JPS6135928A - Manufacture of thermoplastic resin pipe - Google Patents

Manufacture of thermoplastic resin pipe

Info

Publication number
JPS6135928A
JPS6135928A JP16014184A JP16014184A JPS6135928A JP S6135928 A JPS6135928 A JP S6135928A JP 16014184 A JP16014184 A JP 16014184A JP 16014184 A JP16014184 A JP 16014184A JP S6135928 A JPS6135928 A JP S6135928A
Authority
JP
Japan
Prior art keywords
pipe
thermoplastic resin
refrigerant
die
resin pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16014184A
Other languages
Japanese (ja)
Inventor
Kinya Yokoi
横井 錦也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Vinyl Co
Original Assignee
Mitsubishi Kasei Vinyl Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Vinyl Co filed Critical Mitsubishi Kasei Vinyl Co
Priority to JP16014184A priority Critical patent/JPS6135928A/en
Publication of JPS6135928A publication Critical patent/JPS6135928A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/906Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using roller calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/905Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using wet calibration, i.e. in a quenching tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain an expected smooth pipe with high roundness by a method wherein thermoplastic resin pipe, which is extruded from a die and is in molten state, is led to a refrigerant tank so as to heighten its melt viscosity up to a degree not so higher as the viscosity in perfectly solidified state and, after that, sized under reduced pressure at a vacuum chamber. CONSTITUTION:A sizing device 4 consisting of an extruder 1 equipped with a pipe die 3, the temperature of the mandrel of which is adjustable, and a vacuum chamber 6, which is located in a refrigerant tank 5 and equipped with sizers 8 and 8', is provided. The molten thermoplastic resin pipe extruded from the die 3 is rapidly led to the refrigerant tank 5 in order to heighten the melt viscosity of the pipe up to a degree not so higher as the viscosity in perfectly solidified state. After that, the pipe is introduced in the vacuum chamber 6 and sized under reduced pressure by means of the sizers 8 and 8' in order to obtain an desired pipe. Due to the method as mentioned above, the desired thermoplastic resin pipe excellent in transparency, roundness and surface smoothness on inner and outer surfaces can be manufactured.

Description

【発明の詳細な説明】 r章業上の利用分野」 本発明は、医療用チェープ、食品用ホースとして利用価
値の高い、透明度、内外表面の平滑度及び、真円度の嵐
好表熱可鳳性樹脂製パイプ、特に軟質塩化ビニル樹脂製
パイプの製造方法に係ゐ。
[Detailed Description of the Invention] Chapter R: Industrial Application Fields The present invention is a thermoplastic resin with excellent transparency, smoothness of inner and outer surfaces, and roundness, which is highly useful as a medical tape and food hose. It concerns a method of manufacturing porcelain resin pipes, especially soft vinyl chloride resin pipes.

「従来の技術」 熱可履性樹脂製パイプ、例えば塩化ビニル樹脂製パイプ
を連続的K11l造するには、軟質及び硬質太令鴫酬驚
とも、ダイリング及びマンドレ′ルで構成されたパイプ
用ダイを用いて押出成形を行−1また、パイプは、その
内部と外気との間に圧力差が生じ工、形状くずれをしな
iよう−K。
``Prior art'' In order to continuously manufacture a pipe made of thermoplastic resin, for example, a pipe made of vinyl chloride resin, it is necessary to combine both soft and hard pipes with die rings and mandrels. When extrusion molding is performed using a die, the pipe will not lose its shape due to the pressure difference between the inside and the outside air.

マンドレルに空気孔、を設けて弱i圧空を送ル込みなが
ら成形するのが一般的である。一方、軟質パイプと硬質
パイプの製造方法の主表相違点は、熱可塑性樹脂の溶融
粘度の差によるところが大きく、それによシサイザーを
用いるか否かが異なっている。例えば、硬質塩化ビニル
樹脂パイプではサイザーを用いる成形方法が主であるの
に対し、軟質塩化ビニル樹脂パイプではサイザーを用い
る成形法はほとんど例を見まい。
Generally, air holes are provided in the mandrel and molding is carried out while supplying weakly pressurized air. On the other hand, the main difference between the manufacturing methods of soft pipes and hard pipes is largely due to the difference in melt viscosity of the thermoplastic resin, and the difference is whether or not a cisizer is used. For example, hard vinyl chloride resin pipes are mainly molded using a sizer, whereas soft vinyl chloride resin pipes are molded using a sizer.

すなわち、軟質塩化ビニル樹脂はその溶融粘度が低く、
成形時に弱い圧空を送ってもパイプが膨張してサイザー
に接触し、形状くずれまたは伸びという現象が表われ、
サイザーの使用は不適当でめった。軟質塩化ビニル樹脂
の成形でサイザーを使用する例としては硬質樹脂との共
押出成形法等ごく僅かな範囲に限られている。
In other words, soft vinyl chloride resin has a low melt viscosity;
Even if weak compressed air is sent during molding, the pipe expands and comes into contact with the sizer, resulting in deformation or elongation.
Use of sizers is inappropriate and rare. The use of sizers in the molding of soft vinyl chloride resins is limited to a very small range, such as coextrusion molding with hard resins.

サイザーを用いない軟質塩化ビニル樹脂パイプの成形法
では、温度を高くすることは、得られるパイプの透明性
、平滑性の面では有利となるが、溶融粘度が低下するた
め、自重に起因してパイプを円形に保持することが困難
になるという欠点がTo3)、適切な成形温度条件の設
定は著しく厳しいものであった。仮に透明性、外表面平
滑性というぎシぎシの温度条件でパイプを成形すると、
真円度が劣るとともに、ダイリングとマンドレルの間に
温度差が生じるため、パイプ内表面がパイプ外表面に比
べて平滑性に劣るという現象が生じ、医療用チューブ等
として用−ることができなかった。
In the molding method of soft PVC resin pipes that does not use a sizer, increasing the temperature is advantageous in terms of the transparency and smoothness of the resulting pipe, but it decreases the melt viscosity and causes problems due to its own weight. The drawback was that it was difficult to hold the pipe in a circular shape (To3), and it was extremely difficult to set appropriate molding temperature conditions. If a pipe is formed under extreme temperature conditions such as transparency and external surface smoothness,
Due to poor roundness and a temperature difference between the die ring and the mandrel, the inner surface of the pipe is less smooth than the outer surface of the pipe, making it impossible to use it as a medical tube. There wasn't.

「発明が解決しようとする問題点」 本発明者は、従来技術の欠点を十分把握した上で、透明
度、内外両表面平滑で真円度の高い軟質の熱可塑性樹脂
パイプを得る方法について鋭意検討した結果、溶融粘度
の低い熱可塑性樹脂であってもパイプ用ダイのダイリン
グとマンドレルを同一温度にし、押出された溶融樹脂パ
イプの形状が若干自重によるへたシ等の形状くずれはし
ても完全に固化しない程度に溶融粘度を高めた後パイプ
の外部を減圧にすることによル、透明で、内外表面とも
平滑でかつ真円度の高い熱可塑性樹脂製パイプが製造し
うることを見いだし本発明を完成するに到った。
"Problems to be Solved by the Invention" Having fully grasped the shortcomings of the prior art, the inventor of the present invention has conducted extensive studies on a method for obtaining a soft thermoplastic resin pipe with high transparency, smooth inner and outer surfaces, and high roundness. As a result, even if the thermoplastic resin has a low melt viscosity, the die ring of the pipe die and the mandrel are kept at the same temperature, and even if the shape of the extruded molten resin pipe is slightly distorted due to its own weight, It was discovered that by increasing the melt viscosity to the extent that it does not completely solidify and then reducing the pressure on the outside of the pipe, it is possible to produce a thermoplastic resin pipe that is transparent, has smooth inner and outer surfaces, and has a high degree of roundness. The present invention has now been completed.

すなわち1本発明の目的は、透明度、内外表面平滑性に
すぐれ、かつ真円度の高い熱可塑性樹脂製パイプの製造
方法を提供するkある。
That is, one object of the present invention is to provide a method for manufacturing a thermoplastic resin pipe that has excellent transparency, smoothness of inner and outer surfaces, and high roundness.

「発明の構成」 しかして、本発明す要旨は、連続押出成形法によって熱
可塑性樹脂製パイプを製造する方法に訃いて、マンドレ
ルovih*調節が可能になったパイプ用ダイを装着し
た押出機及び液状冷媒を貯える冷媒槽と該冷媒槽内に位
置しかつサイザーを装備した減圧室とからないサイジン
グ装置を用い、前記パイプ用ダイから押出された溶融状
態の熱可塑性樹脂製パイプを、素早く冷媒槽に導いて該
パイプの溶融粘度を完全に固化しない程度に高め、次い
で減圧室に導入すると同時に減圧サイジングすることを
特徴とする熱可塑性樹脂製パイプの製造方法に存する。
``Structure of the Invention'' The gist of the present invention is to provide a method for manufacturing thermoplastic resin pipes by continuous extrusion, and an extruder equipped with a pipe die that allows mandrel ovih* adjustment. Using a sizing device that does not involve a refrigerant tank that stores liquid refrigerant and a vacuum chamber located within the refrigerant tank and equipped with a sizer, the molten thermoplastic resin pipe extruded from the pipe die is quickly transferred to the refrigerant tank. The method of manufacturing a thermoplastic resin pipe is characterized in that the melt viscosity of the pipe is increased to such an extent that the pipe is not completely solidified, and then the pipe is introduced into a vacuum chamber and sized under reduced pressure at the same time.

本発明方法を図面にしたがって詳述する。The method of the present invention will be explained in detail according to the drawings.

g/図は5本発明方法に用いる熱可塑性樹脂製パイプの
製造装置の1例を示し、その概略縦断正面図、9.2図
はサイジング装置の他の例でその概略縦断正面図、第3
図(イ)、(ロ)及び(ハ)はそれぞれパイプ用ダイの
縦断正面図で(イ)及び(CI)はストレートダイ、(
ハ)はクロスへラドダイを示す。
Fig. 5 shows an example of a thermoplastic resin pipe manufacturing apparatus used in the method of the present invention, and is a schematic longitudinal sectional front view thereof, and Fig. 9.2 shows another example of a sizing apparatus, a schematic longitudinal sectional front view thereof.
Figures (A), (B), and (C) are longitudinal sectional front views of pipe dies, respectively; (A) and (CI) are straight dies;
c) shows the rad die to the cross.

図中、lは押出機%−はホッパー、3はパイプ用ダイ、
弘、コ参はサイジング装置、j%コ!は冷媒槽、6、コ
tは減圧室、7、コアは冷媒、r、r’、コt、コl′
はサイザー、り、り′、コタ、コデ′は絞シ、IQ、コ
0は減圧ポンプ、//、コlは冷媒移送ポンプ、lλ、
コ2はコC1,IJ、JJは冷媒液遮蔽板、/Fは冷媒
貯留室、isは冷媒排出管、/4は引取装置、JD、I
AIはストレートダイ、50はクロスへッドダイ、31
1弘八21はダイリング、JJ、$コ、jコはマンドレ
ル、33、弘3、j3は棒状ヒーター、34c1ダ弘%
!弘は空気孔、31.11はスパイダ、36%416.
16はリード線、a、 bは熱可m性樹脂製パイプをそ
れぞれ示す。ti矢印はパイプの移動方向または、溶融
樹脂の流動方向を示している。
In the figure, l is the extruder %- is the hopper, 3 is the pipe die,
Hiro, Kosan is a sizing device, j%ko! is the refrigerant tank, 6, kot is the decompression chamber, 7, the core is the refrigerant, r, r', kot, kol'
is the sizer, Ri, Ri', Kota, Kode' is the throttle, IQ, Ko0 is the pressure reducing pump, //, Kol is the refrigerant transfer pump, lλ,
Co2 is CoC1, IJ, JJ is the refrigerant liquid shielding plate, /F is the refrigerant storage chamber, is is the refrigerant discharge pipe, /4 is the take-up device, JD, I
AI is straight die, 50 is crosshead die, 31
1 Kohachi 21 is die ring, JJ, $ko, jko is mandrel, 33, Kohachi 3, j3 is rod heater, 34c1 dahiro%
! Hiro is an air hole, 31.11 is a spider, 36%416.
16 is a lead wire, and a and b are thermoplastic resin pipes, respectively. The ti arrow indicates the moving direction of the pipe or the flowing direction of the molten resin.

本発明方法は、押出様lのホンパー2に熱可m性樹脂を
投入し、押出機lで溶融した後パイプ用ダイ3から溶融
状態のパイプを押出す。
In the method of the present invention, a thermoplastic resin is charged into a pumper 2 in an extrusion mode 1, melted by the extruder 1, and then a molten pipe is extruded from a pipe die 3.

パイプ用ダイ3は、第3図(イ)、(ロ)及び(ハ)に
示すように、ストレートダイ30.参〇及びクロスへラ
ドダイ50等が用いられ、腋ダイは、ダイダイリング3
1.g/、jノ及びマンドレル3コ。
The pipe die 3 is a straight die 30. as shown in FIGS. Raddai 50 etc. are used for 〇 and cross, and Daidai Ring 3 is used for armpit die.
1. g/, j and 3 mandrels.

グー、!λからなって>1)、ダイリングJ/%ll。Goo! λ > 1), Dairing J/%ll.

J/は熱可鳳性樹脂の最適温度とカるように成形時にお
いては通常加熱されている。一方、iが生じないように
、例えば棒状ヒーター33、μ3、I3が挿入されてお
〕、誼マンドレル自体を好ましくは、溶融状j!lK6
る熱可履性樹脂製パイプの温に以上に加熱してiる。該
ヒーターはスパイダ3!、弘!の空間部またはクロスへ
ラドダイの空間部Jjを通して結合したリード線36、
弘6、!乙の電圧を変えることによって加熱七温匿の調
節が可能となるような構造になっている。また、パイプ
用ダイはスパイダの空間部に通じる空気孔3弘、l−及
びマキドレル!−を買通する空気孔!μが穿たれておル
、熱可塑性樹脂製パイプの成形時、その内外の気圧が同
一に表るように構成されている。本発明方法ではランド
部の短かい第3図(=)のストレートダイを用いるのが
好ましい。第3図の矢印は全て樹脂の流れる方向を示し
ている。
J/ is usually heated during molding so that it reaches the optimum temperature of the thermosetting resin. On the other hand, for example, rod-shaped heaters 33, μ3, and I3 are inserted to prevent the occurrence of the melting of the mandrel itself. lK6
Heat it to a temperature higher than that of the thermoplastic resin pipe. The heater is Spider 3! , Hiro! A lead wire 36 connected to the space or cross through the space Jj of the RAD die,
Hiro 6! The structure is such that heating and heating can be adjusted by changing the voltage of B. In addition, the pipe die has air holes 3hiro, l-, and maquidrel that lead to the space of the spider. - Air hole to buy through! μ is bored, so that when the thermoplastic resin pipe is molded, the air pressure inside and outside the pipe is the same. In the method of the present invention, it is preferable to use the straight die shown in FIG. 3 (=) which has a short land portion. All arrows in FIG. 3 indicate the direction in which the resin flows.

本発明方法は5押出機lから押出された溶融状態にある
パイプを素早くサイジング装置参に導びく。サイジング
装置弘は、押出機lから押出された溶融パイプの形状く
ずれをできるだけ小さい範囲に止めるために押出機lか
ら500簡以内の範囲、好ましくは50m以内の範囲に
設けられている。該サイジング装置弘は、水。
The method of the invention quickly leads the molten pipe extruded from the extruder 5 to the sizing equipment. The sizing device 1 is provided within a range of 500 meters, preferably within a range of 50 meters, from the extruder 1 in order to keep the deformation of the molten pipe extruded from the extruder 1 to as small a range as possible. The sizing device is water.

シリコンオイル等の液状冷媒7を貯える冷媒槽!と、該
冷媒槽j内に位置し、冷媒の貯留時減圧(負圧)にでき
る減圧室6とからなってシム冷媒槽と減圧室の両者拡、
通常熱可履性樹脂製パイプの製造時移動しないように固
定されてiる。そして、冷媒槽!と減圧室6線、押出さ
れた熱可塑性樹脂製パイプaが通過するように貫通孔が
冷媒の液面よ)下の位置で穿たれてシ)。
A refrigerant tank that stores liquid refrigerant 7 such as silicone oil! and a depressurization chamber 6 located within the refrigerant tank j and capable of reducing the pressure (negative pressure) when the refrigerant is stored, expanding both the shim refrigerant tank and the decompression chamber,
Usually, it is fixed so that it does not move during the manufacture of thermoplastic resin pipes. And the refrigerant tank! A through hole is drilled at a position below the refrigerant liquid level so that the extruded thermoplastic resin pipe a passes through the decompression chamber 6 line.

冷媒7が減圧室が負圧になったとき貫通孔から冷媒槽j
から減圧車重に流入する構造となっている。減圧室の圧
力は、特に限定されるものではないが、750〜7弘O
■Hg (減圧匿IO−一〇wig)の範囲の一定圧力
に保つのが好ましい。
When the pressure in the decompression chamber becomes negative, the refrigerant 7 enters the refrigerant tank from the through hole.
The structure is such that the decompressed air flows into the vehicle. The pressure in the decompression chamber is not particularly limited, but is between 750 and 7 hiO.
(2) It is preferable to maintain a constant pressure in the range of Hg (vacuum IO-10 wig).

冷媒槽jの貫通孔には貫通孔を開閉できる絞)り、9′
が設けられておシ、パイプaの太さに令せて絞られ、か
つ冷媒7が冷媒槽外に漏れないようにパイプaと絞りタ
、り′との間に脱脂綿等の柔軟で冷媒を吸収し易−水切
ルを設けているのが好ましい。減圧車重には咳室内を減
圧にする手段例えば真空ポンプ50.蒸気エジェクター
、アスピレータ−等に通ずる空気排出管が開口しておシ
、また減圧室6はその中の冷媒7を自動的に一定の深さ
に保つために減圧室aWJに冷媒排出管/jが開口して
iる。冷媒排出管/Jから排出された冷媒7は、空間部
が減圧塞空関部と同一圧力になった冷媒貯留1!/4’
に貯えられ、冷媒移送ポンプ//によって冷媒7が循環
使用され、tた冷媒が過剰になったときは系外に排出さ
れる。
The through hole of the refrigerant tank j is equipped with a restrictor (9') that can open and close the through hole.
The refrigerant is squeezed to match the thickness of the pipe a, and a flexible material such as absorbent cotton is used to store the refrigerant between the pipe a and the restrictor to prevent the refrigerant 7 from leaking out of the refrigerant tank. Easily absorbed - preferably provided with a drainage hole. To reduce the pressure in the vehicle, a means for reducing the pressure in the cough room, such as a vacuum pump 50. An air exhaust pipe leading to a steam ejector, an aspirator, etc. is opened, and a refrigerant exhaust pipe /j is opened in the decompression chamber aWJ in order to automatically maintain the refrigerant 7 in the decompression chamber 6 at a constant depth. Open it. The refrigerant 7 discharged from the refrigerant discharge pipe/J is stored in the refrigerant storage 1 in which the space has the same pressure as the depressurization blockage section! /4'
The refrigerant 7 is stored in the refrigerant and is circulated and used by the refrigerant transfer pump, and when the refrigerant becomes excessive, it is discharged from the system.

しかして、減圧室tの貫通孔には熱可塑性樹脂製パイプ
aの太さに適合するようにサイザーt、 r’が設けら
れている。該サイザーr、r’は。
Thus, sizers t and r' are provided in the through hole of the decompression chamber t to match the thickness of the thermoplastic resin pipe a. The sizers r and r' are.

通常ステンレス・スチール、アルミニウム等ノ金属製の
ものでよく、好ましくは金属製のものに弗素樹N(テフ
ロン)をコーティングシ九4のまたは弗素樹脂でサイザ
ー自体を構成したものが望ましい、wl、サイザーr、
g  の径は、パイプaの寸法(径)よルはんの僅かに
、好ましくはO,コ〜−−大きくなってお)、パイプa
が減圧室6に導入または排出されるとき冷媒7が一緒に
吸引されるだけの隙間ができるように構成されている。
Generally, the sizer may be made of metal such as stainless steel or aluminum, preferably a sizer made of metal coated with fluorocarbon resin or a sizer itself made of fluororesin. r,
The diameter of the pipe a is slightly larger than the dimension (diameter) of the pipe a, preferably larger than the dimension (diameter) of the pipe a.
When the refrigerant 7 is introduced into or discharged from the decompression chamber 6, a gap is created that allows the refrigerant 7 to be sucked together.

すなわち、絞)りな通過後冷媒7で冷却され。That is, it is cooled by the refrigerant 7 after passing through the constrictor.

熱可息性樹脂の溶融粘度が完全に固化されない程度に高
められ九パイプがサイザーtを通過するとき、冷媒槽J
の冷媒7が減圧室を封鎖しながら減圧車重に一緒Kaい
込まれ、このときパイブが拡径される。このとき、冷媒
7は潤滑剤の働きをなす。減圧室内で完全固化されたパ
イプが減圧室から導出されるときにもサイザーr′から
冷媒が吸引されて潤滑剤の作用をし、パイプaは、絞ル
タ′を径て引取装置/Aで引取られる。絞シタとサイザ
ーrとの間隔は、熱回層性樹脂の溶融粘度、パイプの肉
厚、冷媒の温度等によっても異なるが、熱回層性樹脂製
パイプが充分に柔らかくサイジングできる範囲内に訃い
てサイザーtを絞ルタに近ずけるのが望ましく、150
0vx以内、特にJOwm程度に保つのが好ましい。ま
た、サイザーr、 r’とパイプaの径の差が大きすぎ
ると減圧室に一時に吸引される冷媒量が増え、減圧案内
の冷媒の揺れが激しくなル、パイプ成形に悪影響を与え
、一方、差が小さすぎるとサイザーr、 r’がパイプ
aに接着し易く、傷、伸び等の原因にな)易i0冷媒の
揺れによる成形時の悪影響を防ぐために減圧室6内に拡
直線的に連通する買通孔の線上に熱可■性樹脂製パイプ
aに接するフロ12を:ロ芯を介して装備するのが好ま
しい。勿論、コロlコ蔽板13を冷媒液面にまたは液中
に垂直に設けていてもよい。
When the melt viscosity of the thermobreathable resin is increased to such an extent that it is not completely solidified and the pipe passes through the sizer T, the refrigerant tank J
The refrigerant 7 is injected into the reduced pressure vehicle weight while sealing the reduced pressure chamber, and at this time the pipe is expanded in diameter. At this time, the refrigerant 7 acts as a lubricant. When the pipe that has been completely solidified in the vacuum chamber is taken out from the vacuum chamber, the refrigerant is sucked from the sizer r' and acts as a lubricant, and the pipe a is taken out by the take-off device/A through the throttle filter'. It will be done. The distance between the diaphragm and the sizer R varies depending on the melt viscosity of the heat-circulating resin, the wall thickness of the pipe, the temperature of the refrigerant, etc., but it should be within the range where the heat-circulating resin pipe is sufficiently soft and sizing is possible. It is desirable to squeeze the sizer T close to the router, and it is 150
It is preferable to keep it within 0vx, especially around JOwm. In addition, if the difference between the diameters of sizers r and r' and pipe a is too large, the amount of refrigerant sucked into the decompression chamber at once will increase, and the refrigerant in the decompression guide will vibrate violently, which will adversely affect pipe forming. If the difference is too small, the sizers r and r' will easily adhere to the pipe a, causing scratches, elongation, etc. It is preferable to install a flow 12 in contact with the thermoplastic resin pipe a on the line of the communicating through-hole through a core. Of course, the roller shielding plate 13 may be provided perpendicularly to the refrigerant liquid surface or into the liquid.

また、本発明方法に用いるサイジング装置は。Furthermore, the sizing device used in the method of the present invention is as follows.

第1図のサイジング装置弘に限定されるものでは々く、
例えば第一図に示したサイジング装置コ弘であってもよ
い。該サイジング装置λμは、減圧gxg内の冷媒コア
を任意の深さに調節するために減圧室26の底部に冷媒
移送ボンブコlに連結した冷媒排出管を開口させたもの
である。もし、減圧室が不透明な場合には、減圧室内を
透視することのできる覗き窓を設けるのが望ましい。
It is not limited to the sizing device shown in Figure 1.
For example, the sizing device shown in FIG. 1 may be used. The sizing device λμ has a refrigerant discharge pipe connected to the refrigerant transfer bombco I opened at the bottom of the decompression chamber 26 in order to adjust the refrigerant core in the decompression gxg to an arbitrary depth. If the vacuum chamber is opaque, it is desirable to provide a viewing window through which the interior of the vacuum chamber can be seen.

本発明方法に使用する熱可産性樹脂は、特に限定される
ものではないが、例えば塩化ビニル系樹脂、ポリスチレ
ン系樹脂、ムB8樹脂、アクリル樹脂、ポリエチレン、
ボリプaピレン、ポリアミド樹脂、ボリア七タール樹脂
等がめげられ、これらの1種または2種以上の混合物が
用いられる。医療用チューブ、食料、飲料外どの移送等
に用いる食品用ホースを製造するためには、特に塩化ビ
ニル系樹脂または塩化ビニル系樹脂とアクリル樹脂との
混合物での利用価値が高い。塩化ビニル系樹脂としては
、塩化ビニルまたは塩化ビニルとそれに共重合可能外コ
モノマーとの混合物を懸濁重合法、塊状重合法。
The thermoplastic resin used in the method of the present invention is not particularly limited, but includes, for example, vinyl chloride resin, polystyrene resin, MuB8 resin, acrylic resin, polyethylene,
Polypyrene, polyamide resin, boria heptatar resin, etc. are used, and one or a mixture of two or more of these may be used. In order to manufacture medical tubes, food hoses used for transporting foods, beverages, etc., vinyl chloride resins or mixtures of vinyl chloride resins and acrylic resins are particularly useful. As the vinyl chloride resin, vinyl chloride or a mixture of vinyl chloride and a comonomer copolymerizable with it can be used by suspension polymerization or bulk polymerization.

微細懸濁重合法または乳化型合法等通常の方法によって
製造されたものがすべて使用しうる。
Any material produced by a conventional method such as a fine suspension polymerization method or an emulsion method can be used.

また、アクリル樹脂は、一般式(1) %式% 〔式中、Rは水素原子または低級アルキル基、R1は水
素原子または炭素原子数/−/ fのアルキル基を示す
。) で表わされるアクリルW1.tたはアクリル酸系エステ
ルを主成分とした重合体または共重合体が用いられる。
The acrylic resin has the general formula (1) % formula % [wherein R represents a hydrogen atom or a lower alkyl group, and R1 represents a hydrogen atom or an alkyl group having a carbon atom number of /-/f. ) Acrylic W1. Polymers or copolymers whose main component is acrylic acid ester or acrylic acid ester are used.

代表的な例としてはポリアクリル酸メチル、ポリメタク
リル酸メチル、メタクリル瞭メチルーブタジェンースチ
レン共重合体(Mn2)が挙げられる。そしてこれらア
クリル樹脂の分子量はJO−2jO万の範囲pものが一
般的に使用され、粒子径も500μ以下の大きさである
のが好ましい。アクリル樹脂の塩化ビニル系樹脂への配
合割合は、塩化ビニル系樹脂ioo重量部に対して50
重量部以下、好ましく ij O,j −7重量部、特
にo3〜3重量部の範囲である。
Typical examples include polymethyl acrylate, polymethyl methacrylate, and methacrylic methyl-butadiene-styrene copolymer (Mn2). The molecular weight of these acrylic resins is generally in the range of JO-2JO, and the particle size is preferably 500 μm or less. The blending ratio of acrylic resin to vinyl chloride resin is 50 parts by weight of vinyl chloride resin.
It is less than 7 parts by weight, preferably ij O,j -7 parts by weight, especially in the range of 3 to 3 parts by weight.

塩化ビニル系樹脂な再思化するための可塵剤は、通常塩
化ビニル系樹脂の回層化に用いられる回層剤なら特に限
定されるものではなし1例えば、7タル酸ジーコーエチ
ルヘキシルで代表される7タル酸エステル系可履剤、ト
リメリット酸トリーーーエチルヘキシルで代表されるト
リメリット酸エステル系回層剤、アジピン酸ジーコーエ
チルヘキシルで代表される脂肪醗エステル系可塑剤、リ
ン識トリクレジルで代表されるリン酸エステル系回層剤
、アジピン酸とエチレングリコールの重縮合物で代表さ
れるポリエステル系回層剤等各種のものが挙げられ、こ
れら11mまたはコ種以上を混合して用いる。可塑剤の
塩化ビニル系樹脂に対する配合割合は、成に対して30
−弘Oθ重量部、好ましくはj0〜aOO重量部の範囲
である。例えば、ポリ塩化ビニル(重合度t3oo) 
i o o重量部にフタル酸ジー2−エチルヘキシル5
0重量部を均一に混合することによりJx日ム硬度約7
0の軟質塩化ビニル樹脂組成物が得られる。さらに、一
層良好な表面平滑性をパイプに付与するため。
The dusting agent for reconstituting vinyl chloride resins is not particularly limited as long as it is a layering agent that is normally used for layering vinyl chloride resins1. 7-talic acid ester-based lubricating agents, trimellitic acid ester-based coating agents represented by tri-ethylhexyl trimellitate, fatty acid ester plasticizers represented by dico-ethylhexyl adipate, and phosphorus-sensitive tricresyl. There are various types of coating agents such as phosphoric acid ester coating agents typified by , and polyester coating agents typified by polycondensates of adipic acid and ethylene glycol. The blending ratio of plasticizer to vinyl chloride resin is 30% of the composition.
-HiroOθ parts by weight, preferably in the range of j0 to aOO parts by weight. For example, polyvinyl chloride (degree of polymerization t3oo)
i o o parts by weight of di-2-ethylhexyl phthalate 5
By uniformly mixing 0 parts by weight, the Jx day hardness is approximately 7.
0 soft vinyl chloride resin composition is obtained. Furthermore, to give the pipe even better surface smoothness.

該組成物にステアリン酸、ステアリン酸の金属塩等の滑
剤を少量添加するのが好ましい。
It is preferred to add a small amount of a lubricant such as stearic acid or a metal salt of stearic acid to the composition.

「発明の効果」 本発明方法によれば、完全に溶融した状態で熱可朧性樹
脂製パイプが押出され、かつ押出されたときの内外温度
差がないため、更に冷媒槽で急冷されるため、得られた
熱可朧性樹m製パイプは透明性に著しくすぐれ、また溶
融粘度を低くして、すなわち流動性を向上させて押出し
ているので、さらに減圧すイジングの際に液状冷媒が潤
滑剤として働くためにパイプが直接サイザーに接触する
割合が少なく平滑性にすぐれ、誼平滑性は、熱可東性樹
脂に滑剤が併用混入されている場合、一層その効果を発
揮する。また、本発明方法は、樹脂パイプを、その溶融
粘度が固化し力い程度に高めた後に減圧サイジングを実
施しているので、自重によるヘタリ等の形状くずれが生
じず真円度の極めてすぐれたパイプを成形することがで
きる。特に、軟質塩化ビニル樹脂にアクリル樹脂を配合
した塩化ビニル樹脂組成物から製造されるパイプは、透
明性を改良し、樹脂パイプの溶融粘度が、アクリル樹脂
を配合しないも4DK比し、高くなるためへタリ等の形
状くずれは認められず、真円度の一層向上した、弾性率
の高いものとなる。骸塩化ビニル樹脂製パイプは、透析
用チューブ、心肺用チューブ、輸血用チューブ等の医療
用チューブ、食料、飲料などの移送などに用−る食品用
パイプ等に好適に使用される。
"Effects of the Invention" According to the method of the present invention, the thermoplastic resin pipe is extruded in a completely molten state, and there is no temperature difference between the inside and outside when it is extruded, and it is further rapidly cooled in a refrigerant tank. The obtained thermoplastic resin pipe has excellent transparency, and since it is extruded with a low melt viscosity, that is, with improved fluidity, the liquid refrigerant is lubricated during ising to further reduce the pressure. Because it acts as a lubricant, the proportion of the pipe that comes into direct contact with the sizer is small, resulting in excellent smoothness, and the effect of lubricant is even more effective when a lubricant is mixed in the thermoplastic resin. In addition, in the method of the present invention, the resin pipe is sized under reduced pressure after its melt viscosity has solidified and increased to a high degree, so that the resin pipe does not lose its shape due to its own weight, such as sagging, and has extremely excellent roundness. Can be used to form pipes. In particular, pipes manufactured from a vinyl chloride resin composition in which acrylic resin is blended with soft vinyl chloride resin have improved transparency, and the melt viscosity of the resin pipe is higher than that of 4DK, which does not contain acrylic resin. No deformation such as curling is observed, and the roundness is further improved and the elastic modulus is high. Pipes made of vinyl chloride resin are suitably used for medical tubes such as dialysis tubes, cardiopulmonary tubes, and blood transfusion tubes, and food pipes used for transporting foods, beverages, and the like.

「実施例」 次に本発明方法な実施例にて詳述するが、本発明は、そ
の要旨を超えない限シ、以下の実施例に限定されるもの
では力い。
"Examples" Next, the method of the present invention will be described in detail in Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1.比軟例1 ポリ塩化ビニル(重合度t3oo) t o o重量部
、可IJJ(フタル識ジー2−エチルヘキシル)502
量部、エポキシ化アw二油7重量部、カルシウム−亜鉛
系安定剤1.2重食部、ステアリン酸9.1重量部及び
ステアリン酸バリウム0.1重量部を均一に混練し、塩
化ビニル樹脂組成物のペレットを製造した。該ペレット
を、@3図(イ)のストレートパイプ用ダイを装着した
1口径4LOwsφ、WD = 22の押出機を結合し
た第1図のパイプ製造装置を用埴、次の成形条件でパイ
プを連続的に押出した。パイプの寸法は外径/jsmg
l、内径50wm−である。
Example 1. Ratio Example 1 Polyvinyl chloride (degree of polymerization t3oo) 0 parts by weight, IJJ (phthalic di-2-ethylhexyl) 502
7 parts by weight of epoxidized aluminum oil, 1.2 parts by weight of calcium-zinc stabilizer, 9.1 parts by weight of stearic acid and 0.1 part by weight of barium stearate were uniformly kneaded, and vinyl chloride was mixed. Pellets of the resin composition were produced. The pellets were transferred to the pipe manufacturing equipment shown in Fig. 1, which was connected to an extruder with a diameter of 4LOwsφ and WD = 22 equipped with a straight pipe die shown in Fig. 3 (A), and pipes were continuously formed under the following forming conditions. It was pushed out. Pipe dimensions are outer diameter/jsmg
1, and the inner diameter is 50 wm.

く温度設定〉 単位二℃ シリンダー  、            ダイヘッド
Temperature setting> Unit: 2℃ Cylinder, die head.

On    (40s    O,H 1弘j   111   /6!   /’l!   
 /60ダイリンク、    マントシル、樹脂温度。
On (40s O, H 1 Hiroj 111 /6! /'l!
/60 Die Link, Mantosil, resin temperature.

DI     D2 170   +2DD     200     /9
1くサイジング装置〉 冷媒槽長さ、 減圧室長さ、  減圧度。
DI D2 170 +2DD 200 /9
1. Sizing device> Refrigerant tank length, decompression chamber length, degree of decompression.

200m     500exa    −rmHgサ
イザー径、  サイザー材質 1!、j寓グ     弗素樹脂 成形されたパイプの透明性、真円度を肉眼で。
200m 500exa -rmHg sizer diameter, sizer material 1! Check the transparency and roundness of fluororesin molded pipes with the naked eye.

内外面平滑性を電子顕微鏡で観察したところ。Observation of internal and external smoothness using an electron microscope.

全て良好な結果を示した。All showed good results.

比較のためサイジング装置としてサイザー径/j、js
J21、サイザー材質弗素樹脂を備えたコDOcxsの
冷媒槽を使用し、減圧サイジングしなかったときの透明
性、真円度及び内外面平滑性を観察したところ、透明度
、内外面平滑性の点では1良好であるが、自重によるヘ
タリがおって真円度が著しく悪く、実用に供し難かった
For comparison, sizer diameter/j, js is used as a sizing device.
J21, using a CODOcxs refrigerant tank equipped with a fluororesin sizer material, we observed the transparency, roundness, and smoothness of the inner and outer surfaces without vacuum sizing. 1 was in good condition, but the roundness was extremely poor due to curling due to its own weight, making it difficult to put it to practical use.

実施例λ、J 塩化ビニル樹脂(重合[1300) / 00重量部、
フタル殿ジーコーエチルヘキシルrefi量部、エポ午
シアマニ油7重量部、カルシウム−亜鉛系安定剤1.1
重量部、ポリメタクリル識メチル(分子量約60万)1
重量部、17797150.1重量部及びステアリン酸
バリウム0.1重量部を配合混練し、ペレット状の組成
物を製造し丸。該組成物を実施例1で使用したパイプ製
造装置を使用し、次の設定温度条件(単位:℃)でパイ
プを製造した。
Example λ, J Vinyl chloride resin (polymerization [1300) / 00 parts by weight,
phthalate, Gikoethylhexyl refi, 7 parts by weight of Epocyanseed oil, 1.1 parts of calcium-zinc stabilizer.
Part by weight, polymethacrylic methyl (molecular weight approximately 600,000) 1
Part by weight, 17797150.1 part by weight and 0.1 part by weight of barium stearate were mixed and kneaded to produce a pellet-like composition. Using the pipe manufacturing apparatus used in Example 1, a pipe was manufactured using the composition under the following set temperature conditions (unit: °C).

シリンダー             ダイヘッド 、
ダイリングol    ox    as    04
     HDI    D叩/JOIJO/50  
/70   /70    /77  /りOマンドレ
ルを190℃に加熱したもの(樹脂温度 iro℃)を
実施例コ、加熱しないものを実施例3(マンドレル温度
:最高でも樹脂温度まで)とした。
cylinder die head,
Dairing ol ox as 04
HDI D Hit/JOIJO/50
/70 /70 /77 /O A mandrel heated to 190° C. (resin temperature iro° C.) was used as Example 1, and a material that was not heated was used as Example 3 (mandrel temperature: at most up to the resin temperature).

製造されたパイプの透明性、真円度及び内外面平滑性を
調べたが、実施例3の内面平滑性を除き全て良好な結果
であった。実施例Jの内面平滑性は、良好ではあるもの
のわずかに小さなうね)が認められた。
The transparency, roundness, and smoothness of the inner and outer surfaces of the manufactured pipe were examined, and all results were good except for the inner smoothness of Example 3. Although the inner surface smoothness of Example J was good, slightly small ridges were observed.

実施例参、比較例コ メータリング型スクリ二−を装備したL/D=ココ、圧
縮ルーのり0■φ押出機に第3図H)のストレートダイ
な装置し、第2図に示したサイジング装置を組合せた熱
可塑性樹脂製パイプの製造装置を用い低密度ポリエチレ
ンを次の温度争件(単位−℃)でパイプを押出した。
Examples, Comparative Examples L/D = here, compression roux paste 0 φ extruder equipped with straight die device (H) in Figure 3, sizing device shown in Figure 2 A pipe was extruded from low-density polyethylene at the following temperature range (unit: -°C) using a thermoplastic resin pipe manufacturing equipment combining:

シリンダー 、        ダイヘッド、ダイリン
グ、マンドレルa、    at    as iao   tto   ttz    ito   
  iro     ir。
Cylinder, die head, die ring, mandrel a, at as iao tto ttz ito
iro ir.

比較のため比較例1で用いたサイジング装置を組合せて
上述温度東件でパイプを成形した。
For comparison, a pipe was formed using the sizing device used in Comparative Example 1 at the above-mentioned temperature.

得られたパイプについて真円度及び内面平滑性について
観察し、次表にまとめた。
The obtained pipes were observed for roundness and internal smoothness, and the results are summarized in the table below.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱可塑性樹脂製パイプの製造装置の一例を示す
概略縦断正面図、第2図はサイジング装置の他の例を示
す概略縦断正面図、第3図(イ)、(ロ)及び(ハ)は
いづれもパイプ用ダイの一例を示す縦断正面図である。 図中、lは押出様、グ、2弘はサイジング装置、!、コ
jは冷媒槽、t、コtは減圧室、r、r′5.2r、2
r’はサイザー、3コ、弘コ、jコはマンドレル、33
、v3、!3はヒーターをそれぞれ示す。 特許出願人   三菱モンナント化成ビニル株式会社代
 理 人  弁理士 長谷用  − ほかノ名 篤1図 箋 2図 (2)同第77頁、第1O行目及び第19頁第S行目に 「ステアリン酸バリウム」とあるをそれぞれ「ステアリ
ン酸ブチル」に訂正する。 以   上
Fig. 1 is a schematic longitudinal sectional front view showing an example of a thermoplastic resin pipe manufacturing device, Fig. 2 is a schematic longitudinal sectional front view showing another example of a sizing device, and Figs. 3 (a), (b), and ( c) is a longitudinal sectional front view showing an example of a pipe die. In the figure, l is extrusion type, g, 2 hiro is sizing equipment,! , koj is the refrigerant tank, t, kot is the decompression chamber, r, r'5.2r, 2
r' is sizer, 3, Hiroko, j is mandrel, 33
,v3,! 3 indicates a heater. Patent applicant: Mitsubishi Monnant Plastic Vinyl Co., Ltd. Agent: Patent attorney: For Hase - Atsushi Otani 1 Illustration 2 (2) On page 77, line 1O and page 19, line S, stearic acid Correct the words "barium" to "butyl stearate."that's all

Claims (3)

【特許請求の範囲】[Claims] (1)連続押出成形法によって熱可塑性樹脂製パイプを
製造する方法において、マンドレルの温度調節が可能に
なったパイプ用ダイを装着した押出機及び液状冷媒を貯
えて冷媒槽と該冷媒槽内に位置しかつサイザーを装備し
た減圧室とからなるサイジング装置を用い、前記パイプ
用ダイから押出された溶融状態の熱可塑性樹脂製パイプ
を、素早く冷媒槽に導いて該パイプの溶融粘度を完全に
固化しない程度に高め、次いで減圧室に導入すると同時
に減圧サイジングすることを特徴とする熱可塑性樹脂製
パイプの製造方法。
(1) In a method of manufacturing thermoplastic resin pipes by continuous extrusion, an extruder is equipped with a pipe die that allows temperature control of the mandrel, and a refrigerant tank is used to store liquid refrigerant. The molten thermoplastic resin pipe extruded from the pipe die is quickly guided to a refrigerant tank to completely solidify the molten viscosity of the pipe using a sizing device consisting of a decompression chamber located at the same location and equipped with a sizer. 1. A method for producing a thermoplastic resin pipe, the method comprising: increasing the pressure to a level where the pipe does not swell, and then sizing the thermoplastic resin pipe at reduced pressure at the same time as introducing it into a reduced pressure chamber.
(2)マンドレルの装置を溶融状態の熱可塑性樹脂製パ
イプの温度以上にする特許請求の範囲第1項記載の熱可
塑性樹脂製パイプの製造方法。
(2) The method for manufacturing a thermoplastic resin pipe according to claim 1, in which the temperature of the mandrel device is set to be higher than the temperature of the thermoplastic resin pipe in a molten state.
(3)減圧サイジング時の減圧室の減圧度が50〜20
mmHgの範囲である特許請求の範囲第1項記載の熱可
塑性樹脂製パイプの製造方法。
(3) The degree of vacuum in the vacuum chamber during vacuum sizing is between 50 and 20.
The method for manufacturing a thermoplastic resin pipe according to claim 1, wherein the temperature is within the range of mmHg.
JP16014184A 1984-07-30 1984-07-30 Manufacture of thermoplastic resin pipe Pending JPS6135928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16014184A JPS6135928A (en) 1984-07-30 1984-07-30 Manufacture of thermoplastic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16014184A JPS6135928A (en) 1984-07-30 1984-07-30 Manufacture of thermoplastic resin pipe

Publications (1)

Publication Number Publication Date
JPS6135928A true JPS6135928A (en) 1986-02-20

Family

ID=15708756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16014184A Pending JPS6135928A (en) 1984-07-30 1984-07-30 Manufacture of thermoplastic resin pipe

Country Status (1)

Country Link
JP (1) JPS6135928A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248280A2 (en) * 1986-06-03 1987-12-09 Otto Spitzmüller Apparatus for calibrating a hollow plastic profile
JPH02293117A (en) * 1989-05-08 1990-12-04 Pura Giken:Kk Molding device of pipe
EP0936052A1 (en) * 1998-02-04 1999-08-18 Röhm Gmbh Apparatus for calibrating extruded hollow plastic panels
WO2002070228A2 (en) * 2001-03-01 2002-09-12 Veka Ag Vacuum-calibrating device with a liquid blocking device in the coolant outlet pipe
JP2010058363A (en) * 2008-09-03 2010-03-18 San Nt:Kk Apparatus for water-cooling hollow extruded article
JP2012179833A (en) * 2011-03-02 2012-09-20 Bridgestone Corp Rubber member cooling apparatus
CN103624948A (en) * 2012-08-20 2014-03-12 乐普(北京)医疗器械股份有限公司 Extrusion molding method for medical catheter tube
JP5472546B2 (en) * 2012-02-09 2014-04-16 東洋紡株式会社 Medical tube
JP2015098120A (en) * 2013-11-19 2015-05-28 住友ゴム工業株式会社 Extrusion molding apparatus and method for manufacturing thermoplastic elastomer molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028107A (en) * 1973-07-16 1975-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028107A (en) * 1973-07-16 1975-03-22

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248280A2 (en) * 1986-06-03 1987-12-09 Otto Spitzmüller Apparatus for calibrating a hollow plastic profile
EP0248280A3 (en) * 1986-06-03 1988-11-09 Otto Spitzmüller Apparatus for calibrating a hollow plastic profile
JPH02293117A (en) * 1989-05-08 1990-12-04 Pura Giken:Kk Molding device of pipe
EP0936052A1 (en) * 1998-02-04 1999-08-18 Röhm Gmbh Apparatus for calibrating extruded hollow plastic panels
US7011509B2 (en) * 2001-03-01 2006-03-14 Veka Ag Cooled calibrating device for a plastic extrusion facility
WO2002070228A3 (en) * 2001-03-01 2003-01-30 Veka Ag Vacuum-calibrating device with a liquid blocking device in the coolant outlet pipe
WO2002070228A2 (en) * 2001-03-01 2002-09-12 Veka Ag Vacuum-calibrating device with a liquid blocking device in the coolant outlet pipe
CN100357084C (en) * 2001-03-01 2007-12-26 维卡股份公司 Cooled calibrating device for a plastic extrusion facility
JP2010058363A (en) * 2008-09-03 2010-03-18 San Nt:Kk Apparatus for water-cooling hollow extruded article
JP2012179833A (en) * 2011-03-02 2012-09-20 Bridgestone Corp Rubber member cooling apparatus
JP5472546B2 (en) * 2012-02-09 2014-04-16 東洋紡株式会社 Medical tube
CN103624948A (en) * 2012-08-20 2014-03-12 乐普(北京)医疗器械股份有限公司 Extrusion molding method for medical catheter tube
JP2015098120A (en) * 2013-11-19 2015-05-28 住友ゴム工業株式会社 Extrusion molding apparatus and method for manufacturing thermoplastic elastomer molded article

Similar Documents

Publication Publication Date Title
US9669153B2 (en) Method of manufacturing a tack-free gel for a surgical device
JPS6135928A (en) Manufacture of thermoplastic resin pipe
US8048352B2 (en) Medical devices
KR20190026812A (en) Catheter catheters with varying characteristics
KR20080056197A (en) Medical catheter tubes and process for production thereof
EP3034267A1 (en) Die assembly with cooled die land
CN104513444A (en) A low-temperature resistant lubricating film material
JP2019130880A (en) Polytetrafluoroethylene tube
CN210705904U (en) Extrusion equipment for flexible hose
US8226875B2 (en) Extremely thin-walled ePTFE
US3751209A (en) Extrusion die with channeled die endplates
US4623502A (en) Method and apparatus for the extrusion of synthetic resinous thermoplastics
JP2011042121A (en) Method of manufacturing thermoplastic resin foaming pipe
EP1706165B1 (en) Medical Devices with Nano-materials
JP2008156561A (en) Sliding resin material, sliding resin pellet, sliding resin molding and tubular sliding resin molding
JPS6032627A (en) Manufacture of flexible corrugated tube
JP2017007313A (en) Blow molding method
JPH04212377A (en) Production of catheter
JPH02142577A (en) Tube containing contrast medium
JP2534875B2 (en) Method for manufacturing tube for blood circuit
CN211105501U (en) Forming head of infusion catheter extrusion forming equipment
JP2004249606A (en) Thermoplastic resin pipe, clad pipe for optical fiber and manufacturing method thereof
JPS59186563A (en) Production of catheter
JPS61134224A (en) Manufacture of thin and hollow container
JPS58160626A (en) Resin-manufactured bearing