JPS6141362B2 - - Google Patents

Info

Publication number
JPS6141362B2
JPS6141362B2 JP54141694A JP14169479A JPS6141362B2 JP S6141362 B2 JPS6141362 B2 JP S6141362B2 JP 54141694 A JP54141694 A JP 54141694A JP 14169479 A JP14169479 A JP 14169479A JP S6141362 B2 JPS6141362 B2 JP S6141362B2
Authority
JP
Japan
Prior art keywords
boiler
water
exhaust gas
economizer
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54141694A
Other languages
Japanese (ja)
Other versions
JPS5666601A (en
Inventor
Kyoshi Kikuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14169479A priority Critical patent/JPS5666601A/en
Publication of JPS5666601A publication Critical patent/JPS5666601A/en
Publication of JPS6141362B2 publication Critical patent/JPS6141362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は水を媒体として中高温排ガスの熱エネ
ルギーの回収をはかるために設置される廃熱回収
ボイラ、および蒸気タービン発電機設備からなる
発電設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation facility consisting of a waste heat recovery boiler installed to recover thermal energy of medium and high temperature exhaust gas using water as a medium, and a steam turbine generator facility.

従来この種の廃熱回収発電設備においては、排
ガスの保有する熱を極力低温まで熱回収する目的
で蒸気圧力の異なる廃熱回収ボイラを組み合わせ
て、多種の異なる圧力を有する蒸気を発生し、そ
れらを混圧蒸気タービンに導く方式がとられてき
た。
Conventionally, in this type of waste heat recovery power generation equipment, waste heat recovery boilers with different steam pressures are combined to generate steam with a variety of different pressures in order to recover the heat held in the exhaust gas to the lowest possible temperature. A method has been adopted in which steam is introduced into a mixed-pressure steam turbine.

この方式の1例として高低圧2種の異なる圧力
を有する公知装置を第1図に示す。
As an example of this system, a known device having two different pressures, high and low, is shown in FIG.

図において1は低圧ボイラ節炭器、2は低圧ボ
イラ蒸発器、3は低圧ボイラ汽水ドラム、4は高
圧ボイラ節炭器、5は高圧ボイラ蒸発器、6は高
圧ボイラ汽水ドラム、7は混圧蒸気タービン、8
は発電機、9は復水器、10は給水ポンプであ
る。なおボイラは自然循環型ボイラを採用する場
合は水ドラムが必要であり、強制循環型ボイラを
採用する場合は循環ポンプが必要であるが、第1
図では省略されている。
In the figure, 1 is the low pressure boiler economizer, 2 is the low pressure boiler evaporator, 3 is the low pressure boiler brackish water drum, 4 is the high pressure boiler economizer, 5 is the high pressure boiler evaporator, 6 is the high pressure boiler brackish water drum, and 7 is the mixed pressure steam turbine, 8
is a generator, 9 is a condenser, and 10 is a water pump. Note that if a natural circulation boiler is used, a water drum is required, and if a forced circulation boiler is used, a circulation pump is required.
It is omitted in the figure.

また要すれば汽水ドラム3,6を出た飽和蒸気
は排ガス通路内に過熱器を設けることにより過熱
された後タービンに導かれる場合もあるがこれも
図面には省略されている。
Further, if necessary, the saturated steam leaving the brackish water drums 3 and 6 may be superheated by providing a superheater in the exhaust gas passage and then guided to the turbine, but this is also omitted from the drawing.

この公知装置の排ガス温度と水側の温度の状態
を図示したのが第2図である。図においてTは温
度を示しa,b,c,d,e,は第1図中に当該
記号が示された点における排ガスの状態を示し、
同じくf,g,hは水または蒸気の温度状態を示
している。
FIG. 2 illustrates the state of the exhaust gas temperature and water side temperature of this known device. In the figure, T indicates the temperature, and a, b, c, d, and e indicate the state of the exhaust gas at the point where the symbol is shown in Figure 1,
Similarly, f, g, and h indicate the temperature state of water or steam.

またΔはピンチポイントを示す。第1図の装置
は第2図によつて説明すれば低圧ボイラ部分では
排ガスは節炭器1の部分でTdよりTeまで冷却さ
れ、水側はTfからTgまで加熱される。蒸発器2
の部分では排ガスがTcからTdまで冷却される際
の熱を利用して一定温度Tgのもとで水は蒸発し
飽和蒸気に変化する。
Further, Δ indicates a pinch point. The apparatus shown in FIG. 1 will be explained with reference to FIG. 2. In the low-pressure boiler section, the exhaust gas is cooled from Td to Te in the economizer 1 section, and the water side is heated from Tf to Tg. Evaporator 2
In the section, water evaporates at a constant temperature Tg and changes to saturated steam using the heat generated when the exhaust gas is cooled from Tc to Td.

高圧ボイラ部分においても同様にして、節炭器
4の部分では排ガスはTbからTcに冷却される過
程で水はTfからThまで加熱され、蒸発器5の部
分では排ガスがTaよりTbに冷却される過程で水
は一定温度Thのもとに蒸発し飽和蒸気となる。
かくしてThに対応する飽和圧力をもつ蒸気とTg
に対応する飽和圧力をもつ蒸気がタービン7に導
かれ発電を行ない、復水器9で凝縮した水は給水
ポンプ10により再び廃熱ボイラに導かれ循環を
くりかえすことになる。
Similarly in the high-pressure boiler section, in the economizer 4 section, the exhaust gas is cooled from Tb to Tc, while the water is heated from Tf to Th, and in the evaporator 5 section, the exhaust gas is cooled from Ta to Tb. During the process, water evaporates at a constant temperature Th and becomes saturated steam.
Thus steam with saturation pressure corresponding to Th and Tg
Steam having a saturated pressure corresponding to 1 is led to the turbine 7 to generate electricity, and water condensed in the condenser 9 is led again to the waste heat boiler by the feed water pump 10 to repeat the circulation.

しかしながらこの公知装置では給水ポンプ10
から高圧ボイラの節炭器4に供給される給水の温
度は、低圧ボイラの節炭器1に入る給水温度Tf
と同様であるため排ガスを十分低温まで熱回収す
る方式とはなつていない欠点があつた。
However, in this known device, the water supply pump 10
The temperature of the feed water supplied to the economizer 4 of the high pressure boiler from Tf is the temperature of the feed water entering the economizer 1 of the low pressure boiler.
This method has the disadvantage that it is not a method for recovering heat from exhaust gas to a sufficiently low temperature.

本発明はこの欠点を解消するために考え出され
たものであつて、第1図に対応する本発明の実施
例を第3図に、第2図に対応する本発明の排ガス
および水側の温度の状態を第4図に示す。第3図
によつて本発明の特徴を説明すると、給水ポンプ
10によつて昇圧された給水は全量低圧ボイラ節
炭器1に入り、低圧汽水ドラム3内の飽和水は給
水ブースタポンプ11によつて高圧ボイラ節炭器
4に導かれる点にその特徴がある。この点をさら
に明白にするため第3図を第4図とともに説明す
ると、排ガスは節炭器1の部分でTdよりTe′に冷
却される過程で水側はTfからTgまで加熱される
点は第2図と同様であるが、水側の流量に注目す
ると第2図では高圧ボイラ発生蒸気量分のみであ
るのに対し第4図では高圧および低圧ボイラ発生
蒸気量の合計分であることが異なり、その結果水
側の温度上昇度が第2図に比べてゆるやかで、
Te′は第2図のTeの値より低い値になる。蒸発器
2の部分では排ガス温度がTe′からTdまで冷却さ
れる際の熱を利用して水は一定温度Tgのもとで
蒸発し飽和蒸気に変化する。節炭器4では排ガス
はTbからTc′に冷却される過程で水はTi(これは
Tgと等しい)よりThまで加熱されるが、第2図
ではTfよりThまで加熱されていたのであるが、
両者を比較すると当該節炭器4において水を加熱
するのに必要な熱量は第4図の方が第2図より少
なくてすむことにより、Tc′の値は第2図のTcの
値より高い値となる。蒸発器5の部分での過程は
第4図と第2図で異なる所はない。
The present invention was devised to eliminate this drawback, and FIG. 3 shows an embodiment of the present invention corresponding to FIG. 1, and an embodiment of the present invention corresponding to FIG. 2 on the exhaust gas and water side. Figure 4 shows the temperature conditions. To explain the features of the present invention with reference to FIG. 3, the entire amount of feed water pressurized by the feed water pump 10 enters the low pressure boiler economizer 1, and the saturated water in the low pressure brackish water drum 3 is removed by the feed water booster pump 11. Its feature is that it is then guided to the high pressure boiler economizer 4. To make this point even clearer, Figure 3 is explained in conjunction with Figure 4. The point is that the exhaust gas is cooled from Td to Te' in the economizer 1 section, while the water side is heated from Tf to Tg. It is the same as Figure 2, but if you look at the flow rate on the water side, in Figure 2 it is only the amount of steam generated by the high pressure boiler, whereas in Figure 4 it is the total amount of steam generated by the high pressure and low pressure boilers. As a result, the temperature rise on the water side is more gradual than in Figure 2.
Te′ becomes a value lower than the value of Te in FIG. In the evaporator 2, water is evaporated at a constant temperature Tg and converted into saturated steam using the heat generated when the exhaust gas temperature is cooled from Te' to Td. In economizer 4, in the process of cooling the exhaust gas from Tb to Tc′, the water becomes Ti (this is
(equal to Tg) to Th, but in Figure 2 it was heated to Th from Tf.
Comparing the two, the amount of heat required to heat water in the economizer 4 in Figure 4 is smaller than in Figure 2, so the value of Tc' is higher than the value of Tc in Figure 2. value. The process in the evaporator 5 is the same between FIG. 4 and FIG. 2.

なおボイラは自然循環ボイラまたは強制循環ボ
イラのいづれでも採用できること、および汽水ド
ラム3乃至は6を出た飽和蒸気は要すれば排ガス
通路内に過熱器を設けて過熱される場合があるこ
とは公知装置の所で説明したのと同様である。
It is well known that the boiler can be either a natural circulation boiler or a forced circulation boiler, and that the saturated steam exiting the brackish water drums 3 to 6 may be superheated by providing a superheater in the exhaust gas passage if necessary. This is the same as explained for the device.

以上の発明によつて公知装置に比べさらに廃ガ
ス温度を低温まで下げ得ることを第5図によつて
説明する。第5図は第2図と第4図を重ねて画い
たもので記号もすべて第2図および第4図に合わ
せてある。
It will be explained with reference to FIG. 5 that the above invention enables the temperature of the exhaust gas to be further lowered to a lower temperature than the known device. FIG. 5 is a superimposed drawing of FIGS. 2 and 4, and all symbols are the same as in FIGS. 2 and 4.

第5図で水側の状態線において実線は第2図の
もの、破線は第4図のものを示している。図から
明らかなようにピンチポイント点における排ガス
温度TbおよびTdは第1図、第3図のどちらの方
式でも等しい値である。
In FIG. 5, the solid line shows the state line on the water side as shown in FIG. 2, and the broken line shows that in FIG. 4. As is clear from the figure, the exhaust gas temperatures Tb and Td at the pinch point have the same value in both the systems shown in FIGS. 1 and 3.

節炭器4においては本発明を示した第3図の方
式では給水側はすでにTi(これはTgに等しい)
まで温度が上昇しているから排ガス温度はTbか
らTc′まで低下するが当然Tc′はTcより大きい値
となる。
In the energy saver 4, in the method shown in Fig. 3 which shows the present invention, the water supply side is already Ti (this is equal to Tg).
Since the temperature has increased to , the exhaust gas temperature decreases from Tb to Tc', but naturally Tc' is a larger value than Tc.

節炭器1においては水側の流量を第1図の方式
と第3図の方式を比較すると上述の如く第3図方
式の方が水量が多いため排ガス温度をTdより
Te′まで下げ得るがTe′は第5図から明らかなよ
うにTeよりも小さい値となる。すなわちTe−
Te′だけ熱回収量を増加させることが出来ること
になる。
In economizer 1, when comparing the flow rate on the water side between the method shown in Figure 1 and the method shown in Figure 3, as mentioned above, the method shown in Figure 3 has a larger amount of water, so the exhaust gas temperature is lower than Td.
Although it can be lowered to Te', Te' becomes a smaller value than Te as is clear from Fig. 5. That is, Te−
This means that the amount of heat recovery can be increased by Te′.

またこの回収熱量の増分は第5図より明らかな
ように蒸発器2における蒸発量の増大となつてあ
らわれ、第1図の方式に比して第3図の方式の方
がこの蒸発量の増大に見合う分だけ蒸気タービン
出力増加を生ぜしめ得ることになる。
Furthermore, as is clear from Fig. 5, this increase in the amount of recovered heat appears as an increase in the amount of evaporation in the evaporator 2, and the method shown in Fig. 3 increases this amount of evaporation more than the method shown in Fig. 1. This means that the output of the steam turbine can be increased by an amount commensurate with the above.

以上のように本発明装置によれば高温排ガスを
熱源として複数個の廃熱ボイラを通過せしめ順次
高圧から低圧の蒸気を得て、多段蒸気タービンに
導くようにしたものにおいて、低圧側ボイラの汽
水ドラムの水をそのボイラの蒸発器へ送給すると
ともに、より高圧のボイラの節炭器の給水に供す
るようにし、高圧位のボイラの給水を予熱してい
るので、従来公知装置では排ガスのもつ熱量を十
分回収できなかつた欠点を解消することができ、
全体の熱効率をあげるのに有効な手段を提供する
ことになる。
As described above, according to the apparatus of the present invention, high-temperature exhaust gas is used as a heat source and passed through a plurality of waste heat boilers to sequentially obtain high-pressure to low-pressure steam and guide it to a multistage steam turbine. The water in the drum is sent to the evaporator of the boiler, and is also supplied to the water economizer of the higher pressure boiler, thereby preheating the water supply of the high pressure boiler. The drawback of not being able to recover sufficient amount of heat can be resolved,
This provides an effective means for increasing overall thermal efficiency.

従つてこの装置は廃熱回収し、発電の目的に利
用する場合、これを蒸気タービン発電機設備と組
み合わせて使用すると極めて有効であり、排ガス
の保有する熱を極力低温まで熱回収することがで
きるものである。
Therefore, when this device recovers waste heat and uses it for the purpose of power generation, it is extremely effective when used in combination with steam turbine generator equipment, and the heat held in the exhaust gas can be recovered to the lowest possible temperature. It is something.

なお、以上の説明は廃熱ボイラにより2種の圧
力を発生させた場合について説明したが、それよ
り多種の圧力を発生させる場合も本発明は同様の
効果を発揮することは言うまでもない。
In addition, although the above explanation was about the case where two types of pressures are generated by the waste heat boiler, it goes without saying that the present invention exhibits the same effect even when more types of pressures are generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図第2図は従来の装置を説明するための系
統図およびヒートダイヤグラム、第3図第4図は
本発明の実施例を説明するための第1,2図に対
応する系統図およびヒートダイヤグラム、第5図
は第2図および第4図を重ねて画いたヒートダイ
ヤグラムである。 1……低圧ボイラ節炭器、2……低圧ボイラ蒸
発器、3……低圧ボイラ汽水ドラム、4……高圧
ボイラ節炭器、5……高圧ボイラ蒸発器、6……
高圧ボイラ汽水ドラム、7……多段混圧蒸気ター
ビン、8……発電機、9……復水器、10……給
水ポンプ、11……給水ブースターポンプ、
Ta,Tb,Tc,……Th……温度。
Fig. 1 and Fig. 2 are system diagrams and heat diagrams for explaining the conventional device, Fig. 3 and Fig. 4 are system diagrams and heat diagrams corresponding to Figs. 1 and 2 for explaining the embodiment of the present invention. The diagram, FIG. 5, is a heat diagram obtained by overlapping FIGS. 2 and 4. 1...Low pressure boiler economizer, 2...Low pressure boiler evaporator, 3...Low pressure boiler brackish water drum, 4...High pressure boiler economizer, 5...High pressure boiler evaporator, 6...
High-pressure boiler brackish water drum, 7... Multi-stage mixed pressure steam turbine, 8... Generator, 9... Condenser, 10... Water supply pump, 11... Water supply booster pump,
Ta, Tb, Tc,...Th...Temperature.

Claims (1)

【特許請求の範囲】 1 給水を節炭器、汽水ドラム、蒸発器と通過せ
しめて得られた蒸気を汽水ドラムを経てタービン
に送給し、一方熱源としての排ガスを上記蒸発器
から節炭器に導入し、熱交換せしめる形式の廃熱
ボイラを複数個配列してなり、それぞれの汽水ド
ラムからの高圧蒸気を送給して駆動する形式の多
段混圧タービンと、上記それぞれのボイラの汽水
ドラムの水をそのボイラの蒸発器へ送給するとと
もに、より高圧のボイラの節炭器用に供給する系
統とを含む多段混圧タービン用廃熱ボイラ装置。 2 前記汽水ドラムを経てタービンに送給する管
路を排ガス通路内を通過せしめて過熱することを
特徴とした特許請求の範囲第1項記載の装置。
[Scope of Claims] 1. Steam obtained by passing the water supply through the economizer, a brackish water drum, and an evaporator is sent to the turbine via the brackish water drum, while exhaust gas as a heat source is passed from the evaporator to the economizer. A multi-stage mixed-pressure turbine is constructed by arranging a plurality of waste heat boilers installed in the boiler for heat exchange, and is driven by feeding high-pressure steam from each brackish water drum, and the brackish water drum of each boiler. A waste heat boiler device for a multi-stage mixed pressure turbine, comprising a system for feeding water to an evaporator of the boiler and a system for supplying water to an economizer of a higher pressure boiler. 2. The apparatus according to claim 1, wherein the pipe line for feeding the brackish water to the turbine via the brackish water drum is passed through an exhaust gas passage to be heated.
JP14169479A 1979-10-31 1979-10-31 Waste heat boiler device for multiistage turbines Granted JPS5666601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14169479A JPS5666601A (en) 1979-10-31 1979-10-31 Waste heat boiler device for multiistage turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14169479A JPS5666601A (en) 1979-10-31 1979-10-31 Waste heat boiler device for multiistage turbines

Publications (2)

Publication Number Publication Date
JPS5666601A JPS5666601A (en) 1981-06-05
JPS6141362B2 true JPS6141362B2 (en) 1986-09-13

Family

ID=15298030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14169479A Granted JPS5666601A (en) 1979-10-31 1979-10-31 Waste heat boiler device for multiistage turbines

Country Status (1)

Country Link
JP (1) JPS5666601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277889A (en) * 1987-05-07 1988-11-15 Nippon Denso Co Ltd In-tank fuel pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127048A (en) * 1973-04-16 1974-12-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127048A (en) * 1973-04-16 1974-12-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277889A (en) * 1987-05-07 1988-11-15 Nippon Denso Co Ltd In-tank fuel pump

Also Published As

Publication number Publication date
JPS5666601A (en) 1981-06-05

Similar Documents

Publication Publication Date Title
JP4891369B2 (en) Power generation equipment using geothermal fluid
KR100323398B1 (en) Combined Cycle Power Unit
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
US9453432B2 (en) Power generation system
US20070017207A1 (en) Combined Cycle Power Plant
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
JPH0445643B2 (en)
SU1521284A3 (en) Power plant
US4896496A (en) Single pressure steam bottoming cycle for gas turbines combined cycle
JPH0642703A (en) Cement waste heat recovery power generating plant combined with gas turbine
KR101917430B1 (en) Power generating apparatus
JPS6141362B2 (en)
US4638765A (en) Heat recovery system
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPH0440524B2 (en)
US4535594A (en) Method and apparatus for generating power and low pressure saturated or near saturated steam
RU167924U1 (en) Binary Combined Cycle Plant
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
JPS58140409A (en) Circulation system of steam
JPH0415364B2 (en)
US3169373A (en) Power plant employing extraction steam for steam generation purposes
JPS6149111A (en) Composite plant
JPH01280604A (en) Method of improving efficiency of steam process
US4987742A (en) Process for the generation of mechanical energy in the ammonia oxidation step of a nitric acid production process
JP2750784B2 (en) Waste heat recovery method