JPS6190052A - Profiling device for run in pipe - Google Patents

Profiling device for run in pipe

Info

Publication number
JPS6190052A
JPS6190052A JP59211358A JP21135884A JPS6190052A JP S6190052 A JPS6190052 A JP S6190052A JP 59211358 A JP59211358 A JP 59211358A JP 21135884 A JP21135884 A JP 21135884A JP S6190052 A JPS6190052 A JP S6190052A
Authority
JP
Japan
Prior art keywords
lever
tube
fluid
pipe
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211358A
Other languages
Japanese (ja)
Inventor
Shigeru Kajiyama
梶山 茂
Chikara Sato
主税 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP59211358A priority Critical patent/JPS6190052A/en
Publication of JPS6190052A publication Critical patent/JPS6190052A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect an acute different diameter automatically and to attain alignment by providing a lever which detects the different diameter part of the internal surface of a pipe and a changeover valve which switches liquid according to the motion of the lever, and expanding and contracting a probe with the force of the liquid. CONSTITUTION:The profiling device consists of pilot levers 73 and 83 with rollers which detect a different diameter or step, change-over valves 50 and 60 which switch the liquid of a driving source according to the motions of the levers, a liquid cylinder 20, a lever 13 for alignment, the ultrasonic probe 10 mounted atop of it, etc. Then when the tip 72 of the profiling device enters a small-diameter pipe 2 and both-end rollers 70 of the lever 73 contact the internal wall surface, the lever 73 slants to the position of a roller 70B and the slider 51 of a slider 51 moves left to allow the liquid to enter the liquid cylinder 20 through a flow passage 501 and a tube 22, thereby contracting a spring 17. Consequently, the lever 13 contracts and the probe 10 is aligned while profiling the small-diameter pipe 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、伝熱管などの内面を走行して超音波探傷など
をする装置に係り、特に管の異径に追従させて超音波探
触子などを被検体に押付けることができる管面倣い装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device that conducts ultrasonic flaw detection by traveling on the inner surface of a heat exchanger tube, etc., and in particular, an ultrasonic probe that follows different diameters of the tube. The present invention relates to a tube surface copying device that can press a specimen against a subject.

〔発明の背景〕[Background of the invention]

伝熱管を内面から検査しようとする動きは、プラント運
転の信頼性向上の一貫として盛んになりつつある。しか
し、伝熱管の内径は細くて長く、かつ曲がりなどがあっ
て検査用のセンサを内部に挿入するのは雛しい点が多く
ある。例えば、φ25mmの内径で数10mmの長さの
ある伝熱、管の場合はモータを使った挿入方式では機構
的に大きくなることあるいは所要の駆動トルクが得られ
ないことから流体による圧送方式が主流である。この場
合、特開昭56−49957のように被検体の内面に倣
う調心装置を設けているが、溶接部の裏波の段差を乗越
すことができる程度で、より大きな段差では調心させて
追従することができなかった。
The movement to inspect heat exchanger tubes from the inside is gaining momentum as part of efforts to improve the reliability of plant operation. However, the inner diameter of the heat exchanger tube is long and thin, and there are bends, making it difficult to insert a sensor for inspection inside the tube. For example, in the case of heat transfer pipes with an inner diameter of φ25 mm and a length of several tens of mm, the insertion method using a motor would be mechanically large or the required driving torque could not be obtained, so the mainstream method is the pressure feeding method using a fluid. It is. In this case, an alignment device that follows the inner surface of the object is provided as in JP-A No. 56-49957, but it is only able to overcome the level difference in the Uranami of the welded part, and cannot be aligned with larger levels. I couldn't follow it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、管内面に鋭角的な異径があってもこれ
を自動的に検出し、この異径に倣い、かつ、調心させて
超音波探触子などを伸縮させて探傷できる小型の装置を
提供するにある。
The purpose of the present invention is to automatically detect even if there is an acute different diameter on the inner surface of a tube, and to detect flaws by extending and contracting an ultrasonic probe, etc., following and aligning this different diameter. It is to provide small size equipment.

〔発明の概要〕[Summary of the invention]

管内面の異径部を検出するレバーと、このレバーの動き
に応じて駆動源の流体を切換える切換バルブとを前後に
各々1組を配置するとともにこの流体を2段流体シリン
ダに供給し、この力で探触子の付いた倣い装置を伸縮さ
せる。すなわち、管内径が小さい場合は、倣い装置を収
縮させ、管内径が大きくなった場合は、倣い装置を調心
させた状態で伸長させ、異径管でも走行2作業ができる
ことを特徴とする。
A lever that detects a different diameter part on the inner surface of the tube and a switching valve that switches the fluid of the drive source according to the movement of this lever are arranged in front and rear pairs, and this fluid is supplied to a two-stage fluid cylinder. A copying device with a probe is expanded and contracted by force. That is, when the pipe inner diameter is small, the copying device is retracted, and when the pipe inner diameter is large, the copying device is extended in an aligned state, so that the two-travel operation can be performed even with pipes of different diameters.

〔発明の実施例〕[Embodiments of the invention]

本発明を自動超音波探傷装置に適用した場合に1   
    ついて詳細に説明する。
When the present invention is applied to an automatic ultrasonic flaw detection device, 1
This will be explained in detail.

本発明の装置は、第1図に示すととく異径又は段差を検
出するローラ付パイロットレバー73゜83と、この動
きを受けて駆動源の流体を供給。
The device of the present invention, as shown in FIG. 1, includes a pilot lever 73° 83 with a roller for detecting a difference in diameter or a difference in level, and in response to this movement, supplies a driving source fluid.

停止あるいは開放させる切換バルブ50.60と、この
流体とスプリング17.14の力で伸縮させる流体シリ
ンダ20と、流体シリンダ20の軸方向の動きを管の板
厚方向の動きに変換する調心用レバー13と、このレバ
ー13の先端に付けた超音波の探触子10とから構成し
、これらをフレキシブルシャフト23.16で連結する
。このように段差に応じたパイロットレバー73.83
の動きによって探触子10の付いたレバー13の角度を
変えて収縮あるいは伸長をさせるもので、少なくともい
ずれか一方のパイロットレバー73゜83が倒れた状態
にある時は、レバー13を収縮する角度にさせておき、
小口径管も通過できるようにした点に特徴がある。
A switching valve 50.60 that stops or opens, a fluid cylinder 20 that expands and contracts with the force of this fluid and a spring 17.14, and an alignment valve that converts the axial movement of the fluid cylinder 20 into a movement in the thickness direction of the pipe. It consists of a lever 13 and an ultrasonic probe 10 attached to the tip of the lever 13, and these are connected by a flexible shaft 23.16. In this way, the pilot lever according to the level difference73.83
The lever 13 to which the probe 10 is attached is contracted or extended by changing the angle of the lever 13 by the movement of Let it be,
Its unique feature is that it can also pass through small-diameter pipes.

以下に各構成要素の構造から詳細な動作について説明す
る6まず、第1図は軸方向に長いものをシャフト23部
分で切って示したものであるが、前後のいずれのパイロ
ットレバー73.84が立った状態(管の軸方向長さと
ほぼ直角)になった場合、すなわちパイロットレバー7
3.83のローラ70.80が管面に接触しない状態で
は、圧縮流体を供給しているチューブ21は、切換バル
ブ50.60のスライダ51.61に設けである流路5
01,502,503,801,602゜603のいず
れも同通していないので、流体シリンダ20を駆動する
圧縮流体はチューブ22゜26に供給されない。この結
果、流体シリンダ20のスライダ27はスプリング17
.14の力でレバー13の角度を大きくして伸長する方
向に動く。この場合にリング29はンヤフト16に固定
しである。またレバー13は別のリング28と回動自在
に連結しであるので、各レバー13は管の板厚方向に調
心して動く。さらに、レバー13の先端は探触子10を
管面に押付けるためにヒンジ12を中心に回動でき、か
つスプリング(図示せず)によって常に実線で示す形状
になるようにしである。すなわち、ローラ11.ヒンジ
12及びスプリングによってレバー13の角度が変わっ
ても探触子10Bを管面に密着できる。なお、流体シリ
ンダ20内の空間18.19にある圧縮流体はスプリン
グ17.14の動きによってチューブ22.26.流路
502,602を通り、排気口52.62から排出され
る。なお別の排気口53.57,63,67はそれぞれ
スライダ51゜61を動き易くする目的で設けである。
The detailed operation from the structure of each component will be explained below. 6 First, Figure 1 shows an axially long one cut off at the shaft 23, but whichever pilot lever 73.84 on the front or rear is When it is in a standing position (approximately perpendicular to the axial length of the tube), that is, the pilot lever 7
When the roller 70.80 of 3.83 is not in contact with the pipe surface, the tube 21 supplying the compressed fluid is connected to the flow path 5 provided in the slider 51.61 of the switching valve 50.60.
Since none of the tubes 01, 502, 503, 801, 602, 603 are in communication with each other, the compressed fluid that drives the fluid cylinder 20 is not supplied to the tubes 22, 26. As a result, the slider 27 of the fluid cylinder 20 is moved by the spring 17.
.. The angle of the lever 13 is increased by the force of 14, and the lever 13 moves in the direction of extension. In this case, the ring 29 is fixed to the shaft 16. Further, since the levers 13 are rotatably connected to another ring 28, each lever 13 moves in alignment in the thickness direction of the tube. Further, the tip of the lever 13 can be rotated around the hinge 12 in order to press the probe 10 against the tube surface, and is always kept in the shape shown by the solid line by a spring (not shown). That is, roller 11. The probe 10B can be brought into close contact with the tube surface even if the angle of the lever 13 changes due to the hinge 12 and spring. Note that the compressed fluid in the space 18.19 within the fluid cylinder 20 is moved by the movement of the spring 17.14 into the tubes 22.26. It passes through channels 502 and 602 and is discharged from exhaust ports 52 and 62. Further, the other exhaust ports 53, 57, 63, and 67 are provided for the purpose of facilitating the movement of the sliders 51 and 61, respectively.

第1図の先端72が左方向に進んで小口径管2内面のレ
バー73が接触するとレバー73が倒れてローラ70B
の位置になる。このレバー73は周方向に3側設けこれ
を等角度で配置してあり、リング75によってこれらが
同調して動く。このレバー73の角度変化に伴ってシャ
フト74も左方向に動くので、これと一体になった切換
バルブ50のスライダ51も左方向に動く、これによっ
て圧縮流体はチューブ21から流路501を通り、チュ
ーブ22から流体シリンダ20の空間19に入りスライ
ダ27を押してスプリング17を収縮させる。この結果
、レバー13の角度も変わり、収縮する。この場合、切
換バルブ50の排気口52はスライダ51が動くのでチ
ューブ22とは同通しなくなる。
When the tip 72 in FIG. 1 moves leftward and comes into contact with the lever 73 on the inner surface of the small diameter tube 2, the lever 73 falls down and the roller 70B
position. The levers 73 are provided on three sides in the circumferential direction and are arranged at equal angles, and are moved in synchronization by a ring 75. As the shaft 74 also moves to the left as the angle of the lever 73 changes, the slider 51 of the switching valve 50 that is integrated with this also moves to the left. As a result, the compressed fluid passes from the tube 21 through the flow path 501. It enters the space 19 of the fluid cylinder 20 from the tube 22 and pushes the slider 27, causing the spring 17 to contract. As a result, the angle of the lever 13 also changes and contracts. In this case, the exhaust port 52 of the switching valve 50 no longer communicates with the tube 22 because the slider 51 moves.

次に前後のパイロットレバー83が小口径管2に進んだ
場合について説明する。ローラ80Bの位置になると切
換バルブ60のスライダ61が動き、流路603を介し
てチューブ21Bとチューブ26とが同通し、圧縮流体
は流体シリンダ20内の空間18に流入する。流体シリ
ンダ20のスライダ27はチューブ22を介した圧縮流
体によってすでに動いているのでレバー13の角度は小
さく収縮した状態のままである。
Next, a case where the front and rear pilot levers 83 move to the small diameter pipe 2 will be described. When the roller 80B is at the position, the slider 61 of the switching valve 60 moves, the tube 21B and the tube 26 pass together through the flow path 603, and the compressed fluid flows into the space 18 within the fluid cylinder 20. Since the slider 27 of the fluid cylinder 20 has already been moved by the compressed fluid through the tube 22, the angle of the lever 13 remains small and retracted.

パイロットレバー73が逆方向の角度(70G)に倒れ
た場合についても同様な動作をする。すなわち、パイロ
ットレバー73がローラ70Cの位置になると、シャフ
ト74を右方向に動かすのでスライダ51も右方向に動
き流路503でチューブ21とチューブ22とを同通さ
せ、圧縮流体を流体シリンダ20まで流入させる。この
場合の流路501とチューブ21.22及び排気口52
と流路502とは同通しない。これらの動作は別のパイ
ロットレバー83がローラ80Gの角度になってもまっ
たく同様である。従って、本発明の装置が前進、後退し
てもまったく同様の動作をするので探触子10を段差に
引っかけるなどのトラブルは起らない。
A similar operation is performed when the pilot lever 73 is tilted to the opposite angle (70G). That is, when the pilot lever 73 reaches the position of the roller 70C, the shaft 74 is moved to the right, so the slider 51 is also moved to the right, allowing the tubes 21 and 22 to pass through the flow path 503, and the compressed fluid to the fluid cylinder 20. Let it flow. In this case, the flow path 501, tubes 21, 22, and exhaust port 52
and the flow path 502 do not communicate with each other. These operations are exactly the same even if another pilot lever 83 is at the angle of the roller 80G. Therefore, even if the device of the present invention moves forward or backward, it operates in exactly the same way, so troubles such as the probe 10 getting caught on steps do not occur.

以上の動作を管径に応じた動きから系統的に説明する。The above operation will be systematically explained from the movement according to the pipe diameter.

まず第2図は小口径管2内を走行している場合であるが
、いずれのパイロットレバー73゜83も倒れているの
で流体シリンダ20によりレバー13の角度は小さく収
縮した状態になる。第3図は前方のパイロットレバー7
3が大口径管1に進むので、立った状態になるが、後の
パイロットレバー83がまだ小口径管2内にあって、倒
れた状態になっている。このため流体シリンダ20内に
切換バルブ60を介した圧縮流体が流入しているので、
レバー13の角度は小さく収縮した状態を保つ。これが
第4図のように大口径管1内に前後のパイロットレバー
73.83が入るといずれの切換バルブ50.60の流
路が断たれて、スプリング14(17は図示せず)によ
りレバー13の角度が大きくなり伸長する。さらに、第
5図のように前方のパイロットレバー73が小口径管2
に入った場合は、すでに説明したように切換バルブ50
側からの圧縮流体により流体シリンダ20が動作し、レ
バー13の角度を小さくして収縮する。
First, FIG. 2 shows the case where the vehicle is traveling inside the small diameter pipe 2, and since both pilot levers 73 and 83 are tilted down, the angle of the lever 13 is contracted to a small extent by the fluid cylinder 20. Figure 3 shows the front pilot lever 7.
3 advances to the large diameter pipe 1, so it is in a standing state, but the rear pilot lever 83 is still in the small diameter pipe 2, and is in a fallen state. For this reason, compressed fluid flows into the fluid cylinder 20 via the switching valve 60.
The angle of the lever 13 remains small and contracted. When the front and rear pilot levers 73, 83 enter the large-diameter pipe 1 as shown in FIG. The angle of will increase and it will elongate. Furthermore, as shown in FIG. 5, the front pilot lever 73 is
If the
The fluid cylinder 20 is operated by the compressed fluid from the side, and the angle of the lever 13 is reduced to contract.

本実施例によれば次の効果がある。This embodiment has the following effects.

(イ)管内面の異径部を検出し、管内径に応°じて探触
子を自動的に倣わせることができる。
(a) It is possible to detect a different diameter portion on the inner surface of a tube and automatically make the probe follow the inner diameter of the tube.

(ロ)パイロットレバーの小さな力、ストロークを圧縮
流体を使って増幅できるので、大きな押付は力と長いス
トロークが得られる。
(b) The small force and stroke of the pilot lever can be amplified using compressed fluid, so large pressing forces and long strokes can be obtained.

(ハ)1系統の圧縮流体をパラレルに使用するので、管
内に挿入する駆動源のチューブは1本でよい。このため
、小型化できるので小口径の配管にも適用できる。
(c) Since one system of compressed fluid is used in parallel, only one driving source tube is required to be inserted into the pipe. Therefore, it can be downsized and can be applied to small-diameter piping.

(ニ)各ユニットを分散配置でき、かつこれらをフレキ
シブルシャフトなどの柔軟性あるもので連結しているの
で、曲がりのある管内にも送入できる。
(d) Since each unit can be arranged in a dispersed manner and connected by a flexible shaft or other flexible material, it can be fed into curved pipes.

(ホ)圧縮流体とスプリングとを組合せているので一方
向だけに圧縮流体で駆動すればよく、□小型化と機構の
単純化が図れる。
(E) Since compressed fluid and a spring are combined, it is only necessary to drive the compressed fluid in one direction, and □ miniaturization and simplification of mechanism can be achieved.

(へ)前進、後退の別なく本装置を適用できる。(f) This device can be applied regardless of whether moving forward or backward.

(ト)探触子を円滑に管内面に押付けることができる。(g) The probe can be pressed smoothly against the inner surface of the tube.

前記の実施例の場合は、大口径管の探傷のみに限定した
が、目的によっては1段差部分を除く大口径管と小口径
管の両方を探傷できた方が有利にな−る場合がある。そ
こで、この応用例を第6図から説明する。この動作原理
は、パイロットレバーの前後のいずれか一方が倒れた場
合は、探触子の付いたレバーを収縮させ、前後のパイロ
ットレバーの両方が立った状態及び両方が倒れた場合は
レバーの角度を大きくし、伸長させて探触子を管面に押
付けて探傷できるようにしたものである。第6図はフレ
キシブルシャフト23の部分で切った状態で示したもの
であるが、これらは連結された一体のものである。まず
、パイロットレバー73゜83の両方が立った場合につ
いて説明する。パイロットレバー73.83と一体にな
った切換バルブ50.60のスライダ51.61は、ス
プリング54.64とバランスして中間に停止している
In the case of the above embodiment, flaw detection was limited to large-diameter pipes, but depending on the purpose, it may be advantageous to be able to detect both large-diameter pipes and small-diameter pipes, excluding the one-step difference. . Therefore, this application example will be explained with reference to FIG. The operating principle is that when either the front or rear pilot lever falls down, the lever with the probe is retracted, and when both the front and rear pilot levers are upright or both fall down, the lever angle is It is made larger and extended so that the probe can be pressed against the tube surface for flaw detection. Although FIG. 6 shows the flexible shaft 23 cut away, these parts are connected and integrated. First, a case where both pilot levers 73 and 83 are in the upright position will be described. The slider 51.61 of the switching valve 50.60, which is integrated with the pilot lever 73.83, is balanced with the spring 54.64 and stopped in the middle.

したがってスライダ51.61に設けた流路501゜5
02.503,601,602,603チューブ21.
21Bとチューブ24.25とをそれぞれ回通しないの
で、流体シリンダ20に圧縮流体を供給しない。このた
めスプリング17.14により、レバー13は伸長する
角度になり、探触子を管面1に押付ける。
Therefore, the flow path 501°5 provided in the slider 51.61
02.503,601,602,603 tube 21.
21B and tubes 24, 25, respectively, no compressed fluid is supplied to the fluid cylinder 20. Due to the spring 17 . 14 , the lever 13 is therefore at an extended angle and presses the probe against the tube surface 1 .

次に前後両方のパイロットレバー73.83が倒れた場
合は、切換バルブ50内のスライダ51に設けた流路5
01,503のいずれか一方がチューブ21とチューブ
24を回通させる6 (流路501.503のいずれが
回通するかはパイロットレバー73の倒れる方向によっ
て異なる)これによって圧縮流体はチューブ24を経由
して伸縮切換バルブ40のスライダ41を押し、チュー
ブ!       25とチューブ26とを回通させて
いる流路を閉じる。これによって切換バルブ60からの
圧縮流体を流体シリンダ20に供給できなくなるととも
に、チューブ26と排気口42を結ぶ流路とが回通し、
チューブ26の圧縮流体を排気する。他方のパイロット
レバー83が倒れると、スライダ61の流路6o3(ま
たは601)がチューブ21Bとチューブ25を回通さ
せる。これによって圧縮流体はチューブ25を介して伸
縮切換バルブ30に供給され、スライダ31を動かして
チューブ22の流路を閉じる。
Next, if both the front and rear pilot levers 73.83 fall down, the flow path 5 provided in the slider 51 in the switching valve 50
Either one of the channels 501 and 503 circulates between the tube 21 and the tube 24 6 (Which channel 501 or 503 circulates depends on the direction in which the pilot lever 73 is tilted) This causes the compressed fluid to pass through the tube 24. Then press the slider 41 of the telescopic switching valve 40, and the tube! 25 and the tube 26 are closed. As a result, the compressed fluid from the switching valve 60 cannot be supplied to the fluid cylinder 20, and the flow path connecting the tube 26 and the exhaust port 42 is circulated.
Evacuate the compressed fluid in tube 26. When the other pilot lever 83 falls, the flow path 6o3 (or 601) of the slider 61 causes the tube 21B and the tube 25 to circulate. As a result, the compressed fluid is supplied to the telescopic switching valve 30 via the tube 25, and the slider 31 is moved to close the flow path of the tube 22.

また、チューブ22と排気口32を回通させ流体シリン
ダ20内の圧縮流体を排出する。これによって流体シリ
ンダ20のスライダ27はスプリング17.14の力に
よって動き、レバー13の角度を大きくして探触子10
を小口径管の内面に押付ける。
Further, the compressed fluid in the fluid cylinder 20 is discharged by circulating the tube 22 and the exhaust port 32. As a result, the slider 27 of the fluid cylinder 20 is moved by the force of the spring 17.14, increasing the angle of the lever 13 and moving the probe 10.
Press it against the inner surface of the small diameter pipe.

次に前のパイロットレバー73が倒れて後のパイロット
レバー83が立った状態の場合は、パイロットレバー7
3の動きと連動して切換バルブ50のスライダ51が動
き、流路501,503のいずれかがチューブ21とチ
ューブ24を回通させるので、圧縮流体をチューブ24
.伸縮切換バルブ30.チューブ22を介して流体シリ
ンダ20に供給できる。この圧縮流体によって流体シリ
ンダ20のスライダ27は、スプリング17゜14の力
に勝ってレバー13の角度を小さくシ。
Next, if the front pilot lever 73 falls down and the rear pilot lever 83 is in an upright position, the pilot lever 73
The slider 51 of the switching valve 50 moves in conjunction with the movement of 3, and either of the flow paths 501 and 503 circulates between the tube 21 and the tube 24, so that the compressed fluid is transferred to the tube 24.
.. Telescopic switching valve 30. Fluid cylinder 20 can be supplied via tube 22 . This compressed fluid causes the slider 27 of the fluid cylinder 20 to overcome the force of the spring 17° 14 and reduce the angle of the lever 13.

探触子10を収縮した状態にする。この場合、切換バル
ブ60からの圧縮流体はチューブ25に供給されないの
で、伸縮切換バルブ30のスライダ31はスプリング3
3によってチューブ22とチューブ24は回通状態にす
る。また流体シリンダ20にチューブ26から圧縮流体
は供給されないが、チューブ22の圧縮流体によってレ
バー13の角度は小さくなり収縮状態になる6 前のパイロットレバー73が立ち、後のパイロットレバ
ー83が倒れた場合も前記したものと同様で、切換バル
ブ60のスライダ61に設けた流路501,503のい
ずれかから圧縮流体が伸縮切換バルブ40.チューブ2
6を介して流体シリンダ20に供給され、レバー13の
角度を小さくして収縮状態にする。
The probe 10 is brought into a contracted state. In this case, compressed fluid from the switching valve 60 is not supplied to the tube 25, so the slider 31 of the telescopic switching valve 30
3, the tubes 22 and 24 are brought into circulation. Further, although compressed fluid is not supplied to the fluid cylinder 20 from the tube 26, the angle of the lever 13 becomes smaller due to the compressed fluid in the tube 22, and the lever 13 becomes contracted.6 When the front pilot lever 73 stands up and the rear pilot lever 83 falls down is also similar to that described above, and the compressed fluid flows from either of the channels 501 and 503 provided in the slider 61 of the switching valve 60 to the telescopic switching valve 40. tube 2
6 to the fluid cylinder 20, which reduces the angle of the lever 13 to bring it into a retracted state.

このように大口径管だけでなく小口径管も探傷できる効
果がある。
In this way, there is an effect that not only large diameter pipes but also small diameter pipes can be detected.

さらに、このように長くて細い管内に送スさせた場合に
、万一トラブルが発生しても必ず装置を回収できるよう
にすることも必要である。この対策の一つとして探触子
押付は用のレバーを圧縮流体の元圧を断つことによって
収縮させた状態にすれば回収が容易になる。これを実現
する応用例としては第7図の装置がある。この図も長も
連結された装置をフレキシブルシャフト23部分で切っ
て示したものである。第7図は前のパイロットレバー7
3が立った状態で、後のパイロットレバー83が倒れた
状態を示したものであるが、まず圧縮流体を供給しない
状態について第7図から説明する。チューブ21に圧縮
流体が供給されないと流体シリンダ20は、スプリング
19゜14の力によってスライダ27を図の左方向に動
かしてレバー13の角度を小さくして収縮状態にする。
Furthermore, when the gas is fed into such a long and narrow pipe, it is also necessary to ensure that the device can be recovered even if some trouble should occur. As one measure against this, if the lever used to press the probe is brought into a contracted state by cutting off the source pressure of the compressed fluid, recovery will be facilitated. An example of an application that achieves this is the device shown in FIG. Both this figure and the length show the connected devices cut at the flexible shaft 23. Figure 7 shows the front pilot lever 7.
Fig. 7 shows a state in which the pilot lever 83 is in the upright position and the latter pilot lever 83 is in a fallen position. When compressed fluid is not supplied to the tube 21, the fluid cylinder 20 moves the slider 27 to the left in the figure by the force of the spring 19.degree. 14, reducing the angle of the lever 13 and bringing it into a contracted state.

この圧縮流体が供給されないとパイロットレバー73,
83がどのような方向に動いてもレバーは収縮した状態
になる。
If this compressed fluid is not supplied, the pilot lever 73,
No matter what direction 83 moves, the lever will be in the retracted state.

次に前後のパイロットレバー73.83が立つた状態で
圧縮流体を供給すると、前の切換バルブ50のスライダ
51の流路によってチューブ21とチューブ54とが同
道する6 (パイロットレバー83が立っているのでチ
ューブ25から圧縮流体は供給されず、スプリング33
で左に動く)伸縮切換バルブ30にはチューブ25から
圧縮流体が供給されないので(第7図ではパイロットレ
バー83が倒れているので同道)スライダ32はスプリ
ング33によりチューブ22とチューブ25は同道状態
になり、圧縮流体を流体シリンダ20に供給する。他方
、後の切換バルブ60のスライダ61はチューブ21B
とチューブ65とを同道状態にするので、伸縮切換バル
ブ40.チューブ26を介して流体シリンダ20に圧縮
流体を供給する。これによって流体シリンダ20のスラ
イダ27がスプリング17.14を収縮させる方向に動
き、レバー13の角度を変えて探触子10を大口径管面
1に押付ける。
Next, when compressed fluid is supplied with the front and rear pilot levers 73. Therefore, compressed fluid is not supplied from the tube 25 and the spring 33
Since compressed fluid is not supplied from the tube 25 to the telescopic switching valve 30 (in Fig. 7, the pilot lever 83 is in the same position), the slider 32 is moved to the left by the spring 33 so that the tube 22 and the tube 25 are in the same position. and supplies compressed fluid to the fluid cylinder 20. On the other hand, the slider 61 of the rear switching valve 60 is connected to the tube 21B.
Since the tube 65 and the telescopic switching valve 40. Compressed fluid is supplied to fluid cylinder 20 via tube 26 . This causes the slider 27 of the fluid cylinder 20 to move in the direction of contracting the spring 17.14, changing the angle of the lever 13 and pressing the probe 10 against the large diameter tube surface 1.

次に第7図に示したように前のパイロットレバー73が
立った状態で、後のパイロットレバー83が倒れた状態
を説明する。切換バルブ60のスライダ61が動いてチ
ューブ21Bとチューブ25が同道し、伸縮切換バルブ
30のスライダ31を押すにれによってチューブ54と
チューブ22を不通にする。また、チューブ22側の圧
縮流体を排気口32より排出する。さらに、切換バルブ
6oからのチューブ65に圧縮流体が供給されずに排気
口62と同道するので、伸縮切換バルブ40の流路を介
してチューブ26とチューブ25を介して流体シリンダ
20に供給されていた圧縮流体が排出される。この結果
、レバー13はスプリング17.14により収縮する角
度になる。
Next, a state in which the front pilot lever 73 is in an upright position and the rear pilot lever 83 is in a fallen position as shown in FIG. 7 will be described. The slider 61 of the switching valve 60 moves to align the tube 21B and the tube 25, and by pushing the slider 31 of the telescopic switching valve 30, the tube 54 and the tube 22 are disconnected. Further, the compressed fluid on the tube 22 side is discharged from the exhaust port 32. Furthermore, since the compressed fluid is not supplied to the tube 65 from the switching valve 6o and passes along the same path as the exhaust port 62, the compressed fluid is not supplied to the fluid cylinder 20 via the tube 26 and the tube 25 through the flow path of the telescopic switching valve 40. The compressed fluid is discharged. As a result, the lever 13 is at an angle at which it is retracted by the spring 17.14.

前のパイロットレバー73が倒れて、後のパイロットレ
バーが立った状態にあっても同様な動作をする6すなわ
ち切換バルブ50によってチューブ54の糸路が止めら
れるので伸縮切換バルブ30がチューブ54とチューブ
22とが同道した状態でも流体シリンダ20に圧縮流体
は供給されない、また、チューブ24とチューブ21と
がスライダ51によって同道ずるので、伸縮切換バルブ
40のスライダ42の流路が閉になり、切換バルブ60
側からの圧縮流体も供給されない、従って、この場合も
レバー13は収縮する角度になる。
Even if the front pilot lever 73 falls down and the rear pilot lever is in the upright position, the same operation will occur 6. In other words, the switching valve 50 will stop the yarn path of the tube 54, so the telescopic switching valve 30 will switch between the tube 54 and the tube. Compressed fluid is not supplied to the fluid cylinder 20 even when the tubes 22 and 22 are in the same path, and since the tubes 24 and 21 are in the same path by the slider 51, the flow path of the slider 42 of the telescopic switching valve 40 is closed, and the switching valve 60
There is also no supply of compressed fluid from the side, so that in this case too the lever 13 is at a retracted angle.

前後のパイロットレバー73.83がともに倒れた状態
でも同様にレバー13の角度は小さくなり、探触子10
を収縮した状態にできる。
Even when both the front and rear pilot levers 73, 83 are down, the angle of the lever 13 becomes small, and the probe 10
can be brought into a contracted state.

以上のように、何んらかのトラブルが発生した場合にも
本応用例によれば、供給する圧縮流体を点化させれば必
が探触子を収縮した状態にできるので容易に回収をする
ことができる効果がある。
As described above, even if some kind of trouble occurs, according to this application example, the probe can be brought into a contracted state by turning the supplied compressed fluid into a point, so it can be easily recovered. There is an effect that can be done.

本発明の装置は、水などの流体によって圧送できるほか
、自走式駆動装置にも適用できる。したがって圧縮流体
は、水などの液体のほか自走式の場合は圧縮空気などの
気体を利用することができる。
The device of the present invention can be used for pressure feeding using fluids such as water, and can also be applied to self-propelled drive devices. Therefore, the compressed fluid can be a liquid such as water, or in the case of a self-propelled type, a gas such as compressed air.

大口径管と小口径管の両方が探傷でき、かつ圧縮流体の
供給を停止すると探触子部分の追従機構が収縮状態にな
る装置にすることもできる。例えば第7[i!Iの伸縮
切換バルブ30.40のスライダ31.41にパイロッ
トレバー73.83が倒れた時に同道する新たな流路を
設ける。チューブ24を伸縮切換バルブ30の新たに設
けた流路の一端と接続し、他端を伸縮切換バルブ40の
新たに設けた流路の一端に接続するとともに他端を流体
シリンダ20と接続する。この場合の流体シリンダを2
段から3段に増し、この3段目のスライダにチューブ2
4からの圧縮流体を供給する。チューブ24に代えてチ
ューブ25を接続しても同様な動作にできる。これによ
って前後のパイロットレバーが倒れた場合も3段目の流
体シリンダに圧縮流体を供給できるので、探触子を小口
径管の内面に押付けることができる。
It is also possible to create a device that can detect flaws in both large-diameter pipes and small-diameter pipes, and in which the tracking mechanism of the probe section is in a contracted state when the supply of compressed fluid is stopped. For example, the 7th [i! A new flow path is provided in the slider 31.41 of the telescoping switching valve 30.40 of I when the pilot lever 73.83 falls down. The tube 24 is connected to one end of the newly provided flow path of the telescoping switching valve 30, the other end is connected to one end of the newly provided flow path of the telescoping switching valve 40, and the other end is connected to the fluid cylinder 20. The fluid cylinder in this case is 2
The stage is increased to 3 stages, and tube 2 is added to this third stage slider.
Supply compressed fluid from 4. A similar operation can be achieved by connecting a tube 25 instead of the tube 24. As a result, compressed fluid can be supplied to the third-stage fluid cylinder even if the front and rear pilot levers fall down, so the probe can be pressed against the inner surface of the small-diameter pipe.

この他の応用例としては、流体によって圧送する場合の
受圧子に応用することもできる。受圧子は流体の受けて
進むので、管径が大きくなるとその分だけ推進力が弱く
なる。この場合に本発明の方式によって受圧面積と大き
くすれば所要の推進力が得られる。
As another example of application, it can also be applied to a pressure receiving element in the case of pressure feeding by fluid. Since the pressure sensor moves along with the fluid, the larger the pipe diameter, the weaker the propulsive force will be. In this case, by increasing the pressure receiving area using the method of the present invention, the required propulsive force can be obtained.

流体シリンダへの圧縮流体を複数に供給する方式につい
て説明したが、1方向だけに送入する場合はパイロット
レバーと切換バルブは1組でよく、流体シリンダの供給
口は1個でよい。
Although a method for supplying compressed fluid to a plurality of fluid cylinders has been described, if the compressed fluid is supplied in only one direction, only one set of pilot lever and switching valve is required, and only one supply port of the fluid cylinder is required.

実施例では、流体シリンダの管、軸方向の動きをリンク
機構によって管の板厚方向に変えているが、管の板厚方
向に直接動く多段流体シリンダにすることもできる。
In the embodiment, the movement of the fluid cylinder in the axial direction is changed in the direction of the thickness of the tube by means of a link mechanism, but a multi-stage fluid cylinder that moves directly in the direction of the thickness of the tube may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、管内面の段差に倣って探触子を伸縮で
きる特徴がある。また、単純な機構の配置により小型化
ができるので、曲がりのある小口径管にも適用できる効
果がある。
According to the present invention, there is a feature that the probe can be expanded and contracted following the steps on the inner surface of the tube. In addition, since the device can be downsized by arranging a simple mechanism, it can be applied to small-diameter pipes with bends.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す部分断面図。 第2図、第3図、第4図及び第5図は各状態の側面図、
第6図、第7図は他の実施例を示す部分断面図である。 10・・・探触子、13・・・調心用レバー、14.1
7・・・スプリング、16.23・・・フレキシブルシ
ャフト、20・・・流体シリンダ、50.60・・・切
換パル惨 1 ロ ア8   / #4I!1 項4  ら  〔コ め′7図 ?2
FIG. 1 is a partial sectional view showing one embodiment of the present invention. Figures 2, 3, 4 and 5 are side views of each state;
FIGS. 6 and 7 are partial sectional views showing other embodiments. 10... Probe, 13... Aligning lever, 14.1
7...Spring, 16.23...Flexible shaft, 20...Fluid cylinder, 50.60...Switching pulse failure 1 Lower 8/#4I! 1 Section 4 Ra [Kome'7 figure? 2

Claims (1)

【特許請求の範囲】 1、管内を走行して検査などの作業をする装置において
、管内の異径部と接触して変位する手段と該変位量によ
って供給流体を供給、停止及び開放をする手段とを少な
くとも1組有し、供給された供給流体または弾性体によ
って被走行体を板厚方向に伸縮させる手段とを具備した
ことを特徴とする管内走行の倣い装置。 2、複数の供給口を有する流体シリンダと、該流体シリ
ンダによって管の板厚方向に伸縮するリンク機構と、こ
れらの管軸方向の前後に管内の異径部と接触して変位す
るレバーと、該レバーによって動くバルブAと、該バル
ブAからの流路を開閉するバルブBとを配置し、前後の
バルブBからの流体を流体シリンダの複数の供給口に供
給することを特徴とする特許請求の範囲第1項記載の管
内走行の倣い装置。
[Claims] 1. In a device that travels inside a pipe to perform inspection or other work, means for displacing it by contacting with a different diameter portion in the pipe, and means for supplying, stopping, and releasing fluid according to the amount of displacement. What is claimed is: 1. A profiling device for traveling inside a pipe, comprising at least one set of the following: and means for expanding and contracting a traveling body in the plate thickness direction by a supplied supply fluid or an elastic body. 2. A fluid cylinder having a plurality of supply ports, a link mechanism that expands and contracts in the thickness direction of the tube by the fluid cylinder, and a lever that is displaced by contacting a different diameter portion in the tube in front and back in the axial direction of these tubes; A patent claim characterized in that a valve A that is moved by the lever and a valve B that opens and closes a flow path from the valve A are arranged, and fluid from the front and rear valves B is supplied to a plurality of supply ports of a fluid cylinder. A copying device for traveling inside a pipe according to item 1.
JP59211358A 1984-10-11 1984-10-11 Profiling device for run in pipe Pending JPS6190052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211358A JPS6190052A (en) 1984-10-11 1984-10-11 Profiling device for run in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211358A JPS6190052A (en) 1984-10-11 1984-10-11 Profiling device for run in pipe

Publications (1)

Publication Number Publication Date
JPS6190052A true JPS6190052A (en) 1986-05-08

Family

ID=16604644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211358A Pending JPS6190052A (en) 1984-10-11 1984-10-11 Profiling device for run in pipe

Country Status (1)

Country Link
JP (1) JPS6190052A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276062A (en) * 1988-04-28 1989-11-06 Furukawa Electric Co Ltd:The Flaw detector for long-sized body
US6320836B1 (en) 1991-03-04 2001-11-20 Hitachi, Ltd. Apparatus for ensuring operational clearance between a rotating disc type medium and a disc cartridge enclosing the medium
GB2437547A (en) * 2006-04-28 2007-10-31 Genesis Oil And Gas Consultant In-line apparatus for inspecting pipes using ultrasonic guided waves
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
JP2011039025A (en) * 2009-08-06 2011-02-24 Korea Plant Service & Engineering Co Ltd Inspection apparatus equipped with detachable probe
JP2011203046A (en) * 2010-03-25 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Underwater inspection system
JP2014193676A (en) * 2013-03-28 2014-10-09 Osaka Gas Co Ltd In-pipe travel truck system equipped with guide truck
US20180181136A1 (en) * 2016-12-23 2018-06-28 Gecko Robotics, Inc. Inspection robot
US11135721B2 (en) 2016-12-23 2021-10-05 Gecko Robotics, Inc. Apparatus for providing an interactive inspection map
US11307063B2 (en) 2016-12-23 2022-04-19 Gtc Law Group Pc & Affiliates Inspection robot for horizontal tube inspection having vertically positionable sensor carriage
US11850726B2 (en) 2021-04-20 2023-12-26 Gecko Robotics, Inc. Inspection robots with configurable interface plates
US11971389B2 (en) 2021-04-22 2024-04-30 Gecko Robotics, Inc. Systems, methods, and apparatus for ultra-sonic inspection of a surface
US11992935B2 (en) 2022-05-24 2024-05-28 Gecko Robotics, Inc. Methods and apparatus for verifiable inspection operations

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276062A (en) * 1988-04-28 1989-11-06 Furukawa Electric Co Ltd:The Flaw detector for long-sized body
US6320836B1 (en) 1991-03-04 2001-11-20 Hitachi, Ltd. Apparatus for ensuring operational clearance between a rotating disc type medium and a disc cartridge enclosing the medium
GB2437547A (en) * 2006-04-28 2007-10-31 Genesis Oil And Gas Consultant In-line apparatus for inspecting pipes using ultrasonic guided waves
GB2437547B (en) * 2006-04-28 2010-07-14 Genesis Oil And Gas Consultant Method and apparatus for inspecting pipes
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
JP2011039025A (en) * 2009-08-06 2011-02-24 Korea Plant Service & Engineering Co Ltd Inspection apparatus equipped with detachable probe
JP2011203046A (en) * 2010-03-25 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Underwater inspection system
JP2014193676A (en) * 2013-03-28 2014-10-09 Osaka Gas Co Ltd In-pipe travel truck system equipped with guide truck
US11385650B2 (en) 2016-12-23 2022-07-12 Gecko Robotics, Inc. Inspection robot having replaceable sensor sled portions
US11518030B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System, apparatus and method for providing an interactive inspection map
US10481608B2 (en) 2016-12-23 2019-11-19 Gecko Robotics, Inc. System, method, and apparatus to perform a surface inspection using real-time position information
US10534365B2 (en) 2016-12-23 2020-01-14 Gecko Robotics, Inc. Inspection robot having vertically distributed payloads with horizontally distributed sensor sleds
US10698412B2 (en) * 2016-12-23 2020-06-30 Gecko Robotics, Inc. Inspection robot with couplant chamber disposed within sled for acoustic coupling
US10739779B2 (en) 2016-12-23 2020-08-11 Gecko Robotics, Inc. Inspection robot having replaceable sensor sled portions
US10795373B2 (en) * 2016-12-23 2020-10-06 Gecko Robotics, Inc. Inspection robot having a number of horizontally displaced sensor sleds
US10884423B2 (en) 2016-12-23 2021-01-05 Gecko Robotics, Inc. System, method, and apparatus for acoustic and magnetic induction thickness inspection of a material on a substrate
US10895878B2 (en) 2016-12-23 2021-01-19 Gecko Robotics, Inc. Inspection robot having self-aligning wheels
US10942522B2 (en) 2016-12-23 2021-03-09 Gecko Robotics, Inc. System, method, and apparatus for correlating inspection data and image data
US11135721B2 (en) 2016-12-23 2021-10-05 Gecko Robotics, Inc. Apparatus for providing an interactive inspection map
US11144063B2 (en) 2016-12-23 2021-10-12 Gecko Robotics, Inc. System, method, and apparatus for inspecting a surface
US11148292B2 (en) 2016-12-23 2021-10-19 Gecko Robotics, Inc. Controller for inspection robot traversing an obstacle
US11157013B2 (en) 2016-12-23 2021-10-26 Gecko Robotics, Inc. Inspection robot having serial sensor operations
US11157012B2 (en) 2016-12-23 2021-10-26 Gecko Robotics, Inc. System, method, and apparatus for an inspection robot performing an ultrasonic inspection
US11307063B2 (en) 2016-12-23 2022-04-19 Gtc Law Group Pc & Affiliates Inspection robot for horizontal tube inspection having vertically positionable sensor carriage
US20180181136A1 (en) * 2016-12-23 2018-06-28 Gecko Robotics, Inc. Inspection robot
US11429109B2 (en) 2016-12-23 2022-08-30 Gecko Robotics, Inc. System, method, and apparatus to perform a surface inspection using real-time position information
US11504850B2 (en) 2016-12-23 2022-11-22 Gecko Robotics, Inc. Inspection robot and methods thereof for responding to inspection data in real time
US11511427B2 (en) 2016-12-23 2022-11-29 Gecko Robotics, Inc. System, apparatus and method for providing an inspection map
US11511426B2 (en) 2016-12-23 2022-11-29 Gecko Robotics, Inc. System, method, and apparatus for rapid development of an inspection scheme for an inspection robot
US20180275674A1 (en) * 2016-12-23 2018-09-27 Gecko Robotics, Inc. Inspection robot having a number of horizontally displaced sensors
US11518031B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System and method for traversing an obstacle with an inspection robot
US11529735B2 (en) 2016-12-23 2022-12-20 Gecko Robotics, Inc. Inspection robots with a multi-function piston connecting a drive module to a central chassis
US11565417B2 (en) 2016-12-23 2023-01-31 Gecko Robotics, Inc. System and method for configuring an inspection robot for inspecting an inspection surface
US11648671B2 (en) 2016-12-23 2023-05-16 Gecko Robotics, Inc. Systems, methods, and apparatus for tracking location of an inspection robot
US11669100B2 (en) 2016-12-23 2023-06-06 Gecko Robotics, Inc. Inspection robot having a laser profiler
US11673272B2 (en) 2016-12-23 2023-06-13 Gecko Robotics, Inc. Inspection robot with stability assist device
US11740635B2 (en) 2016-12-23 2023-08-29 Gecko Robotics, Inc. System, method, and apparatus for acoustic inspection of a surface
US11892322B2 (en) 2016-12-23 2024-02-06 Gecko Robotics, Inc. Inspection robot for horizontal tube inspection having sensor carriage
US11872707B2 (en) 2016-12-23 2024-01-16 Gecko Robotics, Inc. Systems and methods for driving an inspection robot with motor having magnetic shielding
US11865698B2 (en) 2021-04-20 2024-01-09 Gecko Robotics, Inc. Inspection robot with removeable interface plates and method for configuring payload interfaces
US11872688B2 (en) 2021-04-20 2024-01-16 Gecko Robotics, Inc. Inspection robots and methods for inspection of curved surfaces
US11850726B2 (en) 2021-04-20 2023-12-26 Gecko Robotics, Inc. Inspection robots with configurable interface plates
US11904456B2 (en) 2021-04-20 2024-02-20 Gecko Robotics, Inc. Inspection robots with center encoders
US11926037B2 (en) 2021-04-20 2024-03-12 Gecko Robotics, Inc. Systems for reprogrammable inspection robots
US11964382B2 (en) 2021-04-20 2024-04-23 Gecko Robotics, Inc. Inspection robots with swappable drive modules
US11969881B2 (en) 2021-04-20 2024-04-30 Gecko Robotics, Inc. Inspection robots with independent drive module suspension
US11971389B2 (en) 2021-04-22 2024-04-30 Gecko Robotics, Inc. Systems, methods, and apparatus for ultra-sonic inspection of a surface
US11977054B2 (en) 2021-04-22 2024-05-07 Gecko Robotics, Inc. Systems for ultrasonic inspection of a surface
US11992935B2 (en) 2022-05-24 2024-05-28 Gecko Robotics, Inc. Methods and apparatus for verifiable inspection operations

Similar Documents

Publication Publication Date Title
JPS6190052A (en) Profiling device for run in pipe
JP3987118B2 (en) Feeding head used for joining equipment
SE437710B (en) PIPE CONNECTORS WITH LEAK CONTROL AND CLEANABLE LECK CHAMBER AND EXPORTED AS DOUBLE-SET COUPLING FOR PIPE PIPES
JP4543278B2 (en) Device that can move along the surface of an object
JPS6371012A (en) Combination of fluid-pressure linear motor and transfer valve
JPS60155069A (en) Changeover valve with straight-through flow path
JPS61288153A (en) Aligning device for probe
CN109098956A (en) A kind of linear clean peristaltic meatering pump
US6398100B1 (en) Back-up clamp
JP4261235B2 (en) Fluid pressure cylinder
JPH03208527A (en) Device for attaching seal automatically to installation groove provided on plastic pipe introduction part
US6435495B1 (en) Back-up clamp component
EP1760374B1 (en) Low loss poppet valve for a cleaning device and a method of delivering a cleaning fluid therewith
JP2001163278A (en) In-pipe traveling device, in-pipe traveling system and in-pipe inspection method
JP2526190Y2 (en) Pipe line breaker
CN212839876U (en) Water-through detection quick-connection device
JP2602658Y2 (en) Hydraulic expansion device
JPH06221952A (en) Water pressure testing apparatus for pipe
JP3084548B2 (en) Switching three-way valve
JP2000052115A (en) Work supporting device
JPH0492102A (en) Drive control circuit
SE512924C2 (en) Methods and apparatus for internal cleaning of pipes or hoses
JP3122872B2 (en) Insect type actuator
JP3625580B2 (en) Piping connection switching device
JPH0434456B2 (en)