JPS619433A - Production of thermoplastic resin microsphere - Google Patents

Production of thermoplastic resin microsphere

Info

Publication number
JPS619433A
JPS619433A JP13005784A JP13005784A JPS619433A JP S619433 A JPS619433 A JP S619433A JP 13005784 A JP13005784 A JP 13005784A JP 13005784 A JP13005784 A JP 13005784A JP S619433 A JPS619433 A JP S619433A
Authority
JP
Japan
Prior art keywords
resin
solvent
component
microspheres
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13005784A
Other languages
Japanese (ja)
Inventor
Gen Sugano
弦 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK
Original Assignee
TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK filed Critical TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK
Priority to JP13005784A priority Critical patent/JPS619433A/en
Publication of JPS619433A publication Critical patent/JPS619433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To facilitate the production of the titled microspheres useful in the production of sintered microspheres, etc., by disintegrating a melt-blend of resin A and component B incompatible with resin A by immersion in a solvent which is a poor solvent for resin A but is a good solvent for component B and separating particles of resin A. CONSTITUTION:A matrix thermoplastic resin A (e.g., PE or PVC) is melt-blended with a component B incompatible with resin A (e.g., polyethylene oxide) at a temperature higher than any of the melting points of resin A and component B and a mixing ratio at which component B forms a continuous phase and resin A forms a dispersed phase. This melt blend is cooled directly or after it is heated at a temperature higher than any of the melting points of resin A and component B within 2hr. The obtained cooled blend is disintegrated by immersion in a solvent S which is a poor solvent for resin A but is a good solvent for component B (e.g., water) to obtain a suspension comprising solvent S in which component B is dissolved and particles of resin A are dispersed. The particles of resin A are separated from the dispersion. In this way, it is possible to obtain the titled microspheres of a particle diameter of 0.01-100mu suitable for use in, for example, sintered microfilters, fluidized bed coatings, electrostatic coatings, sol coatings, solid lubricants, and cosmetic additives.

Description

【発明の詳細な説明】 本発明は、熱可塑性樹脂微小球体の製法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing thermoplastic resin microspheres.

さらに詳しくは、焼結マイクロフィルター、焼結バッテ
リーセパレーター、流動浸漬用、静電塗装用、ゾル塗料
用、ハイプリ、ド(ミクロ複合材料)用素材、固体潤滑
剤、化粧品添加剤等の用途に供するに適した粒径0゜0
1μm〜100μmの熱可塑性樹脂微小球体の製法に関
するものである。
More specifically, it is used for applications such as sintered microfilters, sintered battery separators, fluidized immersion coatings, electrostatic coatings, sol coatings, materials for Hypuri and do (microcomposite materials), solid lubricants, and cosmetic additives. Particle size suitable for 0゜0
The present invention relates to a method for producing thermoplastic resin microspheres of 1 μm to 100 μm.

従来、熱可塑性樹脂微小球体の製法としては、エマルジ
ョン重合法によるラテックスの製造方法、機械的粉砕法
、熱可塑性樹脂を溶剤に溶解させた後冷却する沈澱法等
が知られている。
Conventionally, known methods for producing thermoplastic resin microspheres include a latex production method using an emulsion polymerization method, a mechanical crushing method, and a precipitation method in which a thermoplastic resin is dissolved in a solvent and then cooled.

しかし、エマルショア重合法は、粒径5μm以上の大粒
径ラテックスを製造することが困難であり、冷凍凝集法
、加圧凝集法等の複雑な手段を必要とする。 まだ、エ
マルジョン粒子をそのままの粒径で単離することが困難
であり、凝集しやすい。 また、エマルジョン重合法で
は、物性改良の目的で、熱可塑性樹脂微小球体内部に充
填剤、可塑剤等を添加することが困難である。
However, the emulsion polymerization method is difficult to produce a large particle size latex with a particle size of 5 μm or more, and requires complicated means such as a freeze aggregation method and a pressure aggregation method. It is still difficult to isolate emulsion particles in their original particle size, and they tend to aggregate. Furthermore, in the emulsion polymerization method, it is difficult to add fillers, plasticizers, etc. inside the thermoplastic resin microspheres for the purpose of improving physical properties.

寸だ、機械的粉砕法では、真球状の微小球体を得ること
が困難であり、粒径のコントロールも困難である。
However, with mechanical crushing, it is difficult to obtain truly spherical microspheres, and it is also difficult to control the particle size.

沈澱法は、長時間を層し、条件のコントロールが厳しく
、粗大な塊状物ができ易く、収率もきわめて低い。
The precipitation method requires a long period of time, requires strict control of conditions, tends to produce coarse lumps, and has an extremely low yield.

本発明は、上述した欠点の無い熱可塑性樹脂微小球体の
製造方法を提供するものである。 即ち、本発明は、基
材熱可塑性樹脂Aと、Aと相溶性のない成分Bを、Bが
連続相でAが分散相を形成する混合比で、AとBの溶融
温度以上で溶−混合し、該溶融混合物をそのまま冷却し
、またはAとBの溶融温度以上で2時間以内の熱処理を
した後冷却し、Aの貧溶媒でかつBの良溶媒である溶媒
S中に浸漬して、該溶融混合物を崩壊せしめ、溶媒S中
にBが溶解しAの粒子が分散したサスペンションを得て
、該サスペンションからAの粒子を分離することを特徴
とする粒径0.01μm〜]、 O0μmの熱可塑性樹
脂微小球体の製法である。
The present invention provides a method for producing thermoplastic resin microspheres without the above-mentioned drawbacks. That is, in the present invention, a base thermoplastic resin A and a component B that is incompatible with A are melted at a temperature equal to or higher than the melting temperature of A and B at a mixing ratio such that B forms a continuous phase and A forms a dispersed phase. The molten mixture is cooled as it is, or heat treated at a temperature higher than the melting temperature of A and B for up to 2 hours, then cooled, and immersed in a solvent S that is a poor solvent for A and a good solvent for B. , the molten mixture is disintegrated to obtain a suspension in which B is dissolved in a solvent S and particles of A are dispersed, and the particles of A are separated from the suspension; This is a method for producing thermoplastic resin microspheres.

本発明における熱可塑性樹脂Aは、微小球体を形成する
だめの基材である。 熱可塑性樹脂Aの好ましい例は、
ポリエチレン、ポリプロピレン、ポリ塩化ビニノペポリ
スチレン、ポリアミド類例えばナイロン6、ナイロン6
6、ポリエステル類例えばポリエチレンテレフタレート
、ポリカーボネート、ポリメチルメタアクリレート、ポ
リテトラフルオロエチレン、ポリ弗化ビニリデン、ポリ
酢酸ヒニル、ポリアセタール、ポリスルホン、アクリロ
ニトリル〜スチレンコホリマー、エチレン〜酢酸ビニル
コポリマー、エチレンルアクリル酸コポリマー、エチレ
ン〜プロピレンコホリマー、熱可塑性弾性体例えばスチ
レン〜ブタジェンプロ7クコポリマー等である。
Thermoplastic resin A in the present invention is a base material for forming microspheres. Preferred examples of thermoplastic resin A are:
Polyethylene, polypropylene, polyvinyl chloride polystyrene, polyamides such as nylon 6, nylon 6
6. Polyesters such as polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyhinyl acetate, polyacetal, polysulfone, acrylonitrile-styrene copolymer, ethylene-vinyl acetate copolymer, ethylene acrylic acid copolymer , ethylene-propylene copolymers, thermoplastic elastomers such as styrene-butadiene pro-7 copolymers, and the like.

本発明における成分Bは、熱可塑性樹脂Aを分散させて
微小球体を形成させるだめの連続相を成すものである。
Component B in the present invention forms a continuous phase in which the thermoplastic resin A is dispersed to form microspheres.

成分Bの好ましい例は、前述しだ熱可塑性樹脂Aの例示
ポリマー及び、それらの他に、ポリアルキレンオキサイ
ド類例えばポリエチレンオキサイド、ポリエチレングリ
コ−ル、ポリビニルアルコール、ポリブテン、ワックス
、天然ゴム、合成ゴム例えばポリブタジェン、スチレン
−ブタジェン共重合ゴム、石油樹脂等も使用できる。
Preferred examples of component B include the above-mentioned thermoplastic resin A, as well as polyalkylene oxides such as polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polybutene, wax, natural rubber, synthetic rubber, etc. Polybutadiene, styrene-butadiene copolymer rubber, petroleum resin, etc. can also be used.

しかし、例示した熱可塑性樹脂Aと成分Bの全てを、任
意の組み合せで用いることができるのでばなく、AとB
は相溶性の無い組み合せを選ばなければならない。
However, not all of the exemplified thermoplastic resins A and component B can be used in any combination;
must choose incompatible combinations.

本発明において、AとBの相溶性の無い組み合せを選ぶ
方法は次のようにすればよい。熱可塑性樹脂A30容積
係と成分B70容積係をAとBの溶融温度以上で溶融混
合し、該溶融混合物を熱、プレス成形して厚み0 、5
 m’mのシートとし、Aの貧溶媒でかつBの良溶媒で
ある溶媒S中に浸漬して、〕時間攪拌し、該シートが崩
壊してサスペンションを形成した場合、AとBは相溶性
の無い組み合せである。
In the present invention, an incompatible combination of A and B may be selected as follows. Thermoplastic resin A30 by volume and component B 70 by volume are melt-mixed at a temperature higher than the melting temperature of A and B, and the molten mixture is heated and press-molded to a thickness of 0 to 5.
m'm sheet, immersed in solvent S, which is a poor solvent for A and a good solvent for B, and stirred for a period of time, and the sheet collapses to form a suspension, A and B are compatible. This is a combination without.

本発明において、熱可塑性樹脂A又は成分Bが、使用温
度における溶媒に、1重量%以上の濃度に溶解する場合
、該溶媒は八又はBに対して良溶媒であるといい、1重
量%未満の濃度しか溶解、 しない場合、該溶媒はA又
はBに対して貧溶媒であるという。
In the present invention, when the thermoplastic resin A or component B is dissolved in a solvent at the usage temperature to a concentration of 1% by weight or more, the solvent is said to be a good solvent for 8 or B, and is less than 1% by weight. A solvent is said to be a poor solvent for A or B if it dissolves only at a concentration of A or B.

この溶解テストは、所定温度の溶媒に、厚み0.5mm
程度のフィルム状又は粉末状の試料を1重量係添加して
、2時間充分に攪拌し、判定できる。
In this dissolution test, a 0.5 mm thick sample is placed in a solvent at a specified temperature.
Judgment can be made by adding 1 weight of a film or powder sample of about 100 ml and thoroughly stirring for 2 hours.

本発明において、Bが連続相でAが分散相を形成する混
合比とは、通常はBが50容積係以上でAが50容積係
未満の混合比であるが、詳細には、この混合比がずれる
場合があり、次のようにして判定できる。 即ち、相溶
性の無いAとBを、所定の混合比で、AとBの溶融温度
以上で溶融混合し、該溶融混合物を熱プレス成形して厚
み0゜5mmのシートとし、Aの貧溶媒でかつBの良溶
媒である溶媒S中に浸漬して、]時間攪拌し、該シート
が崩壊してサスペンションを形成した場合、該混合比は
、Bが連続相でAが分散相を形成する混合比であると判
定できる。
In the present invention, the mixing ratio in which B forms a continuous phase and A forms a dispersed phase is usually a mixing ratio in which B is at least 50 volume ratio and A is less than 50 volume ratio. This can be determined as follows. That is, A and B, which are not compatible, are melt-mixed at a predetermined mixing ratio at a temperature higher than the melting temperature of A and B, the molten mixture is hot press-molded to form a sheet with a thickness of 0.5 mm, and a poor solvent for A is formed. When the sheet is immersed in solvent S, which is a good solvent for B, and stirred for ] hours, and the sheet collapses to form a suspension, the mixing ratio is such that B forms a continuous phase and A forms a dispersed phase. It can be determined that the mixing ratio is the same.

本発明において、AとBとを溶融混合する際、AとBの
溶融温度以上で実施する必要がある。
In the present invention, when A and B are melted and mixed, it is necessary to perform the melting at a temperature higher than the melting temperature of A and B.

そうしなければ、Aがきれいな微小球体となってB相中
に分散する構造の混合物かえられない。
Otherwise, the structure of the mixture in which A becomes fine microspheres and is dispersed in phase B cannot be changed.

本発明において、溶融混合する方法は特に限定されない
。 例えば、ロール、バンバリーミキサ−、ニーグー、
単軸押出機、2軸押出機等によって実施できる。
In the present invention, the method of melt-mixing is not particularly limited. For example, Roll, Banbury mixer, Nigoo,
This can be carried out using a single-screw extruder, a twin-screw extruder, or the like.

本発明において、AとBの溶融混合物を冷却後そのま1
Aの貧溶媒でかつBの良溶媒である溶媒S中に浸漬して
もよい。 この場合、溶融混合物を冷却後クラ、7ヤー
等で粉砕したり、ペレタイザーでペレット化したり、押
出機、ロール等で7−ト状に成形したものを溶媒S中に
浸漬してもよい。
In the present invention, after cooling the molten mixture of A and B,
It may be immersed in a solvent S that is a poor solvent for A and a good solvent for B. In this case, the molten mixture may be cooled and then pulverized with a mill, pelletizer, etc., pelletized with a pelletizer, or formed into a pellet shape with an extruder, roll, etc., and then immersed in the solvent S.

寸だ、AとBの溶融混合物をA(!:Bの溶融温度以上
で、2時間以内せん断変形力の働かない状態で熱処理し
た後、溶媒S中に浸漬してもよい。
In fact, a molten mixture of A and B may be heat-treated at a temperature higher than the melting temperature of A(!:B) for up to 2 hours in a state where no shear deformation force is applied, and then immersed in the solvent S.

この場合、溶融状態で熱処理している間に、A相が更に
きれいな真球状になり、また、A相同志が凝集し、粒径
の大きな真球状に成長して行く。
In this case, during the heat treatment in the molten state, the A phase becomes more perfectly spherical, and the A phases coagulate with each other to grow into a true spherical shape with a large particle size.

従って、この熱処理時間のコントロールにより、粒径を
容易にコントロールする事が出来る。
Therefore, by controlling the heat treatment time, the particle size can be easily controlled.

熱処理する方法は特に限定されない。 例えば、溶融混
合物をクラ、シャー粉砕物、ペレット、シート等の形状
にして、AとBの溶融温度以上の所定温度に設定された
恒温槽中に入れて、所定時間静置する。 この場合、空
気中でもよいが、時間が長い場合は、窒素ガス中とかA
とBの貧溶媒中で熱処理したほうが劣化を防止できる。
The heat treatment method is not particularly limited. For example, the molten mixture is formed into a shape such as a pulverized product, a pellet, a sheet, etc., and placed in a constant temperature bath set at a predetermined temperature higher than the melting temperature of A and B, and allowed to stand for a predetermined period of time. In this case, it may be in air, but if the time is long, it may be in nitrogen gas or A.
Deterioration can be prevented by heat treatment in a poor solvent of and B.

 才た熱処理方法として、AとBの溶融混合物を押出成
形、インフレーション成形、ロール成形等によりシート
状又はストランド状に成形し、該成形物が冷却固化する
丑での時間を、冷却条件のコントロール、捷たは加熱に
より、調節してもよい。尚、熱処理時間が2時間以上で
は、劣化が生じて好ましくない。
As an excellent heat treatment method, a molten mixture of A and B is formed into a sheet or strand shape by extrusion molding, inflation molding, roll molding, etc., and the time in which the molded product is cooled and solidified is controlled by controlling the cooling conditions. It may be adjusted by grinding or heating. It should be noted that if the heat treatment time is 2 hours or more, deterioration will occur, which is not preferable.

本発明において、AとBの溶融混合物を、溶媒S中に浸
漬して攪拌すると、連続相を形成している成分Bが溶解
するために、該溶融混合物が崩壊して、熱可塑性樹脂A
の微小球体かけん濁しだサスペンションが得られる。
In the present invention, when the molten mixture of A and B is immersed in the solvent S and stirred, the molten mixture collapses because the component B forming the continuous phase dissolves, and the thermoplastic resin A
A suspension of microspheres is obtained.

該サスペンションからAの微小球体を分離する方法は、
特に限定されない。 例えば、遠心分離法、濾過法、沈
降法、浮遊分離法、蒸発法等によって実施出来る。 こ
の際、溶媒Sによって数回洗浄することが望ましい。
The method for separating the microspheres of A from the suspension is as follows:
Not particularly limited. For example, it can be carried out by a centrifugation method, a filtration method, a sedimentation method, a floating separation method, an evaporation method, etc. At this time, it is desirable to wash with solvent S several times.

このようにして得たAの微小球体の形状および粒径は、
走査電子顕微鏡、透過型電子顕微鏡等によって観察、測
定できる。
The shape and particle size of the microspheres of A thus obtained are as follows:
It can be observed and measured using a scanning electron microscope, transmission electron microscope, etc.

本発明においては、熱可塑性樹脂Aと成分Bに加えて、
必要に応じて、炭酸カル7ウム、二酸化けい素、二酸化
チタン、クレー、硫酸カルシウム、カーボンプラ、り等
の充填剤、可塑剤、酸化防止剤、紫外線吸収剤、着色剤
、架橋剤等を適当量添加することにより、該添加剤を含
有しだAの微小球体を製造する事もできる。
In the present invention, in addition to thermoplastic resin A and component B,
If necessary, fillers such as calcium carbonate, silicon dioxide, titanium dioxide, clay, calcium sulfate, carbon plastic, and glue, plasticizers, antioxidants, ultraviolet absorbers, colorants, crosslinking agents, etc. are added as appropriate. By adding a certain amount, it is also possible to produce microspheres of type A containing the additive.

捷だ、への微小球体が形成しやすいようにするために、
界面活性剤、ポリマー、オリゴマー等を適当量添加して
もよい。
In order to facilitate the formation of microspheres,
Appropriate amounts of surfactants, polymers, oligomers, etc. may be added.

次に、実施例により、本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

(実施例=1) 第1表に示しだ配合処方で、第2表に示した溶融混合条
件で混練し、溶融混合物を冷却後、クラーッンヤーで粉
砕し、第2表に示した溶媒S中に浸漬し、約30分間攪
拌して、サスペンションを得だ。このサスペンションを
マイクロフィルターにより濾別し、第2表に示した粒径
分布のシャープな6ナイロンの微小球体を得た。
(Example = 1) The compounding recipe shown in Table 1 was kneaded under the melt mixing conditions shown in Table 2. After cooling the molten mixture, it was ground in a crusher and poured into the solvent S shown in Table 2. Soak and stir for about 30 minutes to obtain a suspension. This suspension was filtered through a microfilter to obtain nylon 6 microspheres with a sharp particle size distribution as shown in Table 2.

(実施例−2) 第2表に示した配合処方で、1ず、ポリ塩化ビニルに、
DOP、ジプチル錫マレート、VT、TN−5(用研フ
ァインケミカル■製。滑剤)をトライブレンドし、1時
間放置して、DOPをポリ塩化ビニルに含浸させた後、
第2表に示しだ溶融混合条件でポリエチレンオキザイド
と混練し、溶融混合物を冷却後、クラ、シャーで粉砕し
、押出機〜Tダイにより、厚み1mmのシートに成形し
た。このシートを第2表に示した溶媒S中に浸漬し、約
20分間攪拌してサスペンションを得だ。
(Example-2) With the formulation shown in Table 2, first, polyvinyl chloride,
DOP, diptyltin malate, VT, and TN-5 (manufactured by Yoken Fine Chemical ■, lubricant) were tri-blended and left for 1 hour to impregnate the polyvinyl chloride with DOP.
The mixture was kneaded with polyethylene oxide under the melt-mixing conditions shown in Table 2, and the molten mixture was cooled, crushed with a cracker and shear, and formed into a sheet with a thickness of 1 mm using an extruder and a T-die. This sheet was immersed in the solvent S shown in Table 2 and stirred for about 20 minutes to obtain a suspension.

このサスペンションを濾別し、第2表に示した粒径分布
のンヤープなポリ塩化ビニルの微小球体を得た。
This suspension was filtered to obtain polyvinyl chloride microspheres having the particle size distribution shown in Table 2.

(実施例−3) 実施例2のTダイ成形ソートを、190℃の空気恒温槽
中でコー0分間熱処理し、冷却後、実施例2と同様の溶
媒処理を実施し、ポリ塩化ビニルの微小球体を得た。 
この微小球体は、実施例2のものよりも、さらにきれい
な真球状であり、粒径は1〜6μmであり、実施例2の
ものよりも大きくなり、成長した事が分かる。
(Example-3) The T-die molded sort of Example 2 was heat-treated for 0 minutes in an air constant temperature bath at 190°C, and after cooling, the same solvent treatment as in Example 2 was carried out to obtain microscopic particles of polyvinyl chloride. I got a sphere.
These microspheres had a more perfect spherical shape than those of Example 2, and had a particle size of 1 to 6 μm, and were larger than those of Example 2, indicating that they had grown.

(実施例−4) 実施例2のTダイ成形シートを、190℃の空気恒温槽
中で30分間熱処理し、冷却後、実施例3と同様にして
、粒径5〜20μmのポリ塩化ビニルの微小球体を得た
。 この微小球体は実施例3のものよりもさらに大きく
成長した事が分かるO (実施例−5) 実施例20Tダイ成形シートを、190℃の窒素ガス気
流恒温槽中で90分間熱処理し、冷却後、実施例3と同
様にして、粒径50〜100μmのポリ塩化ビニルの微
小球体を得た。 この微小球体は実施例4のものよりも
さらに大きく成長した事が分かる。
(Example-4) The T-die molded sheet of Example 2 was heat-treated in an air constant temperature bath at 190°C for 30 minutes, and after cooling, polyvinyl chloride with a particle size of 5 to 20 μm was prepared in the same manner as in Example 3. Microspheres were obtained. It can be seen that these microspheres grew even larger than those in Example 3. In the same manner as in Example 3, polyvinyl chloride microspheres with a particle size of 50 to 100 μm were obtained. It can be seen that these microspheres grew even larger than those of Example 4.

(実施例−6〜実施例−10) 第1表に示した配合処方で、第2表に示した溶融混合条
件、溶媒処理条件の下に、実施例−1と同様に実施し、
第2表に示した粒径分布を有する熱可塑性樹脂Aの微小
球体を得だ。
(Example-6 to Example-10) Using the formulation shown in Table 1, carrying out the same procedure as in Example-1 under the melt mixing conditions and solvent treatment conditions shown in Table 2,
Microspheres of thermoplastic resin A having the particle size distribution shown in Table 2 were obtained.

Claims (1)

【特許請求の範囲】[Claims] 基材熱可塑性樹脂Aと、Aと相溶性のない成分Bを、B
が連続性でAが分散相を形成する混合比で、AとBの溶
融温度以上で溶融混合し、該溶融混合物をそのまま冷却
し、またはAとBの溶融温度以上で2時間以内の熱処理
をした後冷却して、Aの貧溶媒でかつBの良溶媒である
溶媒S中に浸漬して、該溶融混合物を崩壊せしめ、溶媒
S中にBが溶解しAの粒子が分散したサスペンションを
得て、該サスペンションからAの粒子を分離することを
特徴とする粒径0.01μm〜100μmの熱可塑性樹
脂微小球体の製法。
A base thermoplastic resin A, a component B that is not compatible with A,
is continuous and A forms a dispersed phase, melt-mixes A and B at a temperature higher than their melting temperature, cools the molten mixture as it is, or heat-treats it at a temperature higher than the melting temperature of A and B within 2 hours. After that, it is cooled and immersed in a solvent S, which is a poor solvent for A and a good solvent for B, to disintegrate the molten mixture, thereby obtaining a suspension in which B is dissolved in the solvent S and particles of A are dispersed. A method for producing thermoplastic resin microspheres having a particle size of 0.01 μm to 100 μm, which comprises separating the particles of A from the suspension.
JP13005784A 1984-06-26 1984-06-26 Production of thermoplastic resin microsphere Pending JPS619433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13005784A JPS619433A (en) 1984-06-26 1984-06-26 Production of thermoplastic resin microsphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13005784A JPS619433A (en) 1984-06-26 1984-06-26 Production of thermoplastic resin microsphere

Publications (1)

Publication Number Publication Date
JPS619433A true JPS619433A (en) 1986-01-17

Family

ID=15025001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13005784A Pending JPS619433A (en) 1984-06-26 1984-06-26 Production of thermoplastic resin microsphere

Country Status (1)

Country Link
JP (1) JPS619433A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306246A (en) * 1990-11-09 1994-04-26 Boston Scientific Corporation Balloon for medical catheter
JP2002363291A (en) * 2001-06-12 2002-12-18 Unitika Ltd Biodegradable polyester resin fine particle and biodegradable polyester resin composite fine particle
WO2005052034A1 (en) 2003-11-28 2005-06-09 Daicel Chemical Industries, Ltd. Composite particle and dispersion
JP2006328208A (en) * 2005-05-26 2006-12-07 Daicel Degussa Ltd Method for producing spherical thermoplastic resin fine particle
JP2007002223A (en) * 2005-05-27 2007-01-11 Daicel Chem Ind Ltd Dispersion and modified organic solid particle
JP2007246567A (en) * 2006-03-13 2007-09-27 Daicel Degussa Ltd Method for producing resin particle, and resin particle
JP2007277546A (en) * 2006-04-01 2007-10-25 Degussa Gmbh Polymer powder, method for producing polymer powder, use of powder and formed article made of the powder
WO2008149755A1 (en) * 2007-06-05 2008-12-11 Daicel-Evonik Ltd. Method for production of resin particle
JP2009120828A (en) * 2007-10-24 2009-06-04 Hitachi Chem Co Ltd Method for producing polymer fine particle
WO2010064696A1 (en) 2008-12-05 2010-06-10 ダイセル・エボニック株式会社 Spherical composite particles and manufacturing method therefor
US7868069B2 (en) 2002-05-29 2011-01-11 Daicel Chemical Industries, Ltd. Dispersed composition and process for producing shaped article using the same
WO2019240153A1 (en) * 2018-06-14 2019-12-19 ポリプラスチックス株式会社 Method for producing liquid-crystal resin microparticles
EP3341194B1 (en) 2015-08-24 2023-02-22 Cytec Industries Inc. Composite material and resin composition containing metastable particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013816A (en) * 1983-07-06 1985-01-24 Showa Denko Kk Preparation of fine particles of thermoplastic resin
JPS6040134A (en) * 1983-08-13 1985-03-02 Showa Denko Kk Preparation of fine particle of polyamide resin
JPS60195128A (en) * 1984-03-19 1985-10-03 Showa Denko Kk Manufacture of thermoplastic resin fine particles
JPS60197735A (en) * 1984-03-21 1985-10-07 Showa Denko Kk Preparation of polyamide resin particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013816A (en) * 1983-07-06 1985-01-24 Showa Denko Kk Preparation of fine particles of thermoplastic resin
JPS6040134A (en) * 1983-08-13 1985-03-02 Showa Denko Kk Preparation of fine particle of polyamide resin
JPS60195128A (en) * 1984-03-19 1985-10-03 Showa Denko Kk Manufacture of thermoplastic resin fine particles
JPS60197735A (en) * 1984-03-21 1985-10-07 Showa Denko Kk Preparation of polyamide resin particles

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306246A (en) * 1990-11-09 1994-04-26 Boston Scientific Corporation Balloon for medical catheter
JP2002363291A (en) * 2001-06-12 2002-12-18 Unitika Ltd Biodegradable polyester resin fine particle and biodegradable polyester resin composite fine particle
US7868069B2 (en) 2002-05-29 2011-01-11 Daicel Chemical Industries, Ltd. Dispersed composition and process for producing shaped article using the same
EP2431411A1 (en) 2002-05-29 2012-03-21 Daicel Chemical Industries, Ltd. Dispersion and process for production of Moldings by Using the same
WO2005052034A1 (en) 2003-11-28 2005-06-09 Daicel Chemical Industries, Ltd. Composite particle and dispersion
US8013042B2 (en) 2003-11-28 2011-09-06 Daicel Chemical Industries, Ltd. Process of producing a particle having a core-shell structure
JP2006328208A (en) * 2005-05-26 2006-12-07 Daicel Degussa Ltd Method for producing spherical thermoplastic resin fine particle
JP2007002223A (en) * 2005-05-27 2007-01-11 Daicel Chem Ind Ltd Dispersion and modified organic solid particle
JP2007246567A (en) * 2006-03-13 2007-09-27 Daicel Degussa Ltd Method for producing resin particle, and resin particle
JP2007277546A (en) * 2006-04-01 2007-10-25 Degussa Gmbh Polymer powder, method for producing polymer powder, use of powder and formed article made of the powder
EP1840155B1 (en) 2006-04-01 2016-12-28 Evonik Degussa GmbH Polymer powder, method for manufacturing and utilising such a powder and moulded parts made thereof
US9233065B2 (en) 2007-06-05 2016-01-12 Daicel-Evonik Ltd. Method for production of resin particle
JP2008303248A (en) * 2007-06-05 2008-12-18 Daicel-Evonik Ltd Method for producing resin particles
WO2008149755A1 (en) * 2007-06-05 2008-12-11 Daicel-Evonik Ltd. Method for production of resin particle
JP2009120828A (en) * 2007-10-24 2009-06-04 Hitachi Chem Co Ltd Method for producing polymer fine particle
JP2010132811A (en) * 2008-12-05 2010-06-17 Daicel-Evonik Ltd Globular composite particle and method for producing the same
WO2010064696A1 (en) 2008-12-05 2010-06-10 ダイセル・エボニック株式会社 Spherical composite particles and manufacturing method therefor
EP3341194B1 (en) 2015-08-24 2023-02-22 Cytec Industries Inc. Composite material and resin composition containing metastable particles
WO2019240153A1 (en) * 2018-06-14 2019-12-19 ポリプラスチックス株式会社 Method for producing liquid-crystal resin microparticles
JP6697644B1 (en) * 2018-06-14 2020-05-20 ポリプラスチックス株式会社 Method for producing liquid crystal resin fine particles
CN114249910A (en) * 2018-06-14 2022-03-29 宝理塑料株式会社 Method for producing liquid crystalline resin fine particles
CN114249910B (en) * 2018-06-14 2023-05-16 宝理塑料株式会社 Method for producing liquid crystal resin fine particles

Similar Documents

Publication Publication Date Title
JPS619433A (en) Production of thermoplastic resin microsphere
JP2907827B2 (en) Polymer concentrates and their preparation
US3778288A (en) Methods for preparing master batches of additive concentrates
US4102846A (en) Stable dispersions of polymer particles containing sub-particles of a solid modifying agent and process for making same
KR20040096631A (en) Grinding process for plastic material and compositions therefrom
JP2012001733A (en) Resin composition, method of producing same, and foam-insulated electric wire
JP2001114901A (en) Method for manufacturing spherical composite powder
JPH0441176B2 (en)
US3586247A (en) Dispersion of pigments in normally solid carrier media
JPH0460696B2 (en)
JP4199111B2 (en) Method of encapsulating inorganic components in wax
JPH03109447A (en) Dispersible additive cake
JPS60192728A (en) Production of thermoplastic resin microsphere
JPS6013816A (en) Preparation of fine particles of thermoplastic resin
JP4069189B2 (en) Water treatment material
JPS61174229A (en) Production of microsphere of magnetic thermoplastic resin composition
JPH10176065A (en) Production of spherical polymer fine powder
JP3789709B2 (en) Cosmetics containing spherical composite powder
JPS61271330A (en) Production of microsphere of thermoplastic resin composition
JPS6013818A (en) Preparation of spherical particles of high polymer composite material
JP2007332365A (en) Fabrication process of polyester fine particles
JP4895473B2 (en) Method for producing wax composition
JP2001048992A (en) Holding master batch composition and its production
JPS6230258A (en) True spherical electrophotographic toner
WO2022113993A1 (en) Fine polyamide particles and production method therefor