical instrument
JPS61270661A (en) Automatic analyzing instrument
JPH05172828A (en) Automatic analyser
EP3786644A1 (en) Automated analyzer and method of controlling the automated analyzer
RU2781440C1 (en) Automatic analyzer
JPS6249259A (en) Automatic analyzer
JPH04335157A (en) Automatic chemical analysis device
JP2000321285A (en) Automatic analyzer
JPH0468589B2 (en)
EP1293782B1 (en) Automatic analyzing apparatus
JPS62159049A (en) Automatic analyzer
JPH0380263B2 (en)