JPS6175206A - Apparatus for measuring minute step - Google Patents

Apparatus for measuring minute step

Info

Publication number
JPS6175206A
JPS6175206A JP19662284A JP19662284A JPS6175206A JP S6175206 A JPS6175206 A JP S6175206A JP 19662284 A JP19662284 A JP 19662284A JP 19662284 A JP19662284 A JP 19662284A JP S6175206 A JPS6175206 A JP S6175206A
Authority
JP
Japan
Prior art keywords
wavelength
lens
light
converged
pinhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19662284A
Other languages
Japanese (ja)
Inventor
Noriaki Honma
本間 則秋
Shinobu Hase
長谷 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19662284A priority Critical patent/JPS6175206A/en
Publication of JPS6175206A publication Critical patent/JPS6175206A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable highly accurate measurement, by collecting the reflected beam from the surface of a specimen of wavelength changeable parallel luminous flux to make the same parallel and converting the beam passing through the pinhole at the focal position thereof to an electric signal. CONSTITUTION:The monochromatic beam of a monochrometer 9 having a wavelength controller 9' is divided by a beam splitter 4 through a collimator 10 and one of split beams is converged to the surface of a specimen 6 by a lens 1 while the reflected beam thereof is converged by a lens 2 through the lens 1 and the splitter 4 and a pinhole 3 having a diameter almost equal to that of the converged beam is arranged to the converging point of said lens 2 to receive the converged beam by a beam detector 5. In this case, the lens 1 is constituted of a lens capable of neglecting wavelength dispersion and a parallel flat plate having the wavelength dispersion of a refractive index and the other split beam of the splitter 4 is inputted to the intensity controller 8' of a while beam source 8 through a beam detector 11. Further, the wavelength of the meter 9 is changed to calculate a peak wavelength and the position of the specimen 6 is changed to similarily calculate a peak wavelength to calculate a step.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光の焦点位置移動に係り、特に物体表面の粗
さの評価に好適な微小段差測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to movement of the focal point of light, and particularly to a minute step measuring device suitable for evaluating the roughness of the surface of an object.

〔発明の背景〕[Background of the invention]

光による物体表面の粗さあるいは段差の測定の代表的公
知例を第1図で説明する(公知側文献;D、  K、 
 )lamilton  and  T、  リ1ls
on :  Appl、  Phys。
A typical known example of measuring the roughness or level difference of an object surface using light is explained in Fig. 1 (known documents: D, K,
) lamilton and T, li1ls
on: Appl, Phys.

827 (1982) 211−213)。827 (1982) 211-213).

第1図中の(A)はコンフォーカル(Confocal
)な光学系と呼ばれているものである。この場合、物体
6の表面の上下方向の位置がZ、の所に光学系の焦点が
合っている。この時、Z、面からの反射光はピンホール
3を通して光検出器5で電気信号に変換される。Zlか
ら少しはずれたZ、やZ6の位置からの反射光は、ピン
ホール3を通過できないため光検出器の出力信号にはほ
とんど現われない。従って、物体6を上下方向(Z方向
)に移動させた時の光検出器の出力信号は第1図中の(
C)のように変化する。これより出力信号Iがピークと
なるときに、物体の表面はレンズ1の焦点の位置にある
ことになる。従って1例えば物体6にへこみの段差があ
る時は、第1図中の(B)に示すようにへこみの部分が
照射されるように移動する。さらに、物体を上方向に移
動させて光検出器の出力信号のピークを与える時の移動
量から段差が求められる。ピーク位置検出の精度を上げ
るため、出力信号の微分信号がゼロとなる点を検知する
事も行なわれている。
(A) in Figure 1 is a confocal
) optical system. In this case, the optical system is focused at a position Z in the vertical direction of the surface of the object 6. At this time, the reflected light from the Z surface passes through the pinhole 3 and is converted into an electrical signal by the photodetector 5. Reflected light from positions Z and Z6, which are slightly away from Zl, cannot pass through the pinhole 3 and therefore hardly appears in the output signal of the photodetector. Therefore, the output signal of the photodetector when the object 6 is moved in the vertical direction (Z direction) is (
C). This means that the surface of the object is at the focal point of the lens 1 when the output signal I reaches its peak. Therefore, for example, when the object 6 has a step difference in a recess, the object 6 moves so that the recess is illuminated as shown in (B) in FIG. Further, the level difference is determined from the amount of movement when the object is moved upward to provide the peak of the output signal of the photodetector. In order to improve the accuracy of peak position detection, the point at which the differential signal of the output signal becomes zero is also detected.

しかしながら、この方法では、焦点位置に物体表面を移
動させるため、試料台移動に伴う光路変動による誤差を
生じやすいという問題がある。特に、試料が大きく、重
い場合には精度向上が円穴となる。
However, in this method, since the object surface is moved to the focal position, there is a problem that errors are likely to occur due to optical path fluctuations caused by movement of the sample stage. In particular, when the sample is large and heavy, the accuracy improvement becomes a circular hole.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、試料移動に伴う光路変動を少なくシ、
高精度な測定が可能な微小段差測定装置を提供すること
にある。
An object of the present invention is to reduce optical path fluctuations caused by sample movement;
An object of the present invention is to provide a micro step measuring device capable of highly accurate measurement.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明では、波長可変な平
行光束を放射する光源と、その光ビームを試料表面に集
束し、表面からの反射光を再び平行光束にし、かつ屈折
率の波長分散を持つ光学系と、前記反射光の平行光束を
集束する屈折の波長分散の無い光学系と、該光学系によ
って集光さ九た反射光の焦点位置にビームスポットとほ
ぼ同じ大きさのピンホールからなる空間フィルターと、
該ピンホールを通過した光を電気信号に変換する手段と
を具備する如く構成したものである。
In order to achieve the above object, the present invention includes a light source that emits a wavelength-tunable parallel light beam, a light beam that is focused on the sample surface, the reflected light from the surface is made into a parallel light beam again, and a wavelength dispersion of the refractive index. an optical system with no wavelength dispersion of refraction that focuses the parallel beam of the reflected light; and a pinhole approximately the same size as the beam spot at the focal position of the reflected light focused by the optical system. a spatial filter consisting of;
The device is configured to include means for converting the light passing through the pinhole into an electrical signal.

〔発明の実施例〕[Embodiments of the invention]

本発明では、レンズの波長分散を利用して、焦点位置を
光学的に移動させる事により段差を測定する事を原理と
する。レンズの屈折率nの波長分散による効果は、色収
差としてよく知られている。
The principle of the present invention is to measure the level difference by optically moving the focal point position using the wavelength dispersion of the lens. The effect of wavelength dispersion of the refractive index n of a lens is well known as chromatic aberration.

つまり、光の波長を変化させると、レンズの屈折率の波
長分散のためレンズの焦点距離fが波長によって変化す
る。光の波長がλ、からλ2 (λ。
That is, when the wavelength of light is changed, the focal length f of the lens changes depending on the wavelength due to wavelength dispersion of the refractive index of the lens. The wavelength of light is λ, from λ2 (λ.

くλ2)に変化したとき屈折率がn工→n2 に変化す
るとする。Jn=nよ−n2であるので。
Suppose that when the refractive index changes to λ2), the refractive index changes from n to n2. Since Jn=nyo-n2.

anに伴う焦点位置移動Δfは次式で与えられる。The focus position movement Δf accompanying an is given by the following equation.

一般に、紫外域に吸収を持つ物質では、可視域での波長
が長くなるにつれて屈折率は小さくなり、レンズの焦点
距離は長くなる。このため、波長を変化させた時のレン
ズの焦点距離の変化は第2図中の(a)のようになる、
このような波長分散はレンズ1のみ顕著な効果を持ち、
レンズ2は無視できるとする。
Generally, for a substance that absorbs in the ultraviolet region, as the wavelength in the visible region becomes longer, the refractive index decreases and the focal length of the lens increases. Therefore, the change in the focal length of the lens when the wavelength is changed is as shown in (a) in Figure 2.
Such wavelength dispersion has a remarkable effect only on lens 1,
It is assumed that lens 2 can be ignored.

さて、第2図中(b)に示すように、ある試料面に対し
て波長λ1の時に信号のピークが得られたとする0次に
、試料の他の位置でのピークが波長λ2の時に得られた
とする。このとき、第2図中(a)の関係から、この2
点の段差Ifはf、−f、より求められる。
Now, as shown in Figure 2 (b), if a signal peak is obtained at a wavelength λ1 for a certain sample surface, then a peak at another position on the sample is obtained at a wavelength λ2. Suppose that At this time, from the relationship shown in (a) in Figure 2, these two
The level difference If of the points is obtained from f, -f.

一例として、レンズ材料としてBK−7を挙げる。波長
をλ、=435.8 n mからλ、 =486.1n
mまで変化させた時の屈折率は、n工:1.5267か
らn、 =1.5224まで変化する。このときΔn=
0.0043である。レンズの焦点距離fを10m++
とするとAf=28μmとなる。従って、20μm以下
の段差あるいは粗さの測定に使用することが可能がある
0重フリントガラスや波長分散の大きい他の材料を使用
すれば、移動範囲を拡大できる事は当然である。また、
波長分散の大きい波長域の光を用いて移動量を拡大する
事も可能である。光の波長は、白色光源の光をモノクロ
メータあるいは音響光学的可変波長フィルターにより、
単色化かつ波長可変化すれば良い。
As an example, BK-7 is used as a lens material. From wavelength λ, = 435.8 nm m to λ, = 486.1n
The refractive index when changed up to m changes from n = 1.5267 to n = 1.5224. At this time Δn=
It is 0.0043. The focal length of the lens is 10m++
Then, Af=28 μm. Therefore, it is natural that the range of movement can be expanded by using zero fold flint glass, which can be used to measure steps or roughness of 20 μm or less, or other materials with large wavelength dispersion. Also,
It is also possible to expand the amount of movement by using light in a wavelength range with large wavelength dispersion. The wavelength of the light is determined by measuring the light from a white light source using a monochromator or an acousto-optic variable wavelength filter.
It is sufficient to make it monochromatic and wavelength variable.

このように、本方式では焦点位置移動の時に、光学系と
試料面との間の空間的配置が変化しない。
In this way, in this method, when the focal point position is moved, the spatial arrangement between the optical system and the sample surface does not change.

第3図は本発明の一実施例を示す図である。図において
、8で示した白色光源からの光を、モノクロメータ9で
単色光化する。波長可変はモノクロメータの波長制御器
9′で行なわれる。単色光となった光はコリメータ10
で平行光束とされ、ビームスプリッタ−4で分割され、
一方は光検出器11により受光され、電気信号に変換さ
れる。
FIG. 3 is a diagram showing an embodiment of the present invention. In the figure, light from a white light source indicated by 8 is converted into monochromatic light by a monochromator 9. Tuning of the wavelength is performed by a wavelength controller 9' of a monochromator. The monochromatic light is sent to the collimator 10.
It becomes a parallel beam of light, and is divided by beam splitter 4.
One of the lights is received by the photodetector 11 and converted into an electrical signal.

もう一方の光は、レンズ1によって試料6の表面に集束
される。試料表面からの反射光は、レンズ1で平行光束
となり、ビームスプリッタ−4を通った後、レンズ2で
集束される。レンズ2による反射光の集束点には、集束
ビーム径にほぼ等しい径のピンホール3がffff1さ
れる。ピンホール3を通過した光は、光検出器5によっ
て受光され、電気信号に変換される。検出信号は記録計
13のY軸に入力される。一方、光検出器11によって
検出された信号は光源8の強度制御器8′に入り、光量
設定信号発生器1zからの設定値になるよう光源の光強
度を制限する。モノクロメータの波長に相当する電気信
号を波長制御器9′からとり出し、記録計13のxiに
入力する。従って、モノクロメータの波長を変化させる
と、記録計にはある波長λ1のときにピークが記録され
る0次に、移動台7により試料表面の他の位置で波長を
走査する。このとき、記録計にピークが生じた時の波長
をλ2とする。光の波長λに対応する焦点距離fはあら
かじめ求めら九ており、λ、とλ2に対応するflとf
2の差から、2点間の段差Δfが求められる。
The other light is focused by lens 1 onto the surface of sample 6. The reflected light from the sample surface becomes a parallel beam of light at the lens 1, passes through the beam splitter 4, and is then focused at the lens 2. A pinhole 3 having a diameter approximately equal to the diameter of the focused beam is formed at the focal point of the reflected light by the lens 2. The light passing through the pinhole 3 is received by a photodetector 5 and converted into an electrical signal. The detection signal is input to the Y axis of the recorder 13. On the other hand, the signal detected by the photodetector 11 enters the intensity controller 8' of the light source 8, and limits the light intensity of the light source to the set value from the light amount setting signal generator 1z. An electrical signal corresponding to the wavelength of the monochromator is taken out from the wavelength controller 9' and input to the xi of the recorder 13. Therefore, when the wavelength of the monochromator is changed, the recorder records a peak at a certain wavelength λ1 at the 0th order, and then the movable stage 7 scans the wavelength at other positions on the sample surface. At this time, the wavelength at which a peak occurs in the recorder is assumed to be λ2. The focal length f corresponding to the wavelength λ of light is determined in advance, and fl and f corresponding to λ and λ2 are calculated in advance.
From the difference of 2, the step difference Δf between the two points can be found.

第4図は、本発明の他の実施例を示す図で、レンズ1と
して波長分散の無視できるレンズを用い、レンズ1と試
料との間に屈折率の波長分散を持つ平行平板1′を挿入
したものである。第4図は、レンズ1と平行平板のみ示
されているが、他の装置構成は第3図と同じである。こ
の場合、屈折率の変化に対して焦点位置の変化は、レン
ズの場合と逆になるので、レンズと平行平板と同時に波
長分散を持った素子にすることは有効でない。平行平板
の場合、屈折率n′、厚みdの平行平板による焦点位置
のずれは、次式で表わされる。
FIG. 4 is a diagram showing another embodiment of the present invention, in which a lens with negligible wavelength dispersion is used as lens 1, and a parallel plate 1' having wavelength dispersion of refractive index is inserted between lens 1 and the sample. This is what I did. Although only the lens 1 and the parallel plate are shown in FIG. 4, the other device configurations are the same as in FIG. 3. In this case, the change in the focal position with respect to the change in the refractive index is opposite to that in the case of a lens, so it is not effective to use an element that has wavelength dispersion at the same time as a lens and a parallel plate. In the case of a parallel plate, the shift in focal position due to the parallel plate having a refractive index n' and a thickness d is expressed by the following equation.

Δf= (1−−) d       (2)n′ 従って 、l の変化に対するJfの変化は、Δ / 
d/ n/ 2で与えられる。Δn′は、波長をλ1か
らλ、に変化させた時の屈折率変化である。
Δf= (1--) d (2)n' Therefore, the change in Jf with respect to the change in l is Δ/
It is given by d/n/2. Δn' is the change in refractive index when the wavelength is changed from λ1 to λ.

厚さ2ffI11の重フロントガラスを用いた場合、波
長変化436nm〜486nmに対する焦点位置の移動
は14μmである。
When a heavy windshield with a thickness of 2ffI11 is used, the movement of the focal point position with respect to a wavelength change of 436 nm to 486 nm is 14 μm.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、レンズなどの光学
系や試料の光軸方向の移動を行わずに焦点位置の可変が
できるので、試料の光軸方向移動時に発生しやすい試料
面の傾きによる光路乱れなどの動作不良を少なくでき、
高精度な測定が可能である。
As detailed above, according to the present invention, the focal position can be varied without moving the optical system such as a lens or the sample in the optical axis direction. Operational defects such as optical path disturbance due to tilt can be reduced,
Highly accurate measurements are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例を説明する図で、同図(A)及び(B
)は光学系の構成を示す図、(C)は出力信号の一例を
示す図、第2図は本発明の詳細な説明する図で、同図(
a)は焦点移動量と波長の関係を示す図、(b)は出力
信号の一例を示す図、第3図は、本発明の一実施例の構
成を示す図、第4図は、平行平板を用いた他の実施例を
示す部分図である。 1・・・屈折率の波長分散の大きい光ビーム集束レンズ
、1′・・・屈折率の波長分散の大きい平行平板、2・
・・光ビーム集束レンズ、3・・・ピンホール、4・・
・ビームスプリッタ−15,11・・・光検出器、7・
・・試料を光軸と水平方向に移動させる試料移動台、8
・・・光源、8′・・・光強度制御器、9・・・モノク
ロメータ、9′・・・モノクロメータ波長制御器、10
・・・ビームコリメーター、12・・・光源の光強度等
1 口 (A)         (8’ tC) 井2図 tb) \1  \27′− 千3目
FIG. 1 is a diagram explaining a conventional example.
) is a diagram showing the configuration of the optical system, (C) is a diagram showing an example of the output signal, and FIG. 2 is a diagram explaining the present invention in detail.
a) is a diagram showing the relationship between the amount of focus movement and wavelength, (b) is a diagram showing an example of an output signal, FIG. 3 is a diagram showing the configuration of an embodiment of the present invention, and FIG. FIG. 1... Light beam focusing lens with large wavelength dispersion of refractive index, 1'... Parallel plate with large wavelength dispersion of refractive index, 2.
...Light beam focusing lens, 3...Pinhole, 4...
・Beam splitter-15, 11...photodetector, 7・
...Sample moving stage for moving the sample in the optical axis and horizontal direction, 8
... Light source, 8'... Light intensity controller, 9... Monochromator, 9'... Monochromator wavelength controller, 10
... Beam collimator, 12... Light intensity of light source, etc.

Claims (1)

【特許請求の範囲】[Claims] 波長可変な平行光束を放射する光源と、その光ビームを
試料表面に集束し、表面からの反射光を再び平行光束に
し、かつ屈折率の波長分散を持つ光学系と、前記反射光
の平行光束を集束する屈折の波長分散の無い光学系と、
該光学系によつて集光された反射光の焦点位置に、ビー
ムスポットとほぼ同じ大きさのピンホールからなる空間
フィルターと、該ピンホールを通過した光を電気信号に
変換する手段とを備えてなることを特徴とする微小段差
測定装置。
a light source that emits a wavelength-variable parallel light beam, an optical system that focuses the light beam on the sample surface, converts the reflected light from the surface into a parallel light beam again, and has wavelength dispersion of refractive index, and a parallel light beam of the reflected light. An optical system with no wavelength dispersion of refraction to focus the
A spatial filter consisting of a pinhole approximately the same size as the beam spot is provided at the focal point of the reflected light focused by the optical system, and means for converting the light passing through the pinhole into an electrical signal. A device for measuring minute differences in height.
JP19662284A 1984-09-21 1984-09-21 Apparatus for measuring minute step Pending JPS6175206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19662284A JPS6175206A (en) 1984-09-21 1984-09-21 Apparatus for measuring minute step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19662284A JPS6175206A (en) 1984-09-21 1984-09-21 Apparatus for measuring minute step

Publications (1)

Publication Number Publication Date
JPS6175206A true JPS6175206A (en) 1986-04-17

Family

ID=16360815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19662284A Pending JPS6175206A (en) 1984-09-21 1984-09-21 Apparatus for measuring minute step

Country Status (1)

Country Link
JP (1) JPS6175206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006044A (en) * 1996-02-19 1999-12-21 Canon Kabushiki Kaisha Camera
JP2006502410A (en) * 2002-10-11 2006-01-19 イントラレイズ コーポレイション Method and system for determining the position and alignment of an object surface relative to a laser beam
JP2010217113A (en) * 2009-03-18 2010-09-30 Disco Abrasive Syst Ltd Sectional shape measuring device
JP2015060763A (en) * 2013-09-19 2015-03-30 株式会社島津製作所 Light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006044A (en) * 1996-02-19 1999-12-21 Canon Kabushiki Kaisha Camera
JP2006502410A (en) * 2002-10-11 2006-01-19 イントラレイズ コーポレイション Method and system for determining the position and alignment of an object surface relative to a laser beam
JP2010217113A (en) * 2009-03-18 2010-09-30 Disco Abrasive Syst Ltd Sectional shape measuring device
JP2015060763A (en) * 2013-09-19 2015-03-30 株式会社島津製作所 Light emitting device

Similar Documents

Publication Publication Date Title
US4160598A (en) Apparatus for the determination of focused spot size and structure
US7477401B2 (en) Trench measurement system employing a chromatic confocal height sensor and a microscope
US7369220B2 (en) Measuring apparatus
JP2013525838A (en) Device for imaging the sample surface
US9625389B2 (en) Light measuring device and light measuring method
KR102115498B1 (en) Confocal measurement device
KR20190082744A (en) Method and device for optical surface measurement by color confocal sensor
US7079256B2 (en) Interferometric optical apparatus and method for measurements
US20030210405A1 (en) Dual-spot phase-sensitive detection
CN111065884A (en) Method and device for optical surface measurement by means of a confocal sensor
Ruprecht et al. Confocal micro-optical distance sensor: principle and design
KR20210151709A (en) Interferometric scattering microscopy
KR101794641B1 (en) A slope spectrum system for measuring height of object by using wavelength division
JPS6175206A (en) Apparatus for measuring minute step
JP7145030B2 (en) Measuring method and measuring device
CN116399222A (en) Dark field nonlinear thermal wave confocal microscopic measurement device and method based on circular dichroism
JPH04236307A (en) Detecting device of three-dimensional shape of pattern
JP2005221451A (en) Laser displacement gauge
JPH01188816A (en) Spectral type scanning microscope
CN114166760A (en) Carrier diffusion coefficient measuring device and method based on micro-region transient spectrum
KR101120527B1 (en) Interferometer System using Point Source and Measurement Method thereof
JP2002310881A (en) Scanning near field microscope
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPH0875433A (en) Surface form measuring device