JPS6146773B2 - - Google Patents

Info

Publication number
JPS6146773B2
JPS6146773B2 JP494581A JP494581A JPS6146773B2 JP S6146773 B2 JPS6146773 B2 JP S6146773B2 JP 494581 A JP494581 A JP 494581A JP 494581 A JP494581 A JP 494581A JP S6146773 B2 JPS6146773 B2 JP S6146773B2
Authority
JP
Japan
Prior art keywords
laser beam
molten metal
cylindrical tube
excitation light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP494581A
Other languages
Japanese (ja)
Other versions
JPS57119241A (en
Inventor
Akihiro Ono
Masao Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP494581A priority Critical patent/JPS57119241A/en
Publication of JPS57119241A publication Critical patent/JPS57119241A/en
Publication of JPS6146773B2 publication Critical patent/JPS6146773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited

Description

【発明の詳細な説明】 本発明は、溶融金属表面にパルスレーザー光を
照射して発生した励起光を光フアイバーで、離れ
た場所に設置してある分光器に伝送して、溶融金
属中の各種成分の含有量をオンラインリアルタイ
ムで求めることを目的とする溶融金属の直接発光
分光分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention transmits excitation light generated by irradiating the surface of molten metal with pulsed laser light to a spectrometer installed at a remote location, thereby detecting the molten metal. This invention relates to a direct emission spectrometer for molten metal that aims to determine the content of various components online in real time.

鉄鋼業における鋼の製造工程管理や製品の品質
管理には、固体試料を用いる発光分光分析が最も
多用されている。しかし、近年、より迅速な製造
工程管理あるいは多段精錬など新しい精錬プロセ
スの操業管理のために、溶銑や溶鋼のように溶融
状態の試料を対象としたオンライン、リアルタイ
ムの分析法の開発が要請されている。これまで溶
融金属の直接発光分析は、溶融金属と電極との間
に電気的放電を行わせて生じた励起光を分光器で
測定する方法(A.Wittmann:Iron and Steel
International,52(1979)P77〜83)、溶融金属を
特殊な噴霧器によつて微紛化し、Arガス気流に
よるパイプ輸送後、プラズマフレーム発光分光分
析をする方法(BISRA Annual Report:78
(1966)、65,78(1967)、35(1968))、ジヤイア
ントパルス(G.P.)レーザー光を照射して発した
励起光を直接分光器で測定する方法(不活性ガス
下励起;特公昭54−7593、大気下励起;E.F.
Runge et al.:Spectrochimica Acta.,22
(1966)P1678〜1680)など各種の手法により研
究開発が試みられている。しかし、これらの方法
にはいずれも一長一短があり、これまで実際の金
属製造現場に設置して実用化されたことはなく、
いずれも実験室内における小規模な実験が試みら
れたに過ぎない。
Emission spectroscopy using solid samples is most frequently used for steel manufacturing process control and product quality control in the steel industry. However, in recent years, there has been a demand for the development of online, real-time analysis methods for samples in a molten state, such as hot metal or molten steel, for faster manufacturing process control or operational control of new refining processes such as multi-stage refining. There is. Up until now, direct emission analysis of molten metal has been performed using a spectrometer to measure the excitation light generated by causing an electrical discharge between the molten metal and an electrode (A. Wittmann: Iron and Steel
International, 52 (1979) P77-83), a method in which molten metal is atomized using a special atomizer, transported through a pipe using an Ar gas stream, and then subjected to plasma flame emission spectroscopy (BISRA Annual Report: 78).
(1966), 65, 78 (1967), 35 (1968)), a method of directly measuring the excitation light emitted by irradiating giant pulse (GP) laser light with a spectrometer (excitation under inert gas; 54−7593, atmospheric excitation; EF
Runge et al.: Spectrochimica Acta., 22
(1966) P1678-1680), research and development are being attempted using various methods. However, all of these methods have advantages and disadvantages, and until now they have never been put into practical use at an actual metal manufacturing site.
All of these were merely small-scale experiments conducted in a laboratory.

実際に製造現場で実用できる溶融金属の直接発
析装置の実現をはかるには、まず測定環境を考慮
しなければならない。金属精錬工程で金属が溶融
状態となつている製造現場は、高温、振動、大気
の汚れなど測定還境が非常に悪い。従つて、溶融
金属試料の励起作用は試料の存在する場所で行わ
ざるを得ないが、励起光を分光し、各波長におけ
る光の強度から溶融金属中に含有される各成分の
含有量を算出する分光器、検出器、演算処理装置
から成る分光検出部は、溶融金属の直近の高温、
振動、大気の汚れなどの条件の悪い測定環境下で
はトラブルが起り易く、正常に機能せず、これら
の悪条件を解消した場所に設置されなければなら
ない。すなわち、溶融金属試料の励起部と分光検
出部とは一定の距離をもつて離して設置されるべ
きであり、レーザー光の溶融金属表面の照射点で
生成するプラズマから発する励起光を直接分光器
のスリツトへ入射することは、高温や振動によつ
て起る光路のずれ等により、実際上は分光器ある
いは検出器、演算処理装置が正常に作動せず、困
難である。また、溶融金属試料の励起エネルギー
源としては、電極の耐熱、耐食性等の問題から電
気的放電よりも、レーザー光の直進性に基ずく遠
隔操作性に優れるレーザー照射が適しているとい
える。
In order to create a direct spectrometer for molten metal that can actually be put into practical use at manufacturing sites, the measurement environment must first be considered. Manufacturing sites, where metal is in a molten state during the metal refining process, have extremely poor measurement environments such as high temperatures, vibrations, and polluted air. Therefore, the excitation effect on a molten metal sample must be performed at the location where the sample exists, but the excitation light can be split into spectra and the content of each component contained in the molten metal can be calculated from the intensity of light at each wavelength. The spectroscopic detection unit, which consists of a spectrometer, a detector, and a processing unit, detects the high temperature in the vicinity of the molten metal.
Trouble is likely to occur in measurement environments with poor conditions such as vibration and air pollution, and the device may not function properly, so it must be installed in a location that eliminates these adverse conditions. In other words, the excitation part of the molten metal sample and the spectroscopic detection part should be installed a certain distance apart, and the excitation light emitted from the plasma generated at the irradiation point of the molten metal surface with the laser beam should be directly transmitted to the spectrometer. In reality, it is difficult for the light to enter the slit because the spectrometer, detector, and arithmetic processing unit do not function properly due to deviations in the optical path caused by high temperatures and vibrations. Moreover, as an excitation energy source for a molten metal sample, laser irradiation is more suitable than electrical discharge due to problems such as heat resistance and corrosion resistance of electrodes, as it is superior in remote controllability based on the straightness of laser light.

励起部と分光検出部とを一定距離離して設置し
た場合は、励起光の分光検出部への伝送が必要に
なる。その距離がほとんど直近の場合には集光レ
ンズや反射鏡あるいはプリズム等を組み合せて用
いた光学系の集光装置で励起光の伝送は可能であ
る。しかし、数m以上の距離を離した場合には、
光学系集光装置では光の減衰による伝送損失が大
きく、また高温や振動に起因する光路のずれの問
題が起る。
When the excitation section and the spectroscopic detection section are installed a certain distance apart, it is necessary to transmit the excitation light to the spectroscopic detection section. If the distance is almost the shortest, it is possible to transmit the excitation light using an optical condensing device using a combination of a condensing lens, a reflecting mirror, a prism, or the like. However, if the distance is more than a few meters,
Optical condensing devices suffer from large transmission losses due to light attenuation, and optical path deviations due to high temperatures and vibrations.

そこで本発明では、それらの問題点を解決する
ために励起光の伝送には光フアイバーを応用し
た。この光フアイバーはそれぞれ屈折率の異なる
コア層とクラツド層から成り、コア層に入射した
光は両者の界面を全反射しながら伝送されるもの
であるが、溶銑や溶鋼など溶融金属中に含まれる
成分の励起光のスペクトルがほとんど吸収されず
に伝送されるものが必要になる。溶銑や溶鋼中に
微量含まれ、特に分析する必要性の高い成分で、
その励起光強度が強く検出しやすいスペクトルの
波長は、P1775Å、S1807Å、C1930Å、Cr2677
Å、Mo2775Å、Si2881Å、Mn2933Å、Al3082
Å、V3110Å、Nb3195Å、Ti3242Å、Cu3274Å
などであり、特にC,P,Sは重要な成分である
ことから励起光の伝送に用いる光フアイバーは
1700Å〜3300Åの短波長の光を伝送損失が少なく
伝送する必要がある。
Therefore, in the present invention, in order to solve these problems, an optical fiber is used for transmitting excitation light. This optical fiber consists of a core layer and a cladding layer, each with a different refractive index, and the light incident on the core layer is transmitted while being totally reflected at the interface between the two. What is needed is something that transmits the spectrum of excitation light of the component with almost no absorption. It is a component that is contained in trace amounts in hot metal and molten steel, and requires particular analysis.
The wavelengths of the spectrum that have strong excitation light intensity and are easy to detect are P1775Å, S1807Å, C1930Å, and Cr2677.
Å, Mo2775Å, Si2881Å, Mn2933Å, Al3082
Å, V3110Å, Nb3195Å, Ti3242Å, Cu3274Å
Since C, P, and S are particularly important components, the optical fiber used for transmitting the excitation light is
It is necessary to transmit light with a short wavelength of 1700 Å to 3300 Å with little transmission loss.

光フアイバーが現在最も活用されている分野は
光通信関係であり、コアの材質に石英ガラスを用
いたものが一般的である。光通信の場合はKmオ
ーダーの長距離伝送を目的とするためにμmオー
ダーの長波長域の光を対象としており、石英系の
光フアイバーを用いた場合の伝送損失は極めて小
さい。この石英系光フアイバーを溶融金属のレー
ザー照射による励起光の伝送に用いた場合、励起
光は上述のように短波長の紫外光であるため吸収
損失及びレーリー散乱損失等により大きな伝送損
失が起る。そのため上述の2677Å以上のCr,
Mo,Si,Mn,Al,V,Nb,Ti,Cu等の励起光
の伝送は石英系光フアイバーでも可能であるが、
C,P,Sのように2000Å以下の短波長光の伝送
は、石英ガラスによる吸収損失、レーリー散乱損
失等による伝送損失が大きく伝送は極めて困難で
ある。従つて、本発明に用いる光フアイバーは、
フツ化リチウムやフツ化カルシウムなど紫外領域
の短波長光の透過性の良い材料を用いた製造した
光フアイバー、上記材料と石英ガラスとの混合材
料を用いて製造した光フアイバーあるいは紫外透
過性に優れるプラスチツクスを用いて製造した光
フアイバーなどが適当である。
The field in which optical fibers are currently most utilized is in optical communications, and quartz glass is commonly used as the core material. In the case of optical communication, the target is light in a long wavelength region of the μm order in order to achieve long-distance transmission on the Km order, and the transmission loss when using quartz-based optical fibers is extremely small. When this silica-based optical fiber is used to transmit excitation light by laser irradiation of molten metal, the excitation light is short-wavelength ultraviolet light as described above, so large transmission losses occur due to absorption loss, Rayleigh scattering loss, etc. . Therefore, the above-mentioned Cr of 2677Å or more,
Although it is possible to transmit excitation light for Mo, Si, Mn, Al, V, Nb, Ti, Cu, etc. using silica-based optical fiber,
Transmission of short wavelength light of 2000 Å or less, such as C, P, and S, is extremely difficult due to large transmission losses due to absorption loss by silica glass, Rayleigh scattering loss, etc. Therefore, the optical fiber used in the present invention is
Optical fibers manufactured using materials that have good transmittance for short wavelength light in the ultraviolet region such as lithium fluoride and calcium fluoride, optical fibers manufactured using materials that are a mixture of the above materials and quartz glass, or those that have excellent ultraviolet transmittance. Optical fibers made from plastics are suitable.

光フアイバー端面への励起光の入射は、光フア
イバーの開口数(sinθ、θ:入射角)以下に励
起光を集光して入射する必要がある。レーザー照
射によつて発する励起光は弱いためになるべく効
率よく集光しなければならない。そのためには、
励起光の光路を反射鏡などによつて変えることな
く、直接集光レンズで集光する方法が最も効果的
である。また、溶融金属表面の位置変動が励起光
の集光に与える影響を考慮すると、励起光の集光
をほとんど妨害せずにレーザー光光路と励起光光
路を同軸にする必要がある。
For the excitation light to be incident on the end face of the optical fiber, it is necessary to condense the excitation light to a value equal to or less than the numerical aperture (sin θ, θ: angle of incidence) of the optical fiber. Since the excitation light emitted by laser irradiation is weak, it must be collected as efficiently as possible. for that purpose,
The most effective method is to directly collect the excitation light using a condenser lens without changing the optical path of the excitation light using a reflecting mirror or the like. Furthermore, in consideration of the effect that positional fluctuations on the molten metal surface have on the collection of excitation light, it is necessary to make the laser light optical path and the excitation light optical path coaxial without substantially interfering with the collection of excitation light.

また、上述のように溶融金属中のC,P,Sの
励起光は2000Å以下の短波長であるので、励起光
は大気による吸収を受けるために、レーザー光の
照射は不活性雰囲気下で行わねばならない。従つ
てレーザー照射及び励起光の集光部分には不活性
ガスを吹き込む機構の設置が必須であり、不活性
ガス吹き込みは上記の理由以外に、溶融金属表面
に生成するCOガス及びレーザー集光系などを汚
す金属蒸気の系外への排除にも必要不可決のもの
である。また、一般に溶融金属表面にはスラグ等
の浮遊物が存在するために、レーザー照射時には
これらを常に排除しておく必要がある。上述のよ
うな励起光の集光、レーザー光の照射、不活性ガ
ス雰囲気及びスラグ等浮遊物の排除の各条件を満
足するレーザー照射、励起光集光部が必要であ
る。
In addition, as mentioned above, the excitation light for C, P, and S in the molten metal has a short wavelength of 2000 Å or less, so the excitation light is absorbed by the atmosphere, so the laser light irradiation is performed in an inert atmosphere. Must be. Therefore, it is essential to install a mechanism for blowing inert gas into the laser irradiation and excitation light focusing parts.In addition to the above reasons, inert gas blowing is also used to prevent CO gas generated on the molten metal surface and the laser focusing system. It is also essential for eliminating metal vapors that contaminate other materials from the system. Furthermore, since floating substances such as slag generally exist on the surface of the molten metal, it is necessary to always remove them during laser irradiation. A laser irradiation and excitation light condensing unit is required that satisfies the above-mentioned conditions of excitation light condensation, laser light irradiation, inert gas atmosphere, and exclusion of floating substances such as slag.

以上述べたように、本発明は、レーザー光照射
−光フアイバー伝送を基本とする溶融金属中の含
有成分の直接分析を行う場合に、レーザー照射
扮、励起発光部及び励起光伝送部においてそれぞ
れ特徴をもち、実用的かつ新規な分析装置を提供
するものである。
As described above, the present invention provides features for the laser irradiation section, the excitation light emitting section, and the excitation light transmission section when performing direct analysis of components contained in molten metal based on laser light irradiation and optical fiber transmission. This provides a practical and novel analytical device.

本発明装置の実施例を第1図に示す。以下、図
面により本発明の詳細について説明する。
An embodiment of the device of the present invention is shown in FIG. Hereinafter, the details of the present invention will be explained with reference to the drawings.

第1図は本発明実施例の縦断面図を示すもの
で、1は溶融金属表面にパルスレーザー光を集
光、照射し、発生した励起光を集光して光フアイ
バー端面に入射するための励起用円筒管、2は光
フアイバー、3は分光器、5は不活性ガス導入
口、6はパルスレーザー光発生装置、10は溶融
金属、14はスラグ遮へい用管、15はスラグ遮
へい用管の昇降装置である。パルスレーザー光発
生装置6から発射されたパルスレーザー光(点
線)は、レーザー光路管11内を通り、必要があ
ればレーザー光反射鏡12あるいはプリズムによ
つてレーザー光入射用窓4を通つて励起用円筒管
1内部に導びかれる。また、レーザー光路管11
はレーザー光によつて破壊されず、レーザー光の
伝送が可能な光フアイバーを用いてもよく、この
場合は反射鏡12は不要になる。パルスレーザー
光発生装置は出力200MW〜2000MWのように高
出力のガラスレーザーあるいはルビーレーザーが
適していた。レーザー光入射用窓は石英ガラスの
窓板を取りつけ、励起用円筒管1内部には常に不
活性ガスが充満するようにした。
FIG. 1 shows a longitudinal cross-sectional view of an embodiment of the present invention, in which 1 shows a device for condensing and irradiating a pulsed laser beam onto the surface of a molten metal, condensing the generated excitation light and making it incident on the end face of an optical fiber. A cylindrical tube for excitation, 2 an optical fiber, 3 a spectrometer, 5 an inert gas inlet, 6 a pulse laser beam generator, 10 a molten metal, 14 a slag shielding tube, and 15 a slag shielding tube. It is a lifting device. The pulsed laser beam (dotted line) emitted from the pulsed laser beam generator 6 passes through the laser beam path tube 11, and if necessary, is excited through the laser beam entrance window 4 by the laser beam reflection mirror 12 or prism. is guided inside the cylindrical tube 1 for use. In addition, the laser beam path tube 11
An optical fiber that is not destroyed by laser light and is capable of transmitting laser light may be used; in this case, the reflecting mirror 12 is not required. A high-power glass laser or ruby laser with an output of 200MW to 2000MW was suitable for the pulsed laser light generator. A quartz glass window plate was attached to the laser beam entrance window so that the inside of the excitation cylindrical tube 1 was always filled with inert gas.

円筒管1内に入射したパルスレーザー光は、円
筒管1中心線上に設置された小型のレーザー光反
射鏡8によつて伸路を下向きに変え、その下方に
設置された小型のレーザー光集光レンズ7によつ
て溶融金属10表面で焦点を結ぶように集光され
る。レーザー光照射によつて溶融金属表面から発
せられた励起光(一点鎖線)は、レーザー光反射
鏡8の上方に設置された励起光集光レンズ9によ
つて光フアイバー2の端面で焦点を結ぶように集
光され、光フアイバー2内に入射される。
The pulsed laser beam that has entered the cylindrical tube 1 is directed downward by a small laser beam reflector 8 installed on the center line of the cylindrical tube 1, and then is condensed by a small laser beam condenser installed below. The light is focused by the lens 7 on the surface of the molten metal 10 . The excitation light (dotted chain line) emitted from the molten metal surface by laser beam irradiation is focused on the end face of the optical fiber 2 by the excitation light condensing lens 9 installed above the laser beam reflector 8. The light is focused into the optical fiber 2.

励起用円筒管1内に入射されたパルスレーザー
光の進路を変えるレーザー光反射鏡8は円筒管1
の中心線上で、その中心線に対して45度未満の角
度に傾斜させて取りつける。これはパルスレーザ
ー光と励起光が同軸上にあるために、励起光が溶
融金属表面10から、励起光集光レンズ9に到達
するのを妨害する影になることを極力防ぐためで
ある。反射鏡8はパルスレーザー光のビーム径よ
りわずかに大きくなければならないが、極力小型
のものを用い、円筒管1の中心線に対して45度未
満の角度に傾けて設置するために、励起光の進路
に対する断面積は極めて小さくなり、励起光の集
光をあまり妨害しない。反射鏡8の取りつけ角度
の関係から必然的に反射鏡に対するG.P.レーザー
光の入射角の範囲は水平軸に対して0度超〜90度
未満の範囲に限られる。従つて、レーザー光入射
用窓4の位置は反射鏡8とほぼ同じ高さあるいは
それより上方となる。レーザー光集光レンズ7も
反射鏡8と同じ目的により極力小型のものを用い
た。
The laser beam reflecting mirror 8 that changes the course of the pulsed laser beam incident into the excitation cylindrical tube 1 is the cylindrical tube 1.
on the center line of the machine and at an angle of less than 45 degrees to the center line. This is because the pulsed laser beam and the excitation light are on the same axis, so as to prevent the excitation light from forming a shadow that would prevent it from reaching the excitation light condensing lens 9 from the molten metal surface 10 as much as possible. The reflector 8 must be slightly larger than the beam diameter of the pulsed laser beam, but in order to use a mirror as small as possible and install it at an angle of less than 45 degrees with respect to the center line of the cylindrical tube 1, the excitation light The cross-sectional area with respect to the path of the beam becomes extremely small, so that it does not interfere much with the collection of excitation light. Due to the mounting angle of the reflecting mirror 8, the range of the incident angle of the GP laser beam to the reflecting mirror is necessarily limited to a range of more than 0 degrees to less than 90 degrees with respect to the horizontal axis. Therefore, the position of the laser beam entrance window 4 is approximately at the same height as the reflecting mirror 8 or above it. The laser beam condensing lens 7 was also made as small as possible for the same purpose as the reflecting mirror 8.

反射鏡8及び集光レンズ7の円筒管1に対する
保持機構は図面では省略したが、保持具は水平断
面積を極力少なくし、材質も可能な限り石英ガラ
ス等を用い、励起光の集光の妨害にならないよう
にした。不活性ガス導入口5からは常に大容量の
Arガス等の不活性ガスを吹き込み、円筒管1内
全域に渡つて常に不活性雰囲気を保つようにし、
G.P.レーザー光照射直前には更に流量を増加して
吹き込むようにした。
Although the holding mechanism for the reflecting mirror 8 and the condensing lens 7 with respect to the cylindrical tube 1 is omitted in the drawing, the horizontal cross-sectional area of the holder is made as small as possible, and the material is made of quartz glass or the like as much as possible, so that the excitation light is not condensed. I tried not to be a hindrance. Large capacity is always supplied from inert gas inlet 5.
Blow in an inert gas such as Ar gas to maintain an inert atmosphere throughout the cylindrical tube 1.
Immediately before GP laser beam irradiation, the flow rate was further increased.

溶融金属表面にレーザー光を照射する以前に、
Arガスを激しく吹き込むか、あるいは耐火材で
できた板を溶融金属表面上を移動させるなどの機
械的方法によつてスラグ等の浮遊物を排除する。
その直後にスラグ遮へい用管14を遮へい用管昇
降装置15を作動させることによつて遮へい用管
14の下端開口部が金属湯面下に入るように下降
させる。この遮へい用管14により一度排除した
スラグ等は再び流れ込むことはなく、励起用円筒
管1下部のレーザー照射場所にはスラグ等の浮遊
物が無い状態を保つことができる。また、多少の
スラグが残存している場合でも不活性ガス導入口
5から吹き込まれたArガスにより、スラグは励
起用円筒管1下部からスラグ遮へい用管14の方
向へ容易に排除できる。また、このスラグ遮へい
用管14は大気の遮断の役目を果すため、励起用
円筒管1内を容易に不活性ガスで満たすことがで
きる。これは一度排出した大気が再び流れ込むこ
とを防げるためなどによるものであり、励起用円
筒管1の外側に遮へい用管14を設けることは実
際上非常に重要である。
Before irradiating the molten metal surface with laser light,
Floating objects such as slag are removed by vigorous blowing of Ar gas or by mechanical methods such as moving a plate made of refractory material over the surface of the molten metal.
Immediately thereafter, the slag shielding pipe 14 is lowered by operating the shielding pipe lifting device 15 so that the lower end opening of the shielding pipe 14 is below the metal surface. Slag and the like once removed by the shielding tube 14 do not flow in again, and the laser irradiation area at the bottom of the excitation cylindrical tube 1 can be kept free of floating objects such as slag. Further, even if some slag remains, the slag can be easily removed from the lower part of the excitation cylindrical tube 1 toward the slag shielding tube 14 by the Ar gas blown from the inert gas inlet 5. Furthermore, since the slag shielding pipe 14 serves to block the atmosphere, the inside of the excitation cylindrical pipe 1 can be easily filled with inert gas. This is to prevent the atmosphere once exhausted from flowing in again, and it is actually very important to provide the shielding tube 14 outside the excitation cylindrical tube 1.

円筒管1内をArガス雰囲気にすることにより
励起光のスペクトルが2000Å以下のC,P,Sに
ついても精度よく分析できるようになつた。ま
た、吹き込んだArガスは溶融金属表面で発生し
分光分析を妨害するCOガスや各光学集光系を汚
す金属蒸気等を円筒管1の下端の開口部と溶融金
属表面との間隙から排除するために有効であつ
た。励起用円筒管1はアルミナ等の耐火材あるい
は水冷機構を備えれば鉄等の金属で製作できる。
円筒管1の設置方法は図示したように円筒管支持
台16によつて保持して溶融金属上に設置した。
By creating an Ar gas atmosphere inside the cylindrical tube 1, it has become possible to accurately analyze C, P, and S whose excitation light spectrum is less than 2000 Å. In addition, the blown Ar gas eliminates CO gas that is generated on the molten metal surface and interferes with spectroscopic analysis, metal vapor that contaminates each optical focusing system, etc. from the gap between the opening at the lower end of the cylindrical tube 1 and the molten metal surface. It was effective for this purpose. The excitation cylindrical tube 1 can be made of a refractory material such as alumina or a metal such as iron if a water cooling mechanism is provided.
The cylindrical tube 1 was installed on molten metal while being held by a cylindrical tube support 16 as shown in the figure.

光フアイバー2に入射された励起光は、フアイ
バー内を全反射して伝播し、分光器3のスリツト
に向つて出射するが、フアイバー射出光集光レン
ズ13で集光されてスリツトに入射される。分光
器で分光された励起光スペクトルは各不純物成分
に基ずく1700〜3300Åの範囲のスペクトル線強度
を光電子増倍管で測定され、溶融金属のマトリツ
クス成分との強度比をもとに演算処理装置によつ
て各成分の含有率が求められる。光フアイバー2
は前述したように1700Å〜3300Åの短波長光を透
過し、伝送損失が少ない材質から成るものでなけ
ればならないが、励起光を効率よく入射するため
に、コア面積、開口数の大きなものが適してい
る。光フアイバーは上記のような短波長光でも1
本のケーブルで10m程度の離れた場所へ自由に励
起光を伝送することができ、可とう性に富むため
これまで分光分析に下可欠であつた光軸調整を容
易にし、実ラインにおけるオンライン分析上極め
て有効である。
The excitation light incident on the optical fiber 2 is totally reflected within the fiber, propagates, and exits toward the slit of the spectroscope 3, but is condensed by the fiber exit light condensing lens 13 and enters the slit. . The excitation light spectrum separated by the spectrometer is measured with a photomultiplier tube for the spectral line intensity in the range of 1,700 to 3,300 Å based on each impurity component, and the arithmetic processing unit calculates the intensity ratio with the matrix component of the molten metal. The content of each component can be determined by optical fiber 2
As mentioned above, it must be made of a material that transmits short wavelength light of 1700 Å to 3300 Å and has low transmission loss, but in order to efficiently input excitation light, a material with a large core area and numerical aperture is suitable. ing. Optical fibers are capable of transmitting even short wavelength light such as the one above.
The excitation light can be freely transmitted to a distance of about 10 meters using a single cable, and its flexibility makes it easy to adjust the optical axis, which has been essential for spectroscopic analysis, and allows online use in actual lines. It is extremely effective for analysis.

以上説明したように本発明によれば、溶融金属
試料中の含有成分をサンプリング等の操作を行わ
ずに迅速かつ精度よく直接分析することができ、
金属の精錬プロセスの操業管理に極めて効果が大
きい。
As explained above, according to the present invention, components contained in a molten metal sample can be directly analyzed quickly and accurately without performing operations such as sampling.
It is extremely effective for operational management of metal refining processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置の縦断面図である。 1は励起用円筒管、2は光フアイバー、3は分
光器、5は不活性ガス導入口、6はパルスレーザ
ー光発生装置、7はレーザー光集光レンズ、8は
レーザー光反射鏡、9は励起光集光レンズ、10
は溶融金属を示す。
FIG. 1 is a longitudinal sectional view of an apparatus according to an embodiment of the present invention. 1 is a cylindrical tube for excitation, 2 is an optical fiber, 3 is a spectrometer, 5 is an inert gas inlet, 6 is a pulsed laser beam generator, 7 is a laser beam condensing lens, 8 is a laser beam reflecting mirror, and 9 is a Excitation light condensing lens, 10
indicates molten metal.

Claims (1)

【特許請求の範囲】[Claims] 1 外側周囲にスラグ遮へい用管を二重構造とし
て備え、該遮へい用管より長さが短かく、溶融金
属表面に対向する下端が開口した縦長の励起用円
筒管の頂部中心部に、他端が分光器に接続し、
1700Åから3300Åまでの範囲の短波長領域の光の
減衰、吸収の少ない材質から成る光フアイバーの
一端を取りつけ、該円筒管側壁には不活性ガス導
入口及びパルスレーザー発振装置から発射された
レーザー光の入射用窓板つき窓を設け、該円筒管
内部には下方から小型のレーザー光集光レンズ、
小型のレーザー光反射鏡、溶融金属表面から発し
た励起光の光フアイバー端面への集光レンズをこ
の順に取りつけ、該反射鏡はレーザー光が円筒管
の中心を通つて溶融金属表面に垂直に照射するよ
うに円筒管の中心線上に、該中心線に対して45度
未満の角度で傾斜させ、かつレーザー光入射窓取
りつけ位置以下の位置に取りつけたことを特徴と
するパルスレーザー及び光フアイバーを用いる溶
融金属の直接発光分光分析装置。
1. A slag shielding tube is provided as a double structure around the outside, and the length is shorter than the shielding tube, and the lower end facing the molten metal surface is open. is connected to the spectrometer,
One end of an optical fiber made of a material that has low attenuation and absorption of light in the short wavelength range from 1700 Å to 3300 Å is attached to the side wall of the cylindrical tube, and an inert gas inlet and a laser beam emitted from a pulsed laser oscillator are attached to the side wall of the cylindrical tube. A window with a window plate for incidence is provided, and inside the cylindrical tube, a small laser beam condensing lens,
A small laser beam reflecting mirror and a condensing lens for the excitation light emitted from the molten metal surface to the end face of the optical fiber are installed in this order, and the reflecting mirror irradiates the laser beam perpendicularly to the molten metal surface through the center of the cylindrical tube. A pulse laser and an optical fiber are used, which are mounted on the center line of a cylindrical tube at an angle of less than 45 degrees with respect to the center line, and at a position below the laser beam entrance window mounting position. Direct emission spectrometer for molten metal.
JP494581A 1981-01-19 1981-01-19 Spectroscopic analysis apparatus for direct luminescence of molten metal Granted JPS57119241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP494581A JPS57119241A (en) 1981-01-19 1981-01-19 Spectroscopic analysis apparatus for direct luminescence of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP494581A JPS57119241A (en) 1981-01-19 1981-01-19 Spectroscopic analysis apparatus for direct luminescence of molten metal

Publications (2)

Publication Number Publication Date
JPS57119241A JPS57119241A (en) 1982-07-24
JPS6146773B2 true JPS6146773B2 (en) 1986-10-16

Family

ID=11597705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP494581A Granted JPS57119241A (en) 1981-01-19 1981-01-19 Spectroscopic analysis apparatus for direct luminescence of molten metal

Country Status (1)

Country Link
JP (1) JPS57119241A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181946A (en) * 1985-02-06 1986-08-14 Osaka Oxygen Ind Ltd Direct laser emission spectrochemical analyzer for molten metal
JPS61181947A (en) * 1985-02-07 1986-08-14 Osaka Oxygen Ind Ltd Direct laser emission spectrochemical analyzer for molten metal
DE58908876D1 (en) * 1988-10-03 1995-02-23 Krupp Ag Hoesch Krupp Method for the optical coupling of an element analysis system and a laser to liquid metal in a melting vessel.
JP2003121361A (en) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring micro constituent using laser beam
JP2006266792A (en) * 2005-03-23 2006-10-05 Jfe Steel Kk Emission spectrochemical analyzer of molten metal
JP2007316050A (en) * 2006-04-25 2007-12-06 Nippon Steel Corp Componential analysis technique of molten metal and componential analysis device of molten metal
BE1018123A3 (en) * 2008-05-14 2010-05-04 Ct Rech Metallurgiques Asbl LIBS-TYPE MEASURING HEAD OPTIMIZED FOR THE ANALYSIS OF LIQUID AND / OR HIGH TEMPERATURE COMPOUNDS.
JP5359028B2 (en) * 2008-05-27 2013-12-04 新日鐵住金株式会社 Measuring equipment for molten metal
JP5195664B2 (en) * 2009-06-22 2013-05-08 新日鐵住金株式会社 Lance for continuous monitoring of molten steel, continuous monitoring device and continuous monitoring method
CN102589727A (en) * 2012-03-06 2012-07-18 唐山赛福特电子信息工程有限公司 Real-time online detection system of liquid steel temperature based on CCD (Charge- Coupled Device)
CN104297218B (en) * 2013-07-15 2016-09-14 中国科学院沈阳自动化研究所 The remote original position of components of metallurgical liquid metal, on-line measuring device and method
WO2023249048A1 (en) * 2022-06-21 2023-12-28 日本製鉄株式会社 Molten metal bath component analysis system, molten metal bath component analysis method, hot dip galvanizing bath management method, and hot dip galvanized steel sheet manufacturing method

Also Published As

Publication number Publication date
JPS57119241A (en) 1982-07-24

Similar Documents

Publication Publication Date Title
US6700660B2 (en) Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
US5751416A (en) Analytical method using laser-induced breakdown spectroscopy
KR101009845B1 (en) Laser Induced Breakdown Spectroscopy for the analysis of molten material
Rai et al. Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys
KR0158676B1 (en) Method and apparatus for optically coupling an element analysis system and a laser to liquid metal in a melting vessel
US5583634A (en) Process for elementary analysis by optical emission spectrometry on plasma produced by a laser in the presence of argon
JP4734273B2 (en) Laser-induced fluorescence analyzer
CA1272391A (en) Method of spectroscopically determining the composition of molten iron
JPS6146773B2 (en)
KR20080031787A (en) Immersion lance for analysis of melts and liquids
JP2003513272A (en) Continuous monitoring method of chemical species and temperature of high temperature process gas
JP2008256585A (en) Elemental analyzer and elemental analysis method
US7218396B2 (en) Method and apparatus for spectroscopy of the optical emission of a liquid excited by a laser
US6259757B1 (en) Telemetering of uranium or plutonium in glass
JP4449188B2 (en) Method and apparatus for analyzing components in molten metal
JPH0339631B2 (en)
US6400787B2 (en) Telemetering of uranium of plutonium in glass
JP2000275171A (en) Atomic absorption analysis method and apparatus of suspended particles in air
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
JPH07234211A (en) Probe for molten metal laser emission spectral analysis and its analyzing method
JPH11108829A (en) Method and device for online analysis of molten metal
JPS6267430A (en) Spectral analysis of components in molten iron
JPS6285847A (en) Method and device for direct emission spectrochemical analysis of laser multistage excitation
JPH0211098B2 (en)
JPH0145017B2 (en)