JPS6144150B2 - - Google Patents

Info

Publication number
JPS6144150B2
JPS6144150B2 JP58248717A JP24871783A JPS6144150B2 JP S6144150 B2 JPS6144150 B2 JP S6144150B2 JP 58248717 A JP58248717 A JP 58248717A JP 24871783 A JP24871783 A JP 24871783A JP S6144150 B2 JPS6144150 B2 JP S6144150B2
Authority
JP
Japan
Prior art keywords
temperature
treatment
phase
shape memory
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58248717A
Other languages
Japanese (ja)
Other versions
JPS60141852A (en
Inventor
Hiroki Nakanishi
Tsutomu Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24871783A priority Critical patent/JPS60141852A/en
Publication of JPS60141852A publication Critical patent/JPS60141852A/en
Publication of JPS6144150B2 publication Critical patent/JPS6144150B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 本発明はTiNi相およびTiNi3相の二相を有する
Ni過剰組成のTi−Ni系形状記憶合金において500
〜1100℃の温度範囲において溶体化処理した後急
冷処理を施し、次に200〜700℃の温度範囲におい
て時効処理を行なつた後200〜900℃において少な
くとも5%以上の加工度の温間加工を施すかさら
にこの温間加工の後30%未満の加工度の冷間加工
を施した後700℃以下の温度において記憶処理を
行なうことにより、高温相→低温相の変態ヒステ
リシスが小さく且つコイルバネにおいて二方向性
を有する形状記憶合金を得ることを特徴とする形
状記憶合金の製造方法に関するものである。
[Detailed description of the invention] The present invention has two phases: a TiNi phase and a TiNi 3 phase.
500 in Ti-Ni shape memory alloys with excessive Ni composition.
After solution treatment in the temperature range of ~1100℃, rapid cooling treatment, then aging treatment in the temperature range of 200 to 700℃, and then warm processing at 200 to 900℃ with a deformation degree of at least 5%. After this warm working, cold working with a working degree of less than 30% is performed, and then memory treatment is performed at a temperature of 700°C or less, so that the transformation hysteresis of the high temperature phase → low temperature phase is small and the coil spring is The present invention relates to a method for producing a shape memory alloy, which is characterized by obtaining a shape memory alloy having bidirectional properties.

Ti−Ni系形状記憶合金は顕著な形状記憶効果
を示すことおよび優れた機械的性質、耐食性等を
有することから最も広範囲な実用化の検討がなさ
れているものである。
Ti--Ni shape memory alloys are the ones that are being studied most extensively for practical use because they exhibit a remarkable shape memory effect and have excellent mechanical properties, corrosion resistance, and the like.

形状記憶効果は、低温でマルテンサイト状態に
ある材料を変形した後加熱すると元の形状に戻る
ものであり、こうした効果をを生ずる温度は通常
合金の逆変態開始温度(As点)、逆変態終了温度
(Af点)、マルテンサイト変態開始温度(Ms点)
およびマルテンサイト変態終了温度(Mf点)に
よつて決定され、As点において形状記憶効果が
開始されAf点で終了するものである。
The shape memory effect is a phenomenon in which a material that is in a martensitic state at a low temperature is deformed and then returns to its original shape when heated.The temperature at which this effect occurs is usually the temperature at which the reverse transformation of the alloy begins (As point) and the temperature at which the reverse transformation ends. Temperature (Af point), martensitic transformation start temperature (Ms point)
The shape memory effect starts at the As point and ends at the Af point.

この形状記憶効果を生ずる際の回復力は50〜60
Kg/mm2に及ぶものであり、この回復力を種々の応
用品へ利用する検討がなされている。
The recovery power when producing this shape memory effect is 50 to 60
Kg/mm 2 , and studies are being conducted to utilize this resilience in various applied products.

その応用の代表例に第1図に示すような形状記
憶効果を繰り返し生じさせることを利用したアク
チユエーターがある。このアクチユエーターはバ
イアス力としての通常のコイルバネ(バイアスバ
ネ)と形状記憶合金コイルバネとが組も合わされ
たものであり、低温においては形状記憶合金がバ
イアスバネよりも降伏応力の小さなマルテンサイ
ト相の状態であるためにバイアスバネの方が強
く、形状記憶合金を変形するように動作し、逆に
高温においては形状記憶合金がバイアスバネより
も降伏応力の大きなβ相の状態となり、形状記憶
合金がバイアスバネを変形するように動作する。
この場合高温相→低温相の変態ヒステリシスが小
さい程また二方向性を有している程小さな温度範
囲においてアクチユエーターとしての動作が容易
に得られる。しかし、従来のTi−Ni系合金にお
いては一方向性の形状記憶効果しか得られず、ま
た高温相→低温相の変態ヒステリシスが約30℃程
度と大きく、このため低温相、高温相を可逆的に
得てアクチユエーターを動作させる温度範囲が大
きくならざるを得ず、動作温度範囲が限定される
欠点があつた。
A typical example of its application is an actuator that utilizes the repeated generation of a shape memory effect, as shown in Figure 1. This actuator is a combination of a normal coil spring (bias spring) and a shape memory alloy coil spring as a bias force, and at low temperatures, the shape memory alloy has a martensitic phase with a lower yield stress than the bias spring. Since the bias spring is in a state of It operates to deform the bias spring.
In this case, the smaller the high-temperature phase→low-temperature phase transformation hysteresis or the bidirectionality, the easier it is to operate as an actuator in a small temperature range. However, in conventional Ti-Ni alloys, only a unidirectional shape memory effect can be obtained, and the transformation hysteresis from high-temperature phase to low-temperature phase is as large as approximately 30°C. Therefore, the temperature range in which the actuator is operated has to be widened, which has the disadvantage that the operating temperature range is limited.

一方、最近こうしたTi−Ni系形状記憶合金に
おいて、原子パーセントでNi50.3〜53.0%、残部
TiよりなるNi過剰組成の合金を600℃以上の熱処
理を施してTiNi単相化処理を行ない、その後機
械的に拘束した状態で600℃以下の温度において
時効処理を施してTiNi相とTiNi3相の復相化をは
かることにより可逆形状記憶効果を付与する方法
が発表された。(特開昭58−151445号)しかし、
この方法による可逆形状記憶効果は、短冊状の試
料を第2図に示すように拘束した場合にのみ得ら
れるものであり、この方法を第1図に示すような
コイルバネに適用した場合には可逆形状記憶効果
は認められない。
On the other hand, recently in these Ti-Ni based shape memory alloys, Ni is 50.3 to 53.0% in atomic percent and the rest is
An alloy consisting of Ti with a Ni-excessive composition is heat-treated at a temperature of 600°C or higher to form a TiNi single phase, and then aged under mechanical restraint at a temperature of 600°C or lower to form a TiNi phase and a TiNi three -phase. A method for imparting a reversible shape memory effect by dephasing has been announced. (Unexamined Japanese Patent Publication No. 58-151445) However,
The reversible shape memory effect obtained by this method can only be obtained when a strip-shaped sample is restrained as shown in Figure 2.When this method is applied to a coil spring as shown in Figure 1, the reversible shape memory effect can be obtained. No shape memory effect was observed.

こうしたことから本発明者らは、変態ヒステリ
シスが小さく且つコイルバネにおいて二方向性を
有し、第1図に示すようなアクチユエーターの動
作を容易にする合金を得るためにTiNi相および
TiNi3相の二相を有するNi過剰組成のTi−Ni系形
状記憶合金において500〜1100℃の温度範囲にお
いて溶体化処理した後急冷処理を施し、次に20〜
700℃の温度範囲において時効処理を行なつた
後、200〜900℃において少なくとも5%以上の加
工度の温間加工わ施すかあるいはこの温間加工の
後30%未満の加工度の冷間加工を施した後、700
℃以下の温度において記憶処理を行なつたところ
有益な効果をもたらす事を発見したものである。
For these reasons, the present inventors have developed a TiNi phase and
A Ti-Ni shape memory alloy with Ni-excessive composition having two phases of TiNi 3 phases is subjected to solution treatment at a temperature range of 500 to 1100°C, followed by rapid cooling treatment, and then quenched at a temperature range of 20 to
After aging treatment in a temperature range of 700℃, warm processing with a working degree of at least 5% or more is performed at 200 to 900°C, or after this warm working, cold working with a working degree of less than 30%. 700 after applying
It was discovered that amnestic treatment at temperatures below 30°F (°C) had beneficial effects.

本発明における温間加工は、溶体化処理後の時
効処理によつてマトリツクス中に析出したTiNi3
粒子の方位を加工方向に揃えることを目的とした
ものであり、時効処理のみによつて得られる
TiNi3粒子の方位と異なつた方位が得られる。こ
れに伴つて冷却時のマルテンサイト変態の方位が
拘束されるようになり、拘束時効処理では得られ
ないコイルバネにおける良好な二方向性が得られ
るようになる。
Warm working in the present invention involves removing TiNi 3 precipitated in the matrix by aging treatment after solution treatment.
The purpose is to align the grain orientation in the processing direction, and it can be obtained only by aging treatment.
An orientation different from that of TiNi 3 particles can be obtained. Along with this, the direction of martensitic transformation during cooling is restricted, and good bidirectionality in the coil spring, which cannot be obtained by restrained aging treatment, can be obtained.

また、温間加工後の冷間加工については合金内
に冷却時のマルテンサイト変態を制御し得る塑性
歪を付加することになり、これによつて一層良好
な二方向性が得られるようになる。
In addition, for cold working after warm working, plastic strain is added to the alloy that can control the martensitic transformation during cooling, which makes it possible to obtain even better bidirectionality. .

また、溶体化処理後の時効処理により過飽和
NiがTiNi3粒子となつてマトリツクス中に析出
し、これに伴つて中間相変態が導入され変態が2
段階的に起こるようになり、高温相→低温相(中
間相)の変態ヒステリシスが非常に小さくなる。
In addition, supersaturation can be achieved by aging treatment after solution treatment.
Ni becomes TiNi 3 particles and precipitates in the matrix, and along with this, an intermediate phase transformation is introduced and the transformation is 2
This occurs in stages, and the transformation hysteresis from high temperature phase to low temperature phase (intermediate phase) becomes extremely small.

次に本発明における処理条件の限定理由につい
て述べる。
Next, the reasons for limiting the processing conditions in the present invention will be described.

溶体化処理温度については500℃未満において
はTiNiマトリツクス中へのTiNi3の十分な固溶度
が得られないものと考えられ、その効果が十分認
められない。また1100℃をこえると酸化による
Ti元素の滅失が問題となる。以上の観点から、
500〜1100℃の温度範囲に限定した。
Regarding the solution treatment temperature, it is considered that sufficient solid solubility of TiNi 3 in the TiNi matrix cannot be obtained at a temperature lower than 500°C, and its effect is not sufficiently recognized. Also, if the temperature exceeds 1100℃, it will be caused by oxidation.
Loss of Ti element becomes a problem. From the above point of view,
The temperature range was limited to 500-1100℃.

時効処理温度については、200℃未満において
は十分なTiNi3相の析出が起こらず、また700℃と
こえると中間相変態が導入できなくなり、高温相
→低温相(中間相)変態の際に小ヒステリシスが
得られなくなる。以上の観点から200〜700℃の温
度範囲に限定した。
Regarding the aging treatment temperature, if the temperature is lower than 200℃, sufficient precipitation of TiNi three phases will not occur, and if it exceeds 700℃, intermediate phase transformation cannot be introduced, and a small Hysteresis cannot be obtained. From the above point of view, the temperature range was limited to 200 to 700°C.

次に温間加工については、200℃未満において
は変形抵抗が大であり、TiNi3粒子の方位を加工
方向に揃えるに十分な加工が困難である。また、
900℃以上においては時効処理によつて得られた
中間相変態が消失し、小ヒステリシスが得られな
くなる。
Next, regarding warm working, deformation resistance is large at temperatures below 200°C, and it is difficult to perform sufficient working to align the orientation of the TiNi 3 particles in the working direction. Also,
At temperatures above 900°C, the mesophase transformation obtained by aging disappears, and small hysteresis cannot be obtained.

以上の観点から200〜900℃の温度範囲に限定し
た。なお、この場合5%未満の加工度においては
十分な変形を与えることができないため十分な効
果が認められなくなる。
From the above point of view, the temperature range was limited to 200 to 900°C. In this case, if the degree of working is less than 5%, sufficient deformation cannot be imparted, so that no sufficient effect can be observed.

また温間加工後の冷間加工については30%以上
の加工度においては合金の加工硬化が顕著とな
り、次の記憶処理時の成形が困難となることおよ
び過剰の塑性歪により加熱、冷却時の変態が起こ
り難くなり形状記憶特性が劣化することから好ま
しくない。以上の観点から30%未満の加工度に限
定した。
In addition, with regard to cold working after warm working, work hardening of the alloy becomes noticeable at working degrees of 30% or more, making it difficult to form during the next memory treatment, and due to excessive plastic strain during heating and cooling. This is not preferable because transformation becomes difficult to occur and shape memory properties deteriorate. From the above point of view, we limited the degree of processing to less than 30%.

次に記憶処理について述べる。この処理は、第
2図に示す弓状の形状あるいは第3図に示すコイ
ルバネ状の形状等の所定の形状を材料に記憶させ
る処理であり、通常材料を所定の状態に機械的に
拘束し、この状態で加熱処理をすることを意味し
ている。
Next, we will discuss memory processing. This process is a process that causes the material to memorize a predetermined shape, such as the arcuate shape shown in FIG. 2 or the coil spring shape shown in FIG. 3, and usually involves mechanically restraining the material in a predetermined state. This means that heat treatment is performed in this state.

この記憶処理は、700℃以上の温度において
は、形状記憶特性が劣化し、また中間相変態が消
失し高温相→低温相(中間相)の変態の際の小ヒ
ステリシスが得られなくなる。以上の観点から
700℃以下の温度範囲に限定した。
In this memory treatment, at a temperature of 700° C. or higher, the shape memory properties deteriorate and the mesophase transformation disappears, making it impossible to obtain a small hysteresis during the transformation from high temperature phase to low temperature phase (intermediate phase). From the above point of view
The temperature range was limited to 700℃ or less.

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

〔実施例 1〕 TiNi相およびTiNi3相の二相を有するNi過剰組
成のTi−50.7Ni合金をアルゴン中にて高周波誘導
溶解した後、1000℃にて2時間真空焼鈍を行なつ
て均一化処理を施し、その後900℃にて鍛造を行
なつてφ12の棒とした。この棒を更に熱間スエー
ジングによりφ4まで加工した後、850℃にて2
時間溶体化処理を行ない水冷した。次に400℃に
て10時間時効処理を施した後400℃にて温間伸線
を行ないφ0.8の線とした。この線を第3図aに
示すようなコイルバネに成形し、更に400℃にて
5時間記憶処理を行なつた後、二方向性の有無お
よび示差走査熱量計(DSC)を用いた変態点の
測定を行ない、高温相→低温相(中間相)の変態
ヒステリシスを確認した。なお、二方向性の有無
は第3図に示すようなコイルバネが加熱時に記憶
形状の密着状態になり、冷却時に自発的に伸びた
状態になろうとするかどうかにより判定した。
[Example 1] A Ti-50.7Ni alloy with a Ni-excess composition having two phases, a TiNi phase and a TiNi 3 phase, was subjected to high-frequency induction melting in argon, and then vacuum annealed at 1000°C for 2 hours to homogenize it. After treatment, it was forged at 900°C to form a φ12 rod. This rod was further processed to φ4 by hot swaging, and then heated to 850℃ for 2 hours.
It was subjected to a time solution treatment and cooled in water. Next, the wire was aged at 400°C for 10 hours, and then warm wire drawn at 400°C to obtain a wire with a diameter of 0.8. This wire was formed into a coil spring as shown in Figure 3a, and after being subjected to memory treatment at 400°C for 5 hours, the presence or absence of bidirectionality and the transformation point using a differential scanning calorimeter (DSC) were determined. We conducted measurements and confirmed the transformation hysteresis from high-temperature phase to low-temperature phase (intermediate phase). The presence or absence of bidirectionality was determined by whether a coil spring as shown in FIG. 3 entered a memorized shape in close contact when heated and spontaneously tried to expand when cooled.

第4図に実施例1における記憶処理後のDSC
による変態点の測定結果を示す。従来の合金にお
いては低温相→高温相の変態に起因するDSCピ
ークが加熱時および冷却時に1つづつ認められる
のに対し、本発明による合金は中間相変態が導入
され加熱、冷却時に各々2つづつのピークを有す
る。これに伴つて冷却時のピークは、加熱時の変
態終了温度とほとんど同じ温度で開始するように
なり、高温相→低温相(中間相)の変態ヒステリ
シスがほとんど0℃となる。またこの状態におい
てコイルバネは顕著な二方向性を有するようにな
り、第5図に変位−温度曲線を示すように冷却時
に大きな自発的変位が得られる。なお、比較のた
めに拘束時効処理のみの場合のコイルバネの変位
−温度曲線を第5図に示した。
Figure 4 shows DSC after memory processing in Example 1.
The measurement results of the transformation point are shown. In conventional alloys, one DSC peak due to the transformation from a low temperature phase to a high temperature phase is observed during heating and one during cooling, whereas in the alloy according to the present invention, an intermediate phase transformation is introduced and two peaks are observed during heating and cooling. It has two peaks. Along with this, the peak during cooling starts at almost the same temperature as the transformation end temperature during heating, and the transformation hysteresis from high temperature phase to low temperature phase (intermediate phase) becomes almost 0°C. Further, in this state, the coil spring has remarkable bidirectionality, and as shown in the displacement-temperature curve shown in FIG. 5, a large spontaneous displacement can be obtained during cooling. For comparison, FIG. 5 shows the displacement-temperature curve of the coil spring in the case of only the restrained aging treatment.

〔実施例 2〕 Ti−51.0at%Ni合金をアルゴン中にて高周波誘
導溶解し、実施例1の場合と同様な方法によりφ
0.8の線とした後10%の冷間伸線を施し、次にコ
イルバネに成形し更に400℃にて5時間記憶処理
を行なつた。この場合の記憶処理後のDSCによ
る変態点測定結果は冷間加工を施すことにより第
6図に示すように多少変態温度範囲が拡大される
が、冷却時の高温相→低温相(中間相)の変態ヒ
ステリシスは小さくなる傾向がある。第7図に変
位−温度曲線を示すが、温間加工のみの場合に比
べ冷間加工を施した場合の方が変位量が大きく、
またヒステリシスも小さくなつており二方向性が
より顕著となることが明らかである。なお、40%
の加工度の冷間加工を施した場合の変態点測定結
果を第8図に示すが、図から明らかなように
DSCピークが不明瞭となり、良好な形状記憶特
性が得られなくなる。
[Example 2] A Ti-51.0at%Ni alloy was subjected to high frequency induction melting in argon, and φ was melted in the same manner as in Example 1.
After forming the wire into a 0.8 wire, it was subjected to 10% cold drawing, then formed into a coil spring, and further subjected to memory treatment at 400° C. for 5 hours. In this case, the transformation point measurement result by DSC after memory processing shows that the transformation temperature range is expanded somewhat by cold working, as shown in Figure 6, but the transition temperature changes from high temperature phase to low temperature phase (intermediate phase) during cooling. The metamorphosis hysteresis of tends to be smaller. Figure 7 shows the displacement-temperature curve, and the amount of displacement is larger when cold working is performed compared to when only warm working is performed.
It is also clear that the hysteresis has become smaller and the bidirectionality has become more pronounced. In addition, 40%
Figure 8 shows the transformation point measurement results when cold working with a working degree of
The DSC peak becomes unclear and good shape memory properties cannot be obtained.

〔実施例 3〕 Ti−51.2at%Ni合金をアルゴン中にて高周波誘
導溶解し、実施例1の場合と同様な方法によりφ
4まで加工した後950℃にて2時間溶体化処理を
行ない、次に500℃にて1時間時効処理を施し
た。その後500℃にて温間伸線を行ないφ0.8の線
とした。この線をコイルバネに成形し更に500℃
にて2時間記憶処理を行なつた。この時の高温相
→低温相(中間相)の変態ヒステリシスは1℃で
あり、また顕著な二方向性を有していることが確
認された。
[Example 3] A Ti-51.2at%Ni alloy was subjected to high-frequency induction melting in argon, and φ was melted in the same manner as in Example 1.
After processing up to 4, solution treatment was performed at 950°C for 2 hours, and then aging treatment was performed at 500°C for 1 hour. Thereafter, warm wire drawing was performed at 500°C to obtain a wire of φ0.8. This wire is formed into a coil spring and further heated to 500℃.
Amnestic treatment was performed for 2 hours at At this time, the transformation hysteresis from the high temperature phase to the low temperature phase (intermediate phase) was 1° C., and it was confirmed that there was remarkable bidirectionality.

〔実施例 4〕 Ti50.7at%Ni合金をアルゴン中にて高周波誘導
溶解し、実施例1の場合と同様な方法によりφ4
まで加工した後600℃にて2時間溶体化処理を行
ない、次に400℃にて5時間時効処理を施した。
その後500℃にて温間伸線を行ないφ0.8の線とし
た。この線をコイルバネに成形し更に300℃にて
15時間記憶処理を行なつた。この時の高温相→低
温相(中間相)の変態ヒステリシスは3℃であ
り、また顕著な二方向性を有していることが確認
された。
[Example 4] Ti50.7at%Ni alloy was subjected to high frequency induction melting in argon, and φ4 was melted in the same manner as in Example 1.
After processing to a temperature of 100°C, solution treatment was performed at 600°C for 2 hours, and then aging treatment was performed at 400°C for 5 hours.
Thereafter, warm wire drawing was performed at 500°C to obtain a wire of φ0.8. This wire is formed into a coil spring and further heated to 300℃.
Amnestics were administered for 15 hours. At this time, the transformation hysteresis from the high temperature phase to the low temperature phase (intermediate phase) was 3° C., and it was confirmed that there was remarkable bidirectionality.

以上実施例で述べたように本発明による合金は
従来の合金に比べ高温相→低温相(中間相)の変
態ヒステリシスが極めて小さく、また拘束時効処
理のみの場合には得られないコイルバネにおける
顕著な二方向性を有しており、アクチユエーター
等に使用される場合の動作温度範囲の制限を著し
く緩和すると同時に熱応答性を高めるものであり
極めて有益である。
As described in the examples above, the alloy according to the present invention has extremely small transformation hysteresis from high temperature phase to low temperature phase (intermediate phase) compared to conventional alloys, and has a remarkable It has bidirectional properties and is extremely useful because it significantly alleviates restrictions on the operating temperature range when used in actuators and the like, and at the same time improves thermal responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は形状記憶合金を用いたアクチユエータ
ーを示す。第2図は短冊状試料の拘束状態および
可逆形状記憶効果による試料の動作を表わし、
a,bおよびcは加熱、冷却時の試料の形状変化
を示す。第3図はコイルバネの形状を示す。図中
aは記憶形状を、bは冷却により伸びた状態を示
す。第4図は実施例1の合金の記憶処理後におけ
るDSCによる変態点測定結果を示したものであ
る。第5図は実施例1の合金のコイルバネおよび
拘束時効処理によるコイルバネの変位−温度曲線
を示したものである。第6図は実施例2の合金の
記憶処理後におおけるDSCによる変態点測定結
果を示したものである。第7図は実施例2の合金
のコイルバネおよび実施例1の合金のコイルバネ
の変位−温度曲線を示したものである。第8図は
冷間加工度が40%の場合の記憶処理後のDSCに
よる変態点測定結果を示したものである。 1……コイルバネ、2……形状記憶合金コイル
バネ、3……試料拘束用パイプ、4……短冊状の
形状記憶合金、5……試料拘束用ワイヤ。
FIG. 1 shows an actuator using a shape memory alloy. Figure 2 shows the restraint state of the strip-shaped sample and the movement of the sample due to the reversible shape memory effect.
a, b, and c show changes in the shape of the sample during heating and cooling. Figure 3 shows the shape of the coil spring. In the figure, a indicates the memorized shape, and b indicates the state expanded by cooling. FIG. 4 shows the results of measuring the transformation point of the alloy of Example 1 by DSC after the memory treatment. FIG. 5 shows the displacement-temperature curve of the coil spring of the alloy of Example 1 and the coil spring subjected to restraint aging treatment. FIG. 6 shows the results of measuring the transformation point of the alloy of Example 2 by DSC after the memory treatment. FIG. 7 shows the displacement-temperature curves of the coil spring made of the alloy of Example 2 and the coil spring made of the alloy of Example 1. FIG. 8 shows the results of measuring the transformation point by DSC after memory treatment when the degree of cold working is 40%. 1... Coil spring, 2... Shape memory alloy coil spring, 3... Sample restraining pipe, 4... Rectangular shape memory alloy, 5... Sample restraining wire.

Claims (1)

【特許請求の範囲】 1 TiNi相およびTiNi3相の二相を有するNi過剰
組成のTi−Ni系形状記憶合金において、500〜
1100℃の温度範囲において溶体化処理した後、急
冷処理を施し、次に200〜700℃の温度範囲におい
て時効処理を行なつた後、200〜900℃において少
なくとも5%以上の加工度の温間加工を施した
後、700℃以下の温度において記憶処理を行なう
ことを特徴とする形状記憶合金の製造方法。 2 TiNi相およびTiNi3相の二相を有するNi過剰
組成のTi−Ni系形状記憶合金において、500〜
1100℃の温度範囲において溶体化処理した後、急
冷処理を施し、次に200〜700℃の温度範囲におい
て時効処理を行なつた後、200〜900℃において少
なくとも5%以上の加工度の温間加工を施し、さ
らに30%未満の加工度の冷間加工を施した後、
700℃以下の温度において記憶処理を行なうこと
を特徴とする形状記憶合金の製造方法。
[Claims] 1. A Ti-Ni shape memory alloy with Ni-excessive composition having two phases of TiNi phase and TiNi three phases,
After solution treatment in the temperature range of 1100℃, rapid cooling treatment, and then aging treatment in the temperature range of 200 to 700℃, temperature treatment at 200 to 900℃ with a deformation degree of at least 5% or more. A method for producing a shape memory alloy, which comprises performing memory treatment at a temperature of 700°C or less after processing. 2 In a Ti-Ni shape memory alloy with a Ni-excess composition having two phases, a TiNi phase and a TiNi 3 phase, 500~
After solution treatment in the temperature range of 1100℃, rapid cooling treatment, and then aging treatment in the temperature range of 200 to 700℃, temperature treatment at 200 to 900℃ with a deformation degree of at least 5% or more. After processing and further cold working with a working degree of less than 30%,
A method for producing a shape memory alloy, characterized by performing memory treatment at a temperature of 700°C or less.
JP24871783A 1983-12-28 1983-12-28 Manufacture of shape memory alloy Granted JPS60141852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24871783A JPS60141852A (en) 1983-12-28 1983-12-28 Manufacture of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24871783A JPS60141852A (en) 1983-12-28 1983-12-28 Manufacture of shape memory alloy

Publications (2)

Publication Number Publication Date
JPS60141852A JPS60141852A (en) 1985-07-26
JPS6144150B2 true JPS6144150B2 (en) 1986-10-01

Family

ID=17182289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24871783A Granted JPS60141852A (en) 1983-12-28 1983-12-28 Manufacture of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS60141852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285857U (en) * 1985-11-19 1987-06-01
JPH0337113B2 (en) * 1986-08-07 1991-06-04 Harman Co Ltd
JPH047490Y2 (en) * 1986-04-10 1992-02-27
CN108977696A (en) * 2018-06-13 2018-12-11 中国航发北京航空材料研究院 The adding method of rich Ni state TiNi shape memory alloy double-pass memory characteristic

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
JP2015036455A (en) * 2013-08-12 2015-02-23 クリノ株式会社 Ti-Ni ALLOY FOR MEDICAL TREATMENT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285857U (en) * 1985-11-19 1987-06-01
JPH047490Y2 (en) * 1986-04-10 1992-02-27
JPH0337113B2 (en) * 1986-08-07 1991-06-04 Harman Co Ltd
CN108977696A (en) * 2018-06-13 2018-12-11 中国航发北京航空材料研究院 The adding method of rich Ni state TiNi shape memory alloy double-pass memory characteristic

Also Published As

Publication number Publication date
JPS60141852A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
Todoroki et al. Effect of heat treatment after cold working on the phase transformation in TiNi alloy
Piao et al. Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy
US4533411A (en) Method of processing nickel-titanium-base shape-memory alloys and structure
US4654092A (en) Nickel-titanium-base shape-memory alloy composite structure
JPS6214619B2 (en)
JPS6343456B2 (en)
JPS635465B2 (en)
JPS6144150B2 (en)
JPS59150069A (en) Manufacture of shape memory alloy
JPS624462B2 (en)
JPS6361377B2 (en)
JPS59170247A (en) Manufacture of niti type shape memory material
JPS6157389B2 (en)
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPS61227141A (en) Niti shape memory alloy wire
JPS622028B2 (en)
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JPS62199757A (en) Manufacture of shape memory alloy material
JP3271329B2 (en) Shape memory alloy
JPS622027B2 (en)
JPS6157388B2 (en)
JP2732525B2 (en) Manufacturing method of shape memory alloy
JPS5935978B2 (en) shape memory titanium alloy
JPS622026B2 (en)
JPH059686A (en) Production of shape memory niti alloy