JPS6134951A - Monitor section for evaluating semiconductor device capacity - Google Patents

Monitor section for evaluating semiconductor device capacity

Info

Publication number
JPS6134951A
JPS6134951A JP15607184A JP15607184A JPS6134951A JP S6134951 A JPS6134951 A JP S6134951A JP 15607184 A JP15607184 A JP 15607184A JP 15607184 A JP15607184 A JP 15607184A JP S6134951 A JPS6134951 A JP S6134951A
Authority
JP
Japan
Prior art keywords
pad
monitor section
semiconductor device
capacitance
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15607184A
Other languages
Japanese (ja)
Inventor
Hidemi Ishiuchi
秀美 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15607184A priority Critical patent/JPS6134951A/en
Publication of JPS6134951A publication Critical patent/JPS6134951A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To determine an extremely small capacity with high precision by a method wherein a conductive layer is formed within an insulating layer positioned between at least a portion of a pad or wiring, connected to one of two locations in a monitor section, and the other of the two locations, and a voltage independent of the voltages to be applied to the two locations in the monitor section is applied to this conductive layer. CONSTITUTION:To evaluate a capacity Cj between two prescribed locations in a semiconductor device, for example, a semiconductor substrate 1 and a wiring conductive layer 2 formed at a portion on the surface of the semiconductor substrate 1, at least an additional pad' 5 is built, equivalent in structure to the regular locations 1, 2 and capable of applying separate voltages respectively to the regular locations 1, 2. In a monitor section for evaluating capacity designed as such, a conductive layer 10 is formed in an insulating layer 3' positioned between the pad 5', connected to the location 2, and the location 1 or between the pad 5' and at least a portion of a wiring connecting the pad 5' and the location 2. A pad 11 is formed to connect to the conductive layer 10 and, to this pad 11, a voltage may be applied which is independent of the voltages to be applied to the locations 1, 2 of the monitor section.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置における種々の容量を評価するため
に半導体装置に形成される容量評価用モニタ部κ関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a capacitance evaluation monitor section κ formed in a semiconductor device to evaluate various capacitances in the semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

半導体装置における、たとえば配線用半導体層の接合容
量を評価したい場合には、上記正規の接合容量部と同様
の構造および測定電極数シ出し用・千ッド部を有するモ
ニタ部を上記半導体装置に設けておき、この容量評価用
モニタ部の容量を測定することが行なわれている。
For example, when it is desired to evaluate the junction capacitance of a wiring semiconductor layer in a semiconductor device, a monitor section having a structure similar to the regular junction capacitance section and a lead section for displaying the number of measurement electrodes is attached to the semiconductor device. The capacitance of this capacitance evaluation monitor section is measured.

第4図はこの種の接合容量評価用モニタ部の従来例を示
しておシ、1はたとえばp型シリコン基板、2は上記基
板表面の一部に砒素がドーグされてなるn増、3は基板
表面に形成された絶縁層、4は上記絶縁層3内で前記n
″M2上に形成されたコンタクトホール、5は上記コン
タクトホール4内に形成されると共にこれと一体的に絶
縁層3上の一部に形成された金属配線(たとえばアルミ
ニウム)、6は上記配線5上および前記絶縁層3上に形
成された絶縁層、7は上記配線6の電極数シ出し用・4
72部5′と外部電極(図示せず)とを接続するために
上記パッド部り′上で絶縁層6内に開けられた孔である
FIG. 4 shows a conventional example of this type of junction capacitance evaluation monitor section, where 1 is a p-type silicon substrate, 2 is an n-type silicon substrate doped with arsenic on a part of the surface of the substrate, and 3 is a p-type silicon substrate. An insulating layer 4 formed on the surface of the substrate is formed within the insulating layer 3.
``A contact hole formed on M2; 5 is a metal wiring (for example, aluminum) formed in the contact hole 4 and integrally formed on a part of the insulating layer 3; 6 is a metal wiring 5 formed on the insulating layer 3; An insulating layer 7 formed on the top and the insulating layer 3 is for indicating the number of electrodes of the wiring 6.
This is a hole made in the insulating layer 6 above the pad portion 72 for connecting the portion 5' and an external electrode (not shown).

ここで、上記モニタ部におけるn十層2と基板lとの間
の接合容量Cjが評価の目的である。
Here, the purpose of evaluation is the junction capacitance Cj between the n10 layers 2 and the substrate 1 in the monitor section.

上記モニタ部における静電容量Cの測定は、配線5の・
ぐラド部5′の電位を一定に固定し、基板電極取り出し
用・やッl′(図示せず)に印加する基板電位V8UB
t−微少に変化させたとき・平ッド部5′から流れ込ん
でくる電荷ΔQPAD ’に測定することによシ、 で求められる。ここで、ΔvsUBはvBUIlの微少
変化量である。
The capacitance C in the monitor section is measured by the wiring 5.
A substrate potential V8UB is applied to the substrate electrode take-out shaft (not shown) while fixing the potential of the substrate portion 5' to a constant value.
When t is slightly changed, it can be obtained by measuring the charge ΔQPAD' flowing from the flat portion 5'. Here, ΔvsUB is a small amount of change in vBUIl.

〔背景技術の問題点〕[Problems with background technology]

ところで、上記モニタ部には配線5と基板1との間に浮
遊容量C,が存在しておシ、第5図に示すように・ぐラ
ド部5′と基板電極1′との間には接合容量Cjと浮遊
容量C1とが並列に接続されている。つまり、前述した
ような測定に求められるCは C= Cj十C。
By the way, there is a stray capacitance C between the wiring 5 and the substrate 1 in the monitor section, and as shown in FIG. Junction capacitance Cj and stray capacitance C1 are connected in parallel. In other words, the C required for the above-mentioned measurement is C = Cj + C.

で与えられ、誤差分としてC8を含むCjf測定したこ
とになる。この場合、寄生容量c町の大きさは、たとえ
ばパッド部5′の大きさを100μm×100μm、絶
縁層3の厚さf I kmとすると約345 fF (
1fFは1O−15F−t”あル)トする。したがって
、評価目的の接合容量Cjが上記浮遊容量Csよシ小さ
い微細容量である場合には、上記モニタ部の構造では測
定精度が著しく不足し、測定が不可能である。
This means that Cjf including C8 as an error has been measured. In this case, the size of the parasitic capacitance c is approximately 345 fF (for example, assuming that the size of the pad portion 5' is 100 μm x 100 μm and the thickness of the insulating layer 3 is f I km).
1fF is equal to 1O-15F-t". Therefore, if the junction capacitance Cj to be evaluated is a minute capacitance smaller than the above stray capacitance Cs, the measurement accuracy will be significantly insufficient with the above structure of the monitor section. , it is impossible to measure.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、半導体装
置における微細な容量でも高精度の測定を可能とする半
導体装置の容量評価用モニタ部を提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and provides a monitor section for evaluating the capacity of a semiconductor device, which enables highly accurate measurement of even minute capacitances in a semiconductor device.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、半導体装置における所定の2個の部位
(たとえば半導体基板とその表面の一部に形成された配
線用導電層)間の容量を評価するために、上記正規の部
位とは別個に正規の部位と同様の構造を有すると共にそ
の2個の各部位に独立した電位を印加し得るように少な
くとも一個の・ぐラドが形成されてなる半導体装置の容
量評価用モニタ部において、このモニタ部の一方の部位
に接続された・ぐラドもしくはこの・中ラドと上記一方
の部位との間の配線の少なくとも一部と他方の部位との
間の絶縁層内に導電層を形成し、この導電層に接続され
た・り、ドを形成し、この・ぐラドにも上記モニタ部の
2個の部位の印加電位とは独立した電位を印加し得るよ
うに構成してなることを特徴とするものである。
That is, in order to evaluate the capacitance between two predetermined parts in a semiconductor device (for example, a semiconductor substrate and a wiring conductive layer formed on a part of the surface thereof), In a monitor unit for capacity evaluation of a semiconductor device, which has a structure similar to that of a regular part, and at least one gradation is formed so that an independent potential can be applied to each of the two parts, this monitor A conductive layer is formed in the insulating layer between at least a part of the wire connected to one part of the part or this part and the other part, and this A conductive layer is connected to the conductive layer, and a conductive layer is formed so that a potential independent of the potentials applied to the two portions of the monitor section can be applied to the conductive layer as well. It is something to do.

したがって\導電層に一定電位を印加しておくことによ
って、前記モニタ部の一方の部位に接続された・母、ド
あるいは配線と他方の部位との間の静電遮蔽が行なわれ
、この2個の部位間の容量が微細であっても正確な測定
が可能となる。
Therefore, by applying a constant potential to the conductive layer, electrostatic shielding is performed between the motherboard or wiring connected to one part of the monitor section and the other part, and these two Accurate measurement is possible even if the capacitance between the parts is minute.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例を詳細に説明す
る。第1図に示す接合容量評価用モ二タ部は、第4図を
参照して前述した従来例に比べて導電層10およびその
電極数シ出し用の第20ノ4ツドノノが付加形成されて
いる点が構造的に異なシ、これに伴って製造プロセスが
若干異なっておシ、その他は同じであるので第4図中と
同一部分には同一符号を付してその説明を省略する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Compared to the conventional example described above with reference to FIG. 4, the junction capacitance evaluation monitor section shown in FIG. The structure is different in that the manufacturing process is slightly different due to this, and the other parts are the same, so the same parts as in FIG.

即ち、上記導電層10は前記配線5の一部(本例ではパ
ッド部5′ヲ含む)と基板1との両者間全静電遮蔽する
ために、上記両者間の絶縁層3′内に形成されてお)、
これはたとえば不純物としてリンがドープされた多結晶
シリコン層からなる。前記第2のノ(ラド1)は上記導
電層10に一定電位を与えるために必要であって、上記
導電層10の一端部上方で絶縁層3′上に設けられてお
夛、その下方でコンタクトホール部11′を通じて導電
層10に接続されており、たとえばアルミニウムからな
る。そして、この第2のパッド11上の絶縁層6′には
外部接続のために必要な孔12が設けられている。
That is, the conductive layer 10 is formed within the insulating layer 3' between a part of the wiring 5 (including the pad portion 5' in this example) and the substrate 1 in order to completely shield the space between the two. ),
It consists of a polycrystalline silicon layer doped with phosphorus as an impurity, for example. The second electrode 1 is necessary for applying a constant potential to the conductive layer 10, and is provided on the insulating layer 3' above one end of the conductive layer 10, and below it. It is connected to the conductive layer 10 through the contact hole portion 11' and is made of aluminum, for example. A hole 12 necessary for external connection is provided in the insulating layer 6' on this second pad 11.

上記構成のモニタ部において、n+7iiffと基板1
との藺の接合容量(評価目的)’kcj、配線5と導電
層10との間の容量をCA、導電層10と基板1との間
の容量をC8で表わすと、これらの回路接続は第2図の
よう々等価回路で示される。
In the monitor section with the above configuration, n+7iiff and board 1
If the junction capacitance between the wiring 5 and the conductive layer 10 is represented by CA, and the capacitance between the conductive layer 10 and the substrate 1 is represented by C8, these circuit connections are This is shown in an equivalent circuit as shown in Figure 2.

即ち、第1のパッド(前記配線5のパッド部)5′と基
板電極1′との間には前記CAとC5とが直列に接続さ
れると共にこれらに並列に前記Cjが接続されてお)、
上記CAとCBとの接続点に第2のノ4ッド1ノが接続
されている。
That is, the CA and C5 are connected in series between the first pad (pad portion of the wiring 5) 5' and the substrate electrode 1', and the Cj is connected in parallel to them). ,
A second node 4 is connected to the connection point between CA and CB.

いま、第1のパッド5′および第2の・そラド11をそ
れぞれ独立に一定の電位を与えて固定し、基板電位V8
UIlを微少に変化させたとき第1のパッド5′から流
れ込んでくる電荷ΔQPAD、ヲ測定することによシ、
第1のパッド5′と基板1との間の静電容量 を求めることができる。この場合、vsU]]の微少変
化量ΔvgU]Iに対して、CBとCjとは電荷の充放
電が行なわれるが、CAの両端の電位は一定なのでCA
への充放電は行なわれない。したがって、上記ΔQPA
D1はCjの電荷量変化に対応しておシ、上記C′は接
合容量Cjヲ表わしておシ、誤差として浮遊容量分が含
まれてはいないので微細な接合容量CjO高精度測定が
可能になる。
Now, the first pad 5' and the second pad 11 are fixed by applying a constant potential to each independently, and the substrate potential V8 is set.
By measuring the charge ΔQPAD flowing from the first pad 5' when UIl is slightly changed,
The capacitance between the first pad 5' and the substrate 1 can be determined. In this case, CB and Cj are charged and discharged with respect to the minute change ΔvgU]I in vsU]], but since the potential across CA is constant, CA
Charging and discharging is not performed. Therefore, the above ΔQPA
D1 corresponds to the change in the amount of charge of Cj, and C' above represents the junction capacitance Cj. Since stray capacitance is not included as an error, it is possible to measure fine junction capacitance CjO with high precision. Become.

なお、上記導電層10は配線5と基板1との間を完全に
は遮蔽していないので、測定容量C′に誤差として浮遊
容量分が全く含まれていないわけではない。しかし、実
測の結果、従来例ではC,# 345 fFであったも
のが本例では配線・基板間の浮遊容量が0.3 fF 
(従来例の約1/100のであシ、導電層10による浮
遊容量の低減効果は非常に大きい。
Note that since the conductive layer 10 does not completely shield the space between the wiring 5 and the substrate 1, the measured capacitance C' does not include any stray capacitance as an error. However, as a result of actual measurements, the stray capacitance between the wiring and the board was 0.3 fF in this example, whereas it was C, # 345 fF in the conventional example.
(It is about 1/100 of the conventional example, and the effect of reducing stray capacitance by the conductive layer 10 is very large.

また、上記実施例は従来例に比べて絶縁層3′内に導電
層10f形成するプロセスを追加する必要があるが、こ
れは通常のMOS−LSI製造プロセスで容易に実現で
きるので、上記モニタ部全  □採用可能な半導体装置
の適用範囲は広い。
Furthermore, although the above embodiment requires an additional process for forming the conductive layer 10f within the insulating layer 3' compared to the conventional example, this can be easily realized by a normal MOS-LSI manufacturing process. All □The range of applications of semiconductor devices that can be adopted is wide.

なお、本発明は上記接合容量に限られるものではなく、
半導体装置における他の容量、たとえばMOSトランジ
スタの容量を評価するためのモニタ部とか配線間容量を
評価するためのモニタ部などにも応用可能である。即ち
、たとえばNチャネルMOS )ランジスタの電極接合
容量評価用モニタ部を構成するには、MOS (絶縁ダ
ート型)トランジスタのたとえばソース領域を上記実施
例のn12に対応させて上記実施例と同様に配線5、導
電層10、第2のパッド11等を設ければよい。第3図
は、配線間容量評価用モニタ部の一例を示しておシ、絶
縁層3′内の第1層、第2層目の多結晶シリコン配線3
1.32に各対応して接続された第1.第2のアルミニ
ウム配線ss、s4が上記絶縁層3′上に形成されてい
る場合に、上記多結晶シリコン配線31゜32間容量C
X′t−評価するために不要となる第1層目の多結晶シ
リコン配線31と第2のアルミニウム配線34との間の
浮遊容量Cs’e低減するために導電層35を介在させ
て、その電極パッド(図示せず)から独立の一定電位を
与え得るようにしたものである。
Note that the present invention is not limited to the above junction capacitance,
It can also be applied to other capacitances in semiconductor devices, such as a monitor section for evaluating the capacitance of a MOS transistor or a monitor section for evaluating inter-wiring capacitance. That is, in order to configure a monitor section for evaluating the electrode junction capacitance of an N-channel MOS transistor, for example, the source region of the MOS (insulated dart type) transistor should correspond to n12 in the above embodiment, and the wiring should be made in the same manner as in the above embodiment. 5. A conductive layer 10, a second pad 11, etc. may be provided. FIG. 3 shows an example of a monitor section for evaluating inter-wiring capacitance.
1.32 respectively connected correspondingly. When the second aluminum wires ss and s4 are formed on the insulating layer 3', the capacitance C between the polycrystalline silicon wires 31 and 32
In order to reduce the stray capacitance Cs'e between the first layer polycrystalline silicon wiring 31 and the second aluminum wiring 34, which is unnecessary for X't- evaluation, a conductive layer 35 is interposed, and the A constant potential can be applied independently from an electrode pad (not shown).

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の半導体装置の容量評価用モニタ
部によれば、接合容量、配線容量などの評価目的とする
容量の測定に際して浮遊容量が非常に小さくなるように
低減でき、上記容量が微細であっても高精度の測定が可
能となる利点がある。
As described above, according to the capacitance evaluation monitor unit of the present invention, stray capacitance can be reduced to a very small level when measuring capacitance for evaluation purposes such as junction capacitance and wiring capacitance. However, it has the advantage of allowing highly accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体装置の容量評価用モニタ部
の一実施例を示す断面図、第2図は第1図のモニタ部の
等価回路図、第3図は本発明の他の実施例を示す断面図
、第4図は従来例を示す断面図、第5図は第4図のモニ
タ部の等価回路図である。 1・・・半導体基板、1′・・・基板電極、2〜・・不
純物層、3/、6/・・・絶縁層、5.33.34・・
・アルミニウム配線、5′・・・・421部(第1の・
母、ド)、10.35・・・導電層、11・・・第2の
パラp、s1゜32・・・多結晶シリコン配線、Cj・
・・接合容量、cx・・・配線間容量、Cs、 CA、
 CB・・・浮遊容量。 出願人代理人  弁理士 鈴 江 武 彦第3図 第4図 第5図 sus
FIG. 1 is a sectional view showing an embodiment of a monitor section for capacity evaluation of a semiconductor device according to the present invention, FIG. 2 is an equivalent circuit diagram of the monitor section in FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a sectional view showing an example, FIG. 4 is a sectional view showing a conventional example, and FIG. 5 is an equivalent circuit diagram of the monitor section shown in FIG. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 1'... Substrate electrode, 2... Impurity layer, 3/, 6/... Insulating layer, 5.33.34...
・Aluminum wiring, 5'...421 part (first
Mother, de), 10.35... Conductive layer, 11... Second para p, s1゜32... Polycrystalline silicon wiring, Cj.
...Junction capacitance, cx...Inter-wiring capacitance, Cs, CA,
CB... Stray capacitance. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 sus

Claims (5)

【特許請求の範囲】[Claims] (1)半導体装置における所定の2個の部位間の容量を
評価するために、上記正規の部位とは別個に正規の部位
と同様の構造を有すると共にその2個の部位に独立した
電位を印加し得るように少なくとも1個のパッドが形成
されてなる半導体装置の容量評価用モニタ部において、
モニタ部の一方の部位に接続されたパッドもしくはこの
パッドと上記一方の部位との間の配線の少なくとも一部
と他方の部位との間の絶縁層内に導電層が形成され、こ
の導電層に接続されたパッドが形成され、このパッドに
は前記モニタ部の2個の部位の印加電位とは独立した電
位を印加し得るように構成されたことを特徴とする半導
体装置用の容量評価用モニタ部。
(1) In order to evaluate the capacitance between two predetermined parts in a semiconductor device, the two parts have the same structure as the regular part and are separate from the regular part, and independent potentials are applied to the two parts. In a monitor section for evaluating the capacitance of a semiconductor device in which at least one pad is formed to enable
A conductive layer is formed in the insulating layer between the pad connected to one part of the monitor section or at least a part of the wiring between this pad and the one part, and the other part. A capacitance evaluation monitor for a semiconductor device, characterized in that a connected pad is formed, and a potential that is independent of potentials applied to the two parts of the monitor section can be applied to the pad. Department.
(2)前記2個の部位は、半導体基板と、その基板表面
の一部に設けられた配線用不純物層であることを特徴と
する前記特許請求の範囲第1項記載の半導体装置の容量
評価用モニタ部。
(2) Capacity evaluation of the semiconductor device according to claim 1, wherein the two parts are a semiconductor substrate and a wiring impurity layer provided on a part of the surface of the substrate. monitor section.
(3)前記2個の部位は、半導体基板と、その基板表面
に形成されたMOSトランジスタの一方の電極領域であ
ることを特徴とする前記特許請求の範囲第1項記載の半
導体装置の容量評価用モニタ部。
(3) Capacity evaluation of the semiconductor device according to claim 1, wherein the two portions are a semiconductor substrate and one electrode region of a MOS transistor formed on the surface of the substrate. monitor section.
(4)前記2個の部位は、半導体基板上の絶縁層内に形
成された2層の配線であることを特徴とする前記特許請
求の範囲第1項記載の半導体装置の容量評価用モニタ部
(4) The monitor unit for evaluating the capacitance of a semiconductor device according to claim 1, wherein the two parts are two-layer wiring formed in an insulating layer on a semiconductor substrate. .
(5)前記導電層は、不純物がドープされた多結晶シリ
コンであることを特徴とする前記特許請求の範囲第1項
記載の半導体装置の容量評価用モニタ部。
(5) The monitor unit for evaluating the capacity of a semiconductor device according to claim 1, wherein the conductive layer is made of polycrystalline silicon doped with impurities.
JP15607184A 1984-07-26 1984-07-26 Monitor section for evaluating semiconductor device capacity Pending JPS6134951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15607184A JPS6134951A (en) 1984-07-26 1984-07-26 Monitor section for evaluating semiconductor device capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15607184A JPS6134951A (en) 1984-07-26 1984-07-26 Monitor section for evaluating semiconductor device capacity

Publications (1)

Publication Number Publication Date
JPS6134951A true JPS6134951A (en) 1986-02-19

Family

ID=15619665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15607184A Pending JPS6134951A (en) 1984-07-26 1984-07-26 Monitor section for evaluating semiconductor device capacity

Country Status (1)

Country Link
JP (1) JPS6134951A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220454A (en) * 1988-12-22 1990-09-03 Internatl Business Mach Corp <Ibm> Apparatus having process monitor for thin film wiring and method of process monitoring
EP0746024A3 (en) * 1995-05-30 1997-03-26 At & T Corp Semiconductor device with built-in AC coupling circuitry
US5892266A (en) * 1996-05-30 1999-04-06 Sumitomo Metal Industries, Ltd. Layout structure of capacitive element(s) and interconnections in a semiconductor
US20190150632A1 (en) * 2017-11-17 2019-05-23 Purple Innovation, Llc Mattresses including an elastomeric cushioning element and a pocketed coil layer and related methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220454A (en) * 1988-12-22 1990-09-03 Internatl Business Mach Corp <Ibm> Apparatus having process monitor for thin film wiring and method of process monitoring
EP0746024A3 (en) * 1995-05-30 1997-03-26 At & T Corp Semiconductor device with built-in AC coupling circuitry
US5892266A (en) * 1996-05-30 1999-04-06 Sumitomo Metal Industries, Ltd. Layout structure of capacitive element(s) and interconnections in a semiconductor
US20190150632A1 (en) * 2017-11-17 2019-05-23 Purple Innovation, Llc Mattresses including an elastomeric cushioning element and a pocketed coil layer and related methods

Similar Documents

Publication Publication Date Title
US7934429B2 (en) Stress-distribution detecting semiconductor package group and detection method of stress distribution in semiconductor package using the same
USRE46486E1 (en) Semiconductor pressure sensor
US6366098B1 (en) Test structure, integrated circuit, and test method
US6404222B1 (en) Chip capacitance measurement circuit
US20220178863A1 (en) Sensor
JPS6134951A (en) Monitor section for evaluating semiconductor device capacity
US20150221713A1 (en) Voltage and temperature independent mim capacitors
JP5529611B2 (en) Semiconductor device and resistance measuring method
JP3388805B2 (en) Integrated voltage divider
JP2006506801A (en) Frequency independent voltage divider
US6756792B2 (en) Apparatus for measuring parasitic capacitances on an integrated circuit
JPS6211501B2 (en)
US6377067B1 (en) Testing method for buried strap and deep trench leakage current
US5663574A (en) Power semiconductor component with monolithically integrated sensor arrangement as well as manufacture and employment thereof
JP3182079B2 (en) Wiring structure of capacitive element of semiconductor device
JPH0974122A (en) Capacitance measuring pattern and its measuring method for semiconductor device
US20040008037A1 (en) Capacity measuring device and capacity measuring method
JP2008198832A (en) Element property measuring circuit and semiconductor device
US7141864B2 (en) Grouped capacitive element
TW541426B (en) Monitoring resistor element and measuring method of relative preciseness of resistor elements
US11821937B2 (en) Semiconductor base plate and test method thereof
US20050012179A1 (en) Semiconductor device
US20030098695A1 (en) Circuit and method for measuring capacitance
JPS61276335A (en) Semiconductor integrated circuit device
JP2890682B2 (en) Semiconductor device