JPS614905A - Measuring method of line width - Google Patents

Measuring method of line width

Info

Publication number
JPS614905A
JPS614905A JP12611484A JP12611484A JPS614905A JP S614905 A JPS614905 A JP S614905A JP 12611484 A JP12611484 A JP 12611484A JP 12611484 A JP12611484 A JP 12611484A JP S614905 A JPS614905 A JP S614905A
Authority
JP
Japan
Prior art keywords
line width
film
refractive index
light
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12611484A
Other languages
Japanese (ja)
Inventor
Shinya Hasegawa
晋也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12611484A priority Critical patent/JPS614905A/en
Publication of JPS614905A publication Critical patent/JPS614905A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To reduce an error in measurement of line width by guiding light beams which have different direction of polarization in a film of light transmissible material through a prism, calculating the wavelength of light projecting at the same angle of projection from the film through a prism, and finding the line width from the relation among the propagation constant, film shape, and refractive index. CONSTITUTION:A film which a refractive index n1, thickness (t), and line width W is sandwiched between a material 2 with a refractive index n2 and a material 3 (e.g. air) with a refractive index n0, and light 5 with wavelength lambda is guided in the film 1 through a prism 4 with a refractive index n'p and then projected at an angle theta1 of projection through a prism 6 with a refractive index np. Further, the refractive indexes np and n'p are both larger than n0 and n2. Then, the wavelength lambda of light which has specific wavelength lambda and a different direction of polarization and is projected at an angle thetai of projection is measured to find the line width W by solving the relational expression based upon the line width W, refractive indexes n0 and n1, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細加工をこより形成されたパターンの線幅測
定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for measuring line width of a pattern formed by microfabrication.

(従来技術とその問題点) 従来、微細加工により得られたパターンの線幅を測定す
るには、パターン上方から集光した光を照射し、パター
ン各部からの光の反射率を測定することにより行なわれ
てきた。しかし、光の反射率ハパターンエッジにおいて
急唆には変化せず、このために、得られたパターン線幅
の測定値が真のパターン線幅とは等しくならす、0.1
μm程度の不確定性があった。
(Prior art and its problems) Conventionally, in order to measure the line width of a pattern obtained by microfabrication, it is necessary to irradiate focused light from above the pattern and measure the reflectance of light from each part of the pattern. It has been done. However, the light reflectance does not change sharply at the pattern edges, which makes the resulting measured pattern line width equal to the true pattern line width, 0.1
There was an uncertainty on the order of μm.

(発明の目的) ゛ 本発明の目的は、上記のような欠点を除去し、測定
誤差の小さい線幅測定方法を提供することにある。
(Object of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and provide a line width measurement method with small measurement errors.

(発明の構成) すなわち、本発明は、基板上の屈折率と膜厚とが既知で
ある、パターニングされた可透光性材質膜にプリズムを
通して光を導波せしめ、次に、導波せしめた光及びこれ
と偏光方向が異なる元とが、鉄膜からプリズムを通して
同じ出射角で出射するような光の波長を求めて、この波
長と元の伝搬定数、膜の形状、屈折率の間に成りたつ式
から膜の加工線幅を求めるこaを特徴とするa幅測定方
法である。
(Structure of the Invention) That is, the present invention allows light to be guided through a prism through a patterned light-transmitting material film on a substrate with a known refractive index and film thickness, and then to be guided. Find the wavelength of the light such that the light and the source with different polarization directions exit from the iron film through the prism at the same exit angle, and find the wavelength between this wavelength and the original propagation constant, film shape, and refractive index. This width measuring method is characterized by determining the processed line width of the film from the Tatsu equation.

(発明の原理) 以下に本発明を図面を参照しながら説明する。(Principle of the invention) The present invention will be explained below with reference to the drawings.

第1図に示すように屈折率fil  、厚さtで線幅W
で加工された膜1が屈折率n、の物質2(この場合は基
板)と屈折率n。の物質(例えば空気あるいは液体)3
との間にはさすれている場合において、ます、膜1上ζ
こ密着して置かれた屈折率n 、/のプリズム4を通し
て波長λの光5を膜1中に導波させ、次をこ、膜1上に
密着して置かれた屈折率n、のプリズム6を通して光を
出射角θ1で出射させる。なお、1)p+  np’は
ともにrto、n2より大きいことが必要である。
As shown in Figure 1, the refractive index fil is the line width W at the thickness t.
A film 1 processed with a material 2 (substrate in this case) having a refractive index n and a material 2 (substrate in this case) having a refractive index n. substance (e.g. air or liquid)3
ζ
Light 5 having a wavelength λ is guided into the film 1 through a prism 4 with a refractive index of n, which is placed in close contact with the film 1, and then a prism with a refractive index of n, which is placed in close contact with the film 1. 6, the light is emitted at an emission angle θ1. Note that 1) p+ np' must both be larger than rto and n2.

この時、TE波について、各変数間には式(1)から(
5)の関係が成り立つ。βM、β8はそれぞれTM波、
TB波の伝搬定数。
At this time, regarding the TE wave, there is a relationship between each variable from equation (1) to (
The relationship 5) holds true. βM and β8 are respectively TM waves,
TB wave propagation constant.

k=2π/λ                 (4
)no/np=th(θp−α)/5frlθI(5)
但しαはプリズムの光出射面とプリズムが膜1と接する
面とのなす角度。
k=2π/λ (4
) no/np=th(θp-α)/5frlθI(5)
However, α is the angle between the light exit surface of the prism and the surface where the prism contacts the film 1.

また、TM波tこついては前記式(3)から(5)及び
式(6)(7)が成り立つ。
Furthermore, when the TM wave t gets stuck, the above equations (3) to (5) and equations (6) and (7) hold true.

また、特定の波長λにおいては、式(1)から(7)が
同時に成り立ち、プリズム6からは偏光方向の異1jる
光が同じ出射角θiで出射する。従って、プリズム6か
ら偏光方向が異なる光が同じ出射角で出射する光の波長
λを測定し、式(1功1ら(7)を解くこと番こよりパ
ターンの線幅Wを求めることができる。
Furthermore, at a specific wavelength λ, equations (1) to (7) hold simultaneously, and light with different polarization directions 1j is emitted from the prism 6 at the same output angle θi. Therefore, the line width W of the pattern can be determined by measuring the wavelength λ of light emitted from the prism 6 with different polarization directions at the same exit angle, and solving the equation (7).

なお第1図ではまっすぐなパターンの線幅を測る例を示
しであるが、線幅が一定であればまがったパターンでも
測定できる、 (実施例) 以下、本発明の実施例を記載する。
Although FIG. 1 shows an example of measuring the line width of a straight pattern, it is also possible to measure a crooked pattern as long as the line width is constant. (Example) Examples of the present invention will be described below.

屈折率1457の石英ガラス上にポリメチルメタアクリ
ル酸(PMMA)を塗布し、−光解析法で測定した所、
PMMAの屈折率は1,491 、膜厚は08μmであ
った。次に、PMMAを線状パターン壷こ加工後、空気
(屈折率1.000 )中より、重クラウンカラスプリ
ズムを通しで、ローダミツB色素レーザ元を全搬波長を
6000〜6400Aの範囲で変化させてPMMA中に
導波させて、屈折率1.587の重クラウンガラスプリ
ズム(α−45°)かう+’)出光させた所、波長63
28 AでTB波及びTM波が出射角34.22度で出
射した。従って、式(])から(7)よりWを求めるこ
とによって、加工後のPMMAパターンの線幅は1゜2
2μmであることが判った。
Polymethyl methacrylic acid (PMMA) was coated on quartz glass with a refractive index of 1457, and measured by optical analysis.
The refractive index of PMMA was 1,491, and the film thickness was 08 μm. Next, after processing the PMMA into a linear pattern, it was passed through a heavy crown color prism in air (refractive index 1.000), and the total propagation wavelength of the Rhodamitsu B dye laser source was changed in the range of 6000 to 6400 A. When the light was guided through PMMA and emitted from a heavy crown glass prism (α-45°) with a refractive index of 1.587, the wavelength was 63.
At 28 A, TB waves and TM waves were emitted at an emission angle of 34.22 degrees. Therefore, by finding W from equation (]) to (7), the line width of the PMMA pattern after processing is 1°2
It was found to be 2 μm.

(発明の効果) したがって、本発明によれば、プリズムを用いてパター
ンに導波した光の波長を測定下るのみで、パターンの線
幅を正確に求めることかできる効果を有するものである
(Effects of the Invention) Therefore, according to the present invention, the line width of a pattern can be accurately determined simply by measuring the wavelength of light guided to the pattern using a prism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は膜の加工後の線幅を測定する方法を表わす模式
図である。 1・・−・・・膜、2・・・・・屈Flntの物質・3
°゛°°°゛屈折率n の物質、4・・・・・・入射プ
リズム、5・・・・・・元、6・・・・・・出射プリズ
ム。 曝 代1人弁]士内原  漕
FIG. 1 is a schematic diagram showing a method for measuring the line width after processing a film. 1...Membrane, 2...Flint material, 3
°゛°°°゛Substance with refractive index n, 4...Input prism, 5...Element, 6...Output prism. Akashiro Solo Dialect] Kou Shiuchihara

Claims (1)

【特許請求の範囲】[Claims] (1)基板上の、屈折率と膜厚とが既知である、パター
ニングされた可透光性材質膜にプリズムを通して光を導
波せしめ、次に導波せしめた光及びこれと偏光方向が異
なる光とが、該膜からプリズムを通して同じ出射角で出
射するような光の波長を求めて、この波長と光の伝搬定
数、膜の形状、屈折率の間に成りたつ式から膜の加工線
幅を求めることを特徴とする線幅測定方法。
(1) Light is guided through a prism through a patterned light-transmissive material film with a known refractive index and film thickness on the substrate, and then the guided light and the polarization direction are different from this. Find the wavelength of the light that will be emitted from the film through the prism at the same exit angle, and use the formula between this wavelength, the propagation constant of the light, the shape of the film, and the refractive index to determine the processed line width of the film. A line width measurement method characterized by determining.
JP12611484A 1984-06-19 1984-06-19 Measuring method of line width Pending JPS614905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12611484A JPS614905A (en) 1984-06-19 1984-06-19 Measuring method of line width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12611484A JPS614905A (en) 1984-06-19 1984-06-19 Measuring method of line width

Publications (1)

Publication Number Publication Date
JPS614905A true JPS614905A (en) 1986-01-10

Family

ID=14926979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12611484A Pending JPS614905A (en) 1984-06-19 1984-06-19 Measuring method of line width

Country Status (1)

Country Link
JP (1) JPS614905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104486A (en) * 1995-12-28 2000-08-15 Fujitsu Limited Fabrication process of a semiconductor device using ellipsometry
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104486A (en) * 1995-12-28 2000-08-15 Fujitsu Limited Fabrication process of a semiconductor device using ellipsometry
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system
US7898661B2 (en) 1998-03-06 2011-03-01 Kla-Tencor Corporation Spectroscopic scatterometer system

Similar Documents

Publication Publication Date Title
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
JPH0259639A (en) Measurement of automatic collimation angle for grid coupler
JPH0432704A (en) Gap measuring instrument and surface shape measuring instrument
JPS63274842A (en) Method for measuring humidity with high sensitivity by utilizing second order differential curve of steam light absorption line
JPS63273042A (en) Optical measuring instrument
JPS614905A (en) Measuring method of line width
JPS58169004A (en) Highly accurate interference length measuring method in atmosphere
JPS6177388A (en) Apparatus for measuring resonator end-surface reflectance of semiconductor laser
JPS614906A (en) Measuring method of line width
JPS6435306A (en) Incidence angle determining method for refractive index and film thickness measurement
JP2522480B2 (en) Refractive index measurement method
JPS60236005A (en) Measuring method of line width
JPS60236006A (en) Measuring method of line width
JPS60233506A (en) Line width measuring method
JP2654366B2 (en) Micro polarimeter and micro polarimeter system
JP3417834B2 (en) Method and apparatus for measuring phase shift amount for processing phase shift mask
JPS60233505A (en) Line width measuring method
JPS60249007A (en) Instrument for measuring film thickness
JPH04109147A (en) Measuring method for complex refraction factor and measuring device thereof
JPS62223609A (en) Method for measuring film thickness and refractive index of semiconductor thin film
JPS60236004A (en) Measuring method of line width
RU2134874C1 (en) Apparatus measuring gas concentrations
JPS61265515A (en) Method for measuring processing accuracy
JPH01189506A (en) Method for measuring thickness of film