JPS6187371A - Thin-film semiconductor device - Google Patents

Thin-film semiconductor device

Info

Publication number
JPS6187371A
JPS6187371A JP20822684A JP20822684A JPS6187371A JP S6187371 A JPS6187371 A JP S6187371A JP 20822684 A JP20822684 A JP 20822684A JP 20822684 A JP20822684 A JP 20822684A JP S6187371 A JPS6187371 A JP S6187371A
Authority
JP
Japan
Prior art keywords
amorphous silicon
amorphous
channel
film semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20822684A
Other languages
Japanese (ja)
Inventor
Akio Mimura
三村 秋男
Masayuki Obayashi
正幸 大林
Michio Ogami
大上 三千男
Yoshikazu Hosokawa
細川 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20822684A priority Critical patent/JPS6187371A/en
Publication of JPS6187371A publication Critical patent/JPS6187371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain an amorphous thin-film semiconductor element capable of driving large currents at high speed by forming an amorphous semiconductor film having large electrical conductivity in a region in which a channel is shaped by a field-effect element. CONSTITUTION:Cr is evaporated onto a glass substrate 1 and patterned to form a gate electrode 2. A gate insulating film 3, high conductivity amorphous silicon 4a and low conductivity amorphous silicon 4b are shaped continuously, and a source electrode 5 and a drain electrode 6 are formed onto the amorphous silicon by evaporating and processing aluminum. When gate voltage is not applied, leakage currents flow through the high conductivity amorphous silicon 4a and the low conductivity amorphous silicon 4b, but the former can be ignored practically because resistance is low but film thickness is extremely thin as approximately 100Angstrom , and the latter is minute as conventional elements and is out of the question. When voltage is applied, an N type channel is generated, but depth thereof extends over approximately 100Angstrom at most, and the region of the channel is formed by the high conductivity amorphous silicon 4a, thus allowing the flowing of currents larger than concentional elements.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜半導体装置に係り、特に、高速で大電流を
駆動できる非晶質薄膜半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film semiconductor device, and particularly to an amorphous thin film semiconductor device that can drive a large current at high speed.

〔発明の背景〕[Background of the invention]

薄膜半導体装置のなかで、非晶質薄膜半導体装置は低温
で形成できる点が大きな特徴であり、多方面に用途が開
けている。低温で形成できる観点から、ガラス板のよう
な透明な大面積の基板に形成することが可能であシ、代
表的な例として、成品表示装置に応用されている。これ
は、マトリックス状に配置した非晶質薄膜半導体装置で
液晶に加える電圧を制御し、ドツト表示するものである
、この場合、主として電界幼果型素子が使われている。
Among thin film semiconductor devices, an amorphous thin film semiconductor device has a major feature in that it can be formed at low temperatures, and has a wide range of applications. Since it can be formed at low temperatures, it is possible to form it on a transparent large-area substrate such as a glass plate, and is typically applied to product display devices. This displays dots by controlling the voltage applied to the liquid crystal using amorphous thin film semiconductor devices arranged in a matrix. In this case, electric field seedling elements are mainly used.

以下、この素子の基本的描成について第2図を用いて説
明する。
The basic drawing of this element will be explained below using FIG. 2.

第2図は従来の非晶fi薄膜半導体装置ioの断面図を
示す、この装置はガラス基板lの上にゲート電極2、ゲ
ート絶縁膜3、非晶質7リコン4、ソースT!L極5、
ドレイン電極6がら構成されているっ非晶質シリコン4
は、通常、モノシランガス(SiH4)と水素ガスの混
合ガス中でグロー放電させて形成される。ドープ剤を入
れてない真性の非晶質シリコンは暗導電率が低く高抵抗
体である。
FIG. 2 shows a cross-sectional view of a conventional amorphous FI thin film semiconductor device io. This device consists of a glass substrate l, a gate electrode 2, a gate insulating film 3, an amorphous silicon 7 silicon 4, a source T! L pole 5,
Amorphous silicon 4 made up of drain electrode 6
is usually formed by glow discharge in a mixed gas of monosilane gas (SiH4) and hydrogen gas. Intrinsic amorphous silicon without dopants has low dark conductivity and high resistance.

従って、この素子はゲート電極2に電圧を加えない楊会
はオフ状態となる。正のゲート電圧全印加すると非晶質
シリコン4とゲート館縁膜3の界面にn型チャンネルが
発生し、このチャンネルとソ−スミ極5、ドレイン電極
6とを介して、素子はオン状態となる。
Therefore, this element is in an OFF state when no voltage is applied to the gate electrode 2. When the full positive gate voltage is applied, an n-type channel is generated at the interface between the amorphous silicon 4 and the gate edge film 3, and the device is turned on via this channel, the source-semi electrode 5, and the drain electrode 6. Become.

従来の非晶質薄膜半導体装置では、オン電流とオフ屯流
の比が104以上となシ、液晶表示装置の単位ドツトを
駆動することが可能でめる。
In a conventional amorphous thin film semiconductor device, the ratio of on-current to off-current is 104 or more, and it is possible to drive a unit dot of a liquid crystal display device.

しかし、通常の非晶質シリコンは、多数の局在準位を含
むため、本質的にキャリア移動度が小さく、液晶表示装
置の単位ドラ)ft駆動するための電流を得るには、素
子のチャンネル幅を大きくする必要があシ、従って、素
子が大型化するのが難点である。また、液晶表示装置の
ドツト数を増して約105個以上として大型化する場合
には、各ドツトの走査速度を増す必要がめるが、素子の
キャリア移動度が小さいため、動作スピードが遅く、走
査速度に追従でさなくなシ、正常な液晶表示ができない
点も問題でめる。
However, since normal amorphous silicon contains a large number of localized levels, carrier mobility is inherently low, and in order to obtain the current for driving the unit driver (2) ft of a liquid crystal display device, it is necessary to The problem is that the width needs to be increased, and therefore the device becomes larger. Furthermore, when increasing the number of dots in a liquid crystal display device to about 105 or more, it is necessary to increase the scanning speed of each dot, but since the carrier mobility of the element is small, the operating speed is slow, and the scanning speed is There are also problems with the LCD display not being able to properly follow the image.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高速で大電流を駆動できる非晶質薄膜
半導体素子を提供することにある。
An object of the present invention is to provide an amorphous thin film semiconductor element that can drive a large current at high speed.

[発明の低置〕 本発明は、非晶質薄膜半導体素子の伝導特性を改善する
ため、電界効果素子でチャンネルの形成される領域に電
気伝導度の大きい非晶質半導体膜を設けることを特徴と
する。
[Summary of the Invention] The present invention is characterized in that an amorphous semiconductor film with high electrical conductivity is provided in a region where a channel is formed in a field effect element in order to improve the conduction characteristics of an amorphous thin film semiconductor element. shall be.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明による非晶質薄膜半導体装置20の断面
図を示す。ガラス基板lの上に、ゲート電極2、ゲート
絶縁膜3、高導痘性非晶質シリコン4a、低導電性非晶
質シリコン4b、ソース成極5、ドレイン電極6が構成
されている。
FIG. 1 shows a cross-sectional view of an amorphous thin film semiconductor device 20 according to the present invention. A gate electrode 2, a gate insulating film 3, a highly conductive amorphous silicon 4a, a low conductive amorphous silicon 4b, a source electrode 5, and a drain electrode 6 are formed on a glass substrate l.

ここでの高導電性とは、キャリアの移動度が大きいとい
う意味であシ、非晶質シリコン中にドーピングを行ない
、低抵抗化したという意味ではない。
High conductivity here means that carrier mobility is high, and does not mean that the resistance is lowered by doping into amorphous silicon.

非晶質薄膜半導体装置2oの製法を説明する。A method for manufacturing the amorphous thin film semiconductor device 2o will be explained.

まず、ガラス基板lにcrt蒸着し、ホトリソグラフィ
法によってパターニングし、ゲート電極2を形成する。
First, CRT is deposited on a glass substrate 1 and patterned by photolithography to form a gate electrode 2.

次に、減圧の気相化学反応炉中でグロー放電を発生させ
、ゲート絶縁膜3.高導電性非晶質シリコン4a、低導
電性非晶質シリコン4bを連続して形成する。すなわち
、まず、NH3とSiH4ガス中でグロー放電して、ゲ
ート絶縁膜3を約4000人形成する。次に、ガスを8
rHaとH2に替えグロー放電を行なう。ところで、こ
の反応で非晶質シリコンが生成するが、反応条件によっ
て生成する非晶質シリコンの電気的性質が異なる。例え
ば、グロー放電の出力が20Wでは従来と同様な低導電
性の非晶質シリコンが生成するが、グロー放電の出力を
約toowにした場合には、高導電性の非晶質シリコン
が生成する。グロー放電の出力が高くなると、高導電性
を持つのけ、膜中に100人前後の微結晶シリコンが発
生してくるためである。すなわち、短距離秩序を持った
領域が含まれるためで、キャリアの移動度が大きくなっ
てくる。ここでは、このような微結晶シリコンを含んだ
膜を高導電性非晶質シリコンと呼ぶっ ゲート絶縁膜3の上にガスを替えるだけで、まず、グロ
ー放電の出力を100〜200Wとして、厚さ約100
人の高導電性非晶質シリコン4a、連続してグロー放電
の出力を約20Wにして、低導電性非晶質シリコン4b
を約4000人形成する。次に、この非晶質シリコン層
をホトリソグラフィ法で加工して、素子以外の部分を除
去する。
Next, a glow discharge is generated in a reduced pressure gas phase chemical reactor, and the gate insulating film 3. High conductivity amorphous silicon 4a and low conductivity amorphous silicon 4b are successively formed. That is, first, about 4000 gate insulating films 3 are formed by glow discharge in NH3 and SiH4 gases. Next, add 8 gas
Glow discharge is performed instead of rHa and H2. Incidentally, although amorphous silicon is produced in this reaction, the electrical properties of the produced amorphous silicon vary depending on the reaction conditions. For example, when the output of glow discharge is 20W, amorphous silicon with low conductivity similar to the conventional one is produced, but when the output of glow discharge is set to about too much, amorphous silicon with high conductivity is produced. . This is because when the output of the glow discharge increases, around 100 microcrystalline silicon particles are generated in the film despite its high conductivity. In other words, this is because a region with short-range order is included, and carrier mobility increases. Here, a film containing such microcrystalline silicon is called highly conductive amorphous silicon.By simply changing the gas on the gate insulating film 3, we first set the glow discharge output to 100 to 200 W, and then About 100
A person's highly conductive amorphous silicon 4a is continuously heated to a glow discharge output of about 20W, and a low conductive amorphous silicon 4b is
approximately 4,000 people. Next, this amorphous silicon layer is processed by photolithography to remove portions other than the elements.

この士に、ソース電極5、ドレイン電極6として、アル
ミニウムを蒸着、加工して形成する。
A source electrode 5 and a drain electrode 6 are formed thereon by vapor deposition and processing of aluminum.

本発明による非晶質薄膜半導体装置2oの動作について
説明する。ゲート1α圧が印加されない場合は、チャン
ネルが発生せず、素子はオフ状態となる。この場合、リ
ークζ流は、高導電性非晶質シリコン4aと、低導電性
非晶質シリコン4bとを介して流れる。前者の揚重抵抗
が低いが、膜厚が約100人と非常に薄いため、この部
分を流れることによるリークζ流の増加は実用上無視で
きる。また、後者は、従来と同様に、高抵抗体であり、
これを介して流れるリーク−流は従来素子と同じく微少
でろシ問題とならない。この構造でリーク電流を小さく
保つには、前者の電気伝導度を後者の10〜100倍程
度とすること、及び、前者の膜厚を次に述べる、4電性
と改善するのに必要な最少限の厚さにすることである。
The operation of the amorphous thin film semiconductor device 2o according to the present invention will be explained. When the gate 1α pressure is not applied, no channel is generated and the device is in an off state. In this case, the leak ζ current flows through the highly conductive amorphous silicon 4a and the low conductive amorphous silicon 4b. Although the former has a low lifting resistance, the film thickness is very thin at about 100 mm, so the increase in leakage ζ flow due to flowing through this part can be ignored in practical terms. In addition, the latter is a high resistance material as before,
The leakage current flowing through this is minute and does not pose a problem as in the conventional element. In order to keep the leakage current small in this structure, the electrical conductivity of the former must be about 10 to 100 times that of the latter, and the film thickness of the former must be the minimum required to improve the tetraconductivity as described below. The thickness must be as thick as possible.

正のゲート%圧を印加した楊居、n型のチャンネルが発
生し、ソース・ドレイン間の電導が可能となる。ところ
で、このチャンネルの発生する深さは高々100人前後
であるが、この領域は高導電性非晶質シリコン4aで形
成されており、従来素子に比較して大きな電流を流すこ
とができる。
When a positive gate % pressure is applied, an n-type channel is generated and conduction between the source and drain becomes possible. Incidentally, although the depth at which this channel occurs is approximately 100 mm at most, this region is formed of highly conductive amorphous silicon 4a and can flow a larger current than conventional elements.

なお、この高導電性非晶質シリコン4aは、厚くしてお
くほうが安全であるが、厚くなった場合、リーク−流増
加の原因となるので、チャンネルの発生する深さ程度に
とどめることが好ましい。
Note that it is safer to make this highly conductive amorphous silicon 4a thick, but if it becomes thick, it will cause an increase in leakage current, so it is preferable to limit the thickness to a depth at which a channel is generated. .

本発明の実施例では、非晶質半桿体材料として非晶質シ
リコンを例にとって述べたが、ゲルマニウム、炭化ケイ
素等の非晶質薄膜半導体装置にも適用できる。
In the embodiments of the present invention, amorphous silicon is used as an example of the amorphous semi-rod material, but the present invention can also be applied to amorphous thin film semiconductor devices made of germanium, silicon carbide, or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非晶質薄膜半導体装置の導電特性を改
善でき、高速で大世流を流すことができる、換言すれば
、一定心vk、谷量の素子を得る場合、電界効果素子の
サイズ(チャンネル幅)を縮少することかでさる。また
素子が高速化されることによシ、画紫、駆動用素子以外
に、表示装置全体を駆動する走査回路の同時形成も可能
となる。
According to the present invention, it is possible to improve the conductive characteristics of an amorphous thin film semiconductor device, and it is possible to make a large current flow at high speed.In other words, when obtaining a device with a constant core vk and valley amount, It depends on reducing the size (channel width). Furthermore, by increasing the speed of the element, it becomes possible to simultaneously form a scanning circuit for driving the entire display device in addition to the image forming and driving elements.

【図面の簡単な説明】[Brief explanation of the drawing]

ム)1図は本発明の一犬施例の非晶質薄膜半導体装置の
断面図、第2図は従来技術を説明するための非晶′J4
1.薄膜半導体装置の断面図である。 4・・・非晶質シリコン、4a・・・高専4性非晶質シ
リコン、4b・・・低専心性非晶負シリコン。
Figure 1 is a sectional view of an amorphous thin film semiconductor device according to one embodiment of the present invention, and Figure 2 is an amorphous thin film semiconductor device for explaining the prior art.
1. 1 is a cross-sectional view of a thin film semiconductor device. 4...Amorphous silicon, 4a...Technical college tetramorphic amorphous silicon, 4b...Low concentration amorphous negative silicon.

Claims (1)

【特許請求の範囲】 1、電界効果作用で動作する非晶質薄膜半導体装置にお
いて、 チャンネルが形成される近傍に高導電性非晶質半導体層
、他の部分に低導電性非晶質半導体層を配置したことを
特徴とする薄膜半導体装置。 2、特許請求の範囲において、前記非晶質半導体層が非
晶質薄膜シリコンであることを特徴とする薄膜半導体装
置。
[Claims] 1. In an amorphous thin film semiconductor device that operates by field effect, a highly conductive amorphous semiconductor layer is provided near where a channel is formed, and a low conductive amorphous semiconductor layer is provided in other parts. A thin film semiconductor device characterized by having: 2. A thin film semiconductor device according to the claims, wherein the amorphous semiconductor layer is amorphous thin film silicon.
JP20822684A 1984-10-05 1984-10-05 Thin-film semiconductor device Pending JPS6187371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20822684A JPS6187371A (en) 1984-10-05 1984-10-05 Thin-film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20822684A JPS6187371A (en) 1984-10-05 1984-10-05 Thin-film semiconductor device

Publications (1)

Publication Number Publication Date
JPS6187371A true JPS6187371A (en) 1986-05-02

Family

ID=16552748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20822684A Pending JPS6187371A (en) 1984-10-05 1984-10-05 Thin-film semiconductor device

Country Status (1)

Country Link
JP (1) JPS6187371A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225074A (en) * 1988-07-13 1990-01-26 Mitsubishi Electric Corp Thin film transistor and manufacture thereof
EP0383743A2 (en) * 1989-02-17 1990-08-22 International Business Machines Corporation Thin film transistor
US5045905A (en) * 1988-03-23 1991-09-03 Nippon Precision Circuits Ltd. Amorphous silicon thin film transistor
JPH05235357A (en) * 1992-02-25 1993-09-10 Semiconductor Energy Lab Co Ltd Insulated-gate thin-film semiconductor device and manufacture thereof
JPH06342909A (en) * 1990-08-29 1994-12-13 Internatl Business Mach Corp <Ibm> Thin-film transistor and its manufacture
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
JP2007158307A (en) * 2005-11-08 2007-06-21 Canon Inc Field effect transistor
US7842586B2 (en) 2007-08-17 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US7910929B2 (en) 2007-12-18 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7940345B2 (en) 2007-07-20 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US7968879B2 (en) 2007-12-28 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US7968885B2 (en) 2007-08-07 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8017946B2 (en) 2007-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer and amorphous semiconductor layer
US8030655B2 (en) 2007-12-03 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8120030B2 (en) 2008-12-11 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8247315B2 (en) 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US8330887B2 (en) 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8343857B2 (en) 2010-04-27 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline semiconductor film and manufacturing method of semiconductor device
US8344380B2 (en) 2008-12-11 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8349671B2 (en) 2007-09-03 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8420462B2 (en) 2007-09-07 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8822997B2 (en) 2007-09-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Electrophoretic display device and method for manufacturing thereof
US8921858B2 (en) 2007-06-29 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8945962B2 (en) 2007-10-05 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9176353B2 (en) 2007-06-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098680A (en) * 1983-11-04 1985-06-01 Seiko Instr & Electronics Ltd Field effect type thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098680A (en) * 1983-11-04 1985-06-01 Seiko Instr & Electronics Ltd Field effect type thin film transistor

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045905A (en) * 1988-03-23 1991-09-03 Nippon Precision Circuits Ltd. Amorphous silicon thin film transistor
JPH0225074A (en) * 1988-07-13 1990-01-26 Mitsubishi Electric Corp Thin film transistor and manufacture thereof
EP0383743A2 (en) * 1989-02-17 1990-08-22 International Business Machines Corporation Thin film transistor
US5101242A (en) * 1989-02-17 1992-03-31 International Business Machines Corporation Thin film transistor
JPH06342909A (en) * 1990-08-29 1994-12-13 Internatl Business Mach Corp <Ibm> Thin-film transistor and its manufacture
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US7148542B2 (en) 1992-02-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US7649227B2 (en) 1992-02-25 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
JPH05235357A (en) * 1992-02-25 1993-09-10 Semiconductor Energy Lab Co Ltd Insulated-gate thin-film semiconductor device and manufacture thereof
JP2007158307A (en) * 2005-11-08 2007-06-21 Canon Inc Field effect transistor
JP4560505B2 (en) * 2005-11-08 2010-10-13 キヤノン株式会社 Field effect transistor
US7851792B2 (en) 2005-11-08 2010-12-14 Canon Kabushiki Kaisha Field-effect transistor
US8921858B2 (en) 2007-06-29 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9176353B2 (en) 2007-06-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US7940345B2 (en) 2007-07-20 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8896778B2 (en) 2007-07-20 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9142632B2 (en) 2007-07-20 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8330887B2 (en) 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US7968885B2 (en) 2007-08-07 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8633485B2 (en) 2007-08-07 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8395158B2 (en) 2007-08-17 2013-03-12 Semiconductor Energy Labortory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer
US8017946B2 (en) 2007-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer and amorphous semiconductor layer
US8309406B2 (en) 2007-08-17 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7842586B2 (en) 2007-08-17 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US8368075B2 (en) 2007-08-17 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus
US8703560B2 (en) 2007-09-03 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor
US8501554B2 (en) 2007-09-03 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8349671B2 (en) 2007-09-03 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8420462B2 (en) 2007-09-07 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8822997B2 (en) 2007-09-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Electrophoretic display device and method for manufacturing thereof
US8945962B2 (en) 2007-10-05 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US8343821B2 (en) 2007-12-03 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor
US8030655B2 (en) 2007-12-03 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
US7910929B2 (en) 2007-12-18 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8951849B2 (en) 2007-12-18 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including layer containing yttria-stabilized zirconia
US7968879B2 (en) 2007-12-28 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US8860030B2 (en) 2007-12-28 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US8247315B2 (en) 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8120030B2 (en) 2008-12-11 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8344380B2 (en) 2008-12-11 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8343857B2 (en) 2010-04-27 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline semiconductor film and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS6187371A (en) Thin-film semiconductor device
US6225149B1 (en) Methods to fabricate thin film transistors and circuits
JPH11121761A (en) Thin-film transistor
KR910007161A (en) Semiconductor device and manufacturing method thereof
JPS62232966A (en) Thin film transistor
JP3296975B2 (en) Thin film transistor and method of manufacturing the same
US6124153A (en) Method for manufacturing a polysilicon TFT with a variable thickness gate oxide
JPS63157476A (en) Thin film transistor
WO2018214635A1 (en) Array substrate, display device and method for preparing array substrate
JPS633463A (en) Manufacture of thin film transistor
JPS61244068A (en) Thin film transistor
JPH05304171A (en) Thin-film transistor
JPS61145869A (en) Thin-film transistor
JP2621619B2 (en) Method for manufacturing thin film transistor
JPH03185840A (en) Thin film transistor
JPH0564862B2 (en)
JPS62141776A (en) Thin film transistor
KR970010689B1 (en) Thin film transistor semiconductor device
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JPH03222370A (en) Thin film transistor
JPS62122171A (en) Thin film transistor
JPH0277159A (en) Thin film semiconductor element
JPH01115162A (en) Thin film transistor and manufacture thereof
JPH0534837B2 (en)
JPS63155766A (en) Thin film transistor