JPS6147645A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS6147645A
JPS6147645A JP16942184A JP16942184A JPS6147645A JP S6147645 A JPS6147645 A JP S6147645A JP 16942184 A JP16942184 A JP 16942184A JP 16942184 A JP16942184 A JP 16942184A JP S6147645 A JPS6147645 A JP S6147645A
Authority
JP
Japan
Prior art keywords
target material
target
electrode
substrate
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16942184A
Other languages
Japanese (ja)
Inventor
Riyouichi Hazuki
巴月 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16942184A priority Critical patent/JPS6147645A/en
Publication of JPS6147645A publication Critical patent/JPS6147645A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3421Cathode assembly for sputtering apparatus, e.g. Target using heated targets

Abstract

PURPOSE:To remarkably improve deposition rate of film and thereby improve productivity by heating the surface of target material to be sputtered. CONSTITUTION:The flat electrodes 2, 3 are provided opposed to each other within a sputtering chamber vessel 1, an upper electrode 2 is generally grounded and a substrate 4 is placed on this electrode 2 with a substrate support 5. In the case of forming a silicon oxide film, for example, a target material 8 consisting of quartz glass is placed on the electrode 3. A heater 9 for heating target is buried within the electrode 3. After the inside of vessel 1 is exhausted to the vacuum condition of about 1X10<-6>(Torr), the Ar gas, for example, is supplied from the gas supply port 11 and the gas pressure in the vessel 1 is kept at 10[mTorr]. Next, the heater 9 is heated by a power supply 10 until the surface of target 8 is heated up to about 450 deg.C and thereafter a high frequency power 7 is set for example to 7[kW] to generate discharge between the electrodes 2, 3. The target material 8 is sputtered with the Ar ion and silicon oxide film is deposited on the surface of substrate 4.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、スパッタリング法を利用した薄膜形成方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a thin film forming method using a sputtering method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体ウェハ等の基板上に薄膜を形成する一つの
方法として、スパッタリング法が用いられている。一般
のスパッタリング法では、161〜10 [Torr]
程度の真空中で放電により生じたイオンをターゲット電
極に加速衝撃する。この際、ターゲット材料からその構
成原子がイオンのスパッタリングtこより放出される。
Conventionally, a sputtering method has been used as one method for forming a thin film on a substrate such as a semiconductor wafer. In general sputtering method, 161 to 10 [Torr]
Ions generated by discharge in a vacuum of about 100 mL are accelerated and bombarded with a target electrode. At this time, constituent atoms of the target material are ejected by ion sputtering.

そして、このターゲット材料から放出された原子を基板
上に堆積することにより薄膜が形成される。
A thin film is then formed by depositing atoms released from this target material onto a substrate.

しかしながら、この種の方法にあっては、膜の堆積速度
が遅く所望膜厚を得るのに長時間を要するという問題が
ある。すなわち、膜の堆積速度は電源出力、圧力等のス
パッタリング条件lζよりある程度速くできるが、例え
ば酸化シリコン膜等の絶縁膜の堆積速度は通常100[
A/1m1n〕  前後、マグネトロンスパッタリング
法を用いてもこの数倍程度と遅い。このため、生産性を
上げるためには、ターゲット面積を大きくして多数枚の
基板上に同時に膜を形成する必要があるが、この場合電
源容量を大きくする必要があり、また装置も高価なもの
となる。
However, this type of method has a problem in that the film deposition rate is slow and it takes a long time to obtain a desired film thickness. That is, although the deposition rate of a film can be faster than the sputtering conditions lζ such as power supply output and pressure, the deposition rate of an insulating film such as a silicon oxide film is usually 100 [
A/1 m1n] Even if magnetron sputtering is used, it is several times slower than this. Therefore, in order to increase productivity, it is necessary to increase the target area and form films on multiple substrates simultaneously, but in this case, the power supply capacity needs to be increased and the equipment is also expensive. becomes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、スパッタリング装置の基本的な改良を
必要とすることなく、膜の堆積速度を大幅に向上させる
ことができ、生産性の向上をはかり得る薄膜形成方法を
提供するととIこある。
An object of the present invention is to provide a thin film forming method that can significantly increase the film deposition rate and improve productivity without requiring any fundamental improvements to sputtering equipment. .

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ターゲット材料の表面温度を高め、ス
パッタリング)こよりターゲット材料から放出される原
子の量を増大せしめることにある。
The gist of the present invention is to increase the surface temperature of the target material and increase the amount of atoms emitted from the target material by sputtering.

ターゲット材料は、従来スパッタ中は水冷されるのが一
般的である。ターゲット材料から放出される原子の量は
、ターゲット材料の表面温度が高い方が多くなる。
Conventionally, the target material is generally water-cooled during sputtering. The amount of atoms emitted from the target material increases as the surface temperature of the target material increases.

本発明はこの点に着目し、放電により生じたイオンでタ
ーゲット材料をスパッタリングし、所定の基板表面上に
薄膜を堆積形成するスパッタリング法lこよる薄膜形成
方法(こおいて、ターゲット材料の表面温度を高めるよ
うにした方法である。
The present invention focuses on this point, and employs a sputtering method in which a target material is sputtered with ions generated by discharge to form a thin film on a predetermined substrate surface (in this case, the surface temperature of the target material is This method is designed to increase the

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加速されたイオンがターゲットに向っ
て来る際、ターゲット表面の温度が従来より高いため、
ターゲットからスパッタされる原子の量が増加する。こ
れは、スパッタリング効率に温度依存性があり、温度が
高い程、そのスパッタリング効率が高くなるためである
。例えば人rイオンで8i0.ターゲットをスパッタリ
ングする場合、ターゲット表面の温度を450℃tこし
た場合は従来の水冷した場合lこ比べてスパッタリング
効率は約3倍になる。この結果として、基板上での薄膜
の堆積速度が向上する。また、ターゲットから飛び出す
原子のエネルギーが高くなるため、基板段差部での膜の
被覆形状も改善される。
According to the present invention, when the accelerated ions approach the target, the temperature of the target surface is higher than before, so
The amount of atoms sputtered from the target increases. This is because sputtering efficiency is temperature dependent, and the higher the temperature, the higher the sputtering efficiency. For example, human r ion is 8i0. When sputtering a target, if the temperature of the target surface is raised to 450° C., the sputtering efficiency will be approximately three times that of conventional water cooling. This results in an increased rate of thin film deposition on the substrate. Furthermore, since the energy of atoms ejected from the target is increased, the shape of the film covering the step portion of the substrate is also improved.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例方法(こ使用したスパッタリ
ング装置の概略構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic structure of a sputtering apparatus used in an embodiment of the method of the present invention.

図中1はスパッタ室容器で、この容器1内tこは平板状
の電極2,3が対向配置されている。上部電極2は通常
接地されており、この電極21こ基板4が、基板保持具
5Iこより置かれる。下部電極3には整合器6を介して
高周波電源7からの高周波電力が印加されている。電極
3の上面には、例えば酸化シリコン膜を形成する場合と
して石英ガラス(Sin、)からなるターゲット材料8
を設置する。さらに、電極3の内部に、ターゲット加熱
用ヒーター9が電極3と電気的lこ絶縁されて埋設され
ている。ヒーター9には外部の電源10から電流を流す
In the figure, reference numeral 1 denotes a sputtering chamber container, and inside this container 1, flat electrodes 2 and 3 are arranged facing each other. The upper electrode 2 is normally grounded, and the substrate 4 is placed over the electrode 21 from the substrate holder 5I. High frequency power from a high frequency power source 7 is applied to the lower electrode 3 via a matching box 6 . A target material 8 made of quartz glass (Sin) is placed on the upper surface of the electrode 3, for example, when forming a silicon oxide film.
Set up. Furthermore, a heater 9 for heating the target is buried inside the electrode 3 and is electrically insulated from the electrode 3. A current is applied to the heater 9 from an external power source 10.

なお、図中11は容器l内にガスを導入するためのガス
導入口、12は容器1内のガスを排気するためのガス排
気口を示している。また、13は絶縁物を示している。
In the figure, 11 indicates a gas introduction port for introducing gas into the container 1, and 12 indicates a gas exhaust port for discharging the gas within the container 1. Further, 13 indicates an insulator.

次に、上記構成された装置を用いて酸化シリコン膜を形
成する場合lこついて説明する。まず、容器l内を1x
lO(Torr)程度の真空度に排気したのち、ガス導
入口11より例えばA−r  ガスを導入し。
Next, the process of forming a silicon oxide film using the apparatus configured as described above will be explained. First, fill the inside of container l with 1x
After evacuation to a degree of vacuum of about 10 Torr, for example, A-r gas is introduced from the gas inlet 11.

容器1内のガス圧を10 (mTorr)  に保持す
る。次にヒーター加熱用電源10によりヒーター9を加
熱して、ターゲット8の表面を450℃にした後、高周
波型カフを例えばl (IGV)  lこして電極2,
3間で放電を起こし、Ar  イオンによりターゲット
材料8をスパッタリングし、基板4の表面に酸化シリコ
ン膜を堆積させる。ターゲット材料8と基板4との距離
は7.5 [6〕とした。以上の条件での酸化シリコン
膜の堆積速度は250 [A/rnin)であった。タ
ーゲット加熱用ヒーターがない従来の場合、前記と同じ
条件での堆積速度は80[A/min]である。すなわ
ち、本実施例方法1こより、ターゲット材料の表面温度
を上げるととfこより、堆積速度は3倍以上に速くなっ
た。
The gas pressure inside the container 1 is maintained at 10 (mTorr). Next, the heater 9 is heated by the heater heating power source 10 to bring the surface of the target 8 to 450° C., and then the high frequency cuff is heated to 450° C., for example.
3, a discharge is generated, and the target material 8 is sputtered with Ar ions to deposit a silicon oxide film on the surface of the substrate 4. The distance between the target material 8 and the substrate 4 was set to 7.5 [6]. The deposition rate of the silicon oxide film under the above conditions was 250 [A/rnin]. In the conventional case without a heater for heating the target, the deposition rate under the same conditions as above is 80 [A/min]. That is, when the surface temperature of the target material was raised in Method 1 of this embodiment, the deposition rate became more than three times faster than in Method 1.

〔発明の他の実施例〕[Other embodiments of the invention]

本発明は上述した実施例に限定されるものではない。例
えば、ターゲット材料の加熱方法は前記実施例で述べた
方法に限るものではなく、赤外線照射等により加熱して
もよい。なお、電極の一部を水冷しても差し支えない。
The invention is not limited to the embodiments described above. For example, the method of heating the target material is not limited to the method described in the above embodiments, but may also be heated by infrared irradiation or the like. Note that a part of the electrode may be water-cooled.

また、ターゲット材料は石英に限るものではなく、形成
すべき膜の種類に応じて適宜定めればよい。さらに、装
置の構成は前記第1図に何ら限定されるものではなく、
一対の平行平板電極をそなえたスパッタリング装置であ
れば、適宜変更可能であり、また必要ならば基板を加熱
してもよい。その他、本発明の要旨を逸脱しない範囲で
、種々変形して実施することができる。
Further, the target material is not limited to quartz, and may be appropriately determined depending on the type of film to be formed. Furthermore, the configuration of the device is not limited to that shown in FIG.
Any sputtering device equipped with a pair of parallel plate electrodes can be modified as appropriate, and the substrate may be heated if necessary. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例方法に使用したスパツタリン
グ装置の概略構成を示す断面図である。 1・・・スパッタ室容器  2−3・・・電極4・・・
基板      5・・・基板保持具6・・・整合器 
    7・・・高周波電源8・・・ターゲット   
9・・・ヒーター10・・・ヒーター電源  11・・
・ガス導入口12・・・ガス排気口   13・・・絶
縁物(7317)  代理人弁理士 則 近 憲 佑 
(ほか1名)第  1  図
FIG. 1 is a sectional view showing a schematic configuration of a sputtering apparatus used in an embodiment of the method of the present invention. 1... Sputtering chamber container 2-3... Electrode 4...
Board 5... Board holder 6... Matching device
7...High frequency power supply 8...Target
9... Heater 10... Heater power supply 11...
・Gas inlet port 12...Gas exhaust port 13...Insulator (7317) Representative Patent Attorney Noriyuki Chika
(1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 放電により生じたイオンでターゲット材料をスパッタリ
ングし、所定の基板表面上に薄膜を堆積形成するスパッ
タリング法による薄膜形成方法において、前記ターゲッ
ト材料のスパッタリングされる表面を加熱したことを特
徴とする薄膜形成方法。
A thin film forming method using a sputtering method in which a target material is sputtered with ions generated by electric discharge to deposit a thin film on a predetermined substrate surface, the thin film forming method comprising heating the surface of the target material to be sputtered. .
JP16942184A 1984-08-15 1984-08-15 Formation of thin film Pending JPS6147645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16942184A JPS6147645A (en) 1984-08-15 1984-08-15 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16942184A JPS6147645A (en) 1984-08-15 1984-08-15 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS6147645A true JPS6147645A (en) 1986-03-08

Family

ID=15886276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16942184A Pending JPS6147645A (en) 1984-08-15 1984-08-15 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS6147645A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250951A (en) * 1988-08-11 1990-02-20 Ulvac Corp Method and apparatus for manufacturing transparent conductive film
US5415756A (en) * 1994-03-28 1995-05-16 University Of Houston Ion assisted deposition process including reactive source gassification
EP0754777A2 (en) * 1995-07-20 1997-01-22 Olympus Optical Co., Ltd. Process for producing thin film, and optical instrument including the same
JP2006124767A (en) * 2004-10-28 2006-05-18 Olympus Corp Sputtering method and sputtering system
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
EP2434523A3 (en) * 2010-09-28 2014-04-30 First Solar Malaysia SDN.BHD Sputtering cathode having a non-bonded semiconducting target
EP2434524A3 (en) * 2010-09-28 2014-09-10 First Solar Malaysia SDN.BHD Methods of sputtering using a non-bonded semiconducting target

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250951A (en) * 1988-08-11 1990-02-20 Ulvac Corp Method and apparatus for manufacturing transparent conductive film
US5415756A (en) * 1994-03-28 1995-05-16 University Of Houston Ion assisted deposition process including reactive source gassification
WO1995026425A1 (en) * 1994-03-28 1995-10-05 University Of Houston An ion-assisted deposition process including reactive source gassification
EP0754777A2 (en) * 1995-07-20 1997-01-22 Olympus Optical Co., Ltd. Process for producing thin film, and optical instrument including the same
EP0754777A3 (en) * 1995-07-20 1997-05-07 Olympus Optical Co Process for producing thin film, and optical instrument including the same
US5958155A (en) * 1995-07-20 1999-09-28 Olympus Optical Co., Ltd. Process for producing thin film
JP2006124767A (en) * 2004-10-28 2006-05-18 Olympus Corp Sputtering method and sputtering system
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
EP2434523A3 (en) * 2010-09-28 2014-04-30 First Solar Malaysia SDN.BHD Sputtering cathode having a non-bonded semiconducting target
EP2434524A3 (en) * 2010-09-28 2014-09-10 First Solar Malaysia SDN.BHD Methods of sputtering using a non-bonded semiconducting target

Similar Documents

Publication Publication Date Title
US4517026A (en) Method of backside heating a semiconductor substrate in an evacuated chamber by directed microwaves for vacuum treating and heating a semiconductor substrate
JP3080843B2 (en) Thin film forming method and apparatus
JPS6147645A (en) Formation of thin film
JPS627852A (en) Formation of thin film
JPH0661335A (en) Wafer holding plate for semiconductor manufacturing device
US3463715A (en) Method of cathodically sputtering a layer of silicon having a reduced resistivity
JPH05109655A (en) Cvd-sputtering system
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
JPS61174726A (en) Formation of thin film
JPS62188777A (en) Bias sputtering device
JPH03122266A (en) Production of thin nitride film
JPH09199487A (en) Plasma processing method and device
JPS58136763A (en) Plasma chemical vapor depositing device
JPS63238266A (en) Sputtering device
JPH03215664A (en) Thin film forming device
JPS62243765A (en) Method for relieving residual stress in stage of forming thin film
JPH06145974A (en) Vacuum film forming device and vacuum film formation
JPS6017070A (en) Method and device for forming thin film
JP2890032B2 (en) Silicon thin film deposition method
JPS6010617A (en) Substrate heating method in plasma cvd apparatus
JPS6179767A (en) Formation of film
JPS6197838A (en) Formation of thin film
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
JPH0411729A (en) Forming method of insulating film for semiconductor element
JPS6226869A (en) Manufacture of photovoltaic device