JPS6132182A - Device for classifying cell - Google Patents

Device for classifying cell

Info

Publication number
JPS6132182A
JPS6132182A JP15371084A JP15371084A JPS6132182A JP S6132182 A JPS6132182 A JP S6132182A JP 15371084 A JP15371084 A JP 15371084A JP 15371084 A JP15371084 A JP 15371084A JP S6132182 A JPS6132182 A JP S6132182A
Authority
JP
Japan
Prior art keywords
cell
cells
microscope
blood cells
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15371084A
Other languages
Japanese (ja)
Inventor
Hajime Matsushita
松下 甫
Kyoichi Ozawa
小沢 恭一
Riyouhei Yabe
矢辺 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15371084A priority Critical patent/JPS6132182A/en
Publication of JPS6132182A publication Critical patent/JPS6132182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To decrease a measuring time by classifying cells roughly in the range of cells considered to be correct on the accuracy of classification by means of a low magnification microscope at first and applying accurate classification with high accuracy by means of a high magnification microscope as to cells not classified surely by the low magnification microscope. CONSTITUTION:A sample 2 subjected to normal dying is moved by a sample automatic loader 1, mounted on an XY stage of a low magnification microscope 4 and the XY stage is controlled by a controller 13. After automatic focusing, a camera 6 and a white corpuscle detector provided in the microscope 4 detect the position of white corpuslces scatterd in the visual field at each visual field and the picture of the white corpuscles, and after the picture signal is subjected to A/D conversion 7, the result is stored in a memory 8. The caracteristic such as size and shape is extracted from the picture in the memory 8 by a characteristic extracging device 9, and the extracted data is subjected to classifying processing by a white corpuscle identification computer 10 and the position of an abnormal corpuscle is stored in a memory 14. After a prescribed number of white corpuscle are idenditied, the sample 2 is carried to a high magnification microscope 18 and accurate information is picked up from the abnormal corpuscles.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は細胞分類装置に係り、特に細胞像を認識して正
常又は異常細胞の分類を行う細胞分類装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cell classification device, and particularly to a cell classification device that recognizes cell images and classifies normal or abnormal cells.

〔発明の背景〕[Background of the invention]

従来の細胞分類装置、特に血球分類装置は血液染色標本
を倍率600倍からi、ooo倍の高倍率顕微鏡に乗せ
、標本上に散在する血球をTVカメラを用いて遂−検出
しながらその血球の形態的画像を分析し、識別分類する
手段を用いて血球の分類を行っていた。しかし、高倍率
顕微鏡を用いて血球の識別を行うと顕微鏡視野内の血球
数が少なくなることと、血球をみつけるまでの時間が視
野面積の2乗に比例して大きくなる。従って血液標本上
で約300μm四方に一個の割合いで散在する血球、特
に白血球を探し出し、−検体当り最低100個の白血球
を検出して分類処理するだけでもその処理時間は0.5
分〜1分を要する。そして、検査結果の統計精度上要望
されている一検体当り300個以上の血球を分類するこ
とは、分類装置の処理能力に限界があるために、さらに
処理に長時間を要することとなる。そこで上記の分類装
置の検査結果の統計精度を高めようとすると処理時間が
長くなることによる分類装置の処理能力の低下という問
題点を解決する新しい白血球分類法として、白血球の核
内酵素と物異的反応する酵素試葉を用いて血液試料を流
体の状態のままでレーザー光の照射を受けた白血球の光
散乱強度から識別する酵素化学反応法(またはフロ一方
式)が開発され、血球分類装置として実用化された(例
えば特公昭59−853号)。
Conventional cell sorting devices, especially blood cell sorting devices, place a blood-stained specimen on a high-magnification microscope with a magnification of 600x to i,00x, and use a TV camera to detect the blood cells scattered on the specimen. Blood cells were classified using a means of analyzing morphological images and identifying and classifying them. However, when identifying blood cells using a high-magnification microscope, the number of blood cells within the field of view of the microscope decreases, and the time required to find blood cells increases in proportion to the square of the field area. Therefore, by searching for blood cells, especially white blood cells, scattered at a rate of one cell per 300 μm square on a blood specimen, and then detecting and classifying at least 100 white blood cells per sample, the processing time is 0.5 times.
It takes 1 minute to 1 minute. Classifying 300 or more blood cells per sample, which is required for the statistical accuracy of test results, requires a longer processing time because the processing capacity of the classification device is limited. Therefore, in order to improve the statistical accuracy of the test results of the above-mentioned classification device, a new method for classifying white blood cells, which solves the problem of a decrease in the processing capacity of the classification device due to the long processing time, has been developed. An enzymatic chemical reaction method (or flow method) has been developed that uses an enzyme test sample that reacts with blood to identify blood samples from the light scattering intensity of white blood cells that are irradiated with laser light while in a fluid state. It was put into practical use as (for example, Japanese Patent Publication No. 59-853).

しかし、前述した血球の形態的分類を行う血球分類装置
では、血球の形態的特徴で血球分類を行っているので正
確な情報が得られるのに対し、フロ一方式による血球分
類装置では光強度を測定して血球の分類を行っているた
めにその検査結果は正常白血球において形態的分類法と
対応するが、異常白血球又は幼若白血球では対応しない
。従って現在の臨床検査にはそのまま受は入れられない
という問題がある。
However, the aforementioned blood cell classification device that classifies blood cells morphologically uses the morphological characteristics of the blood cells, so accurate information can be obtained, whereas the flow-type blood cell classification device uses only light intensity. Because blood cells are classified by measurement, the test results correspond to the morphological classification method for normal leukocytes, but not for abnormal or immature leukocytes. Therefore, there is a problem that current clinical tests cannot be accepted as is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は短い測定時間内でも検査精度上要望され
る数の細胞の分類を行うことのできる処理能力を向上さ
せた細胞分類装置を提供することにちる。
An object of the present invention is to provide a cell sorting device with improved processing ability that can classify as many cells as required for test accuracy even within a short measurement time.

〔発明の概要〕[Summary of the invention]

本発明者らは、細胞の画像分析について種々の検討を行
った結果、先ず細胞の識別分類を、低倍率の顕微鏡を用
いて行うと、視野内に入る細胞が多くなること及び視野
内の1つの細胞から他の1つの細胞を見つけるまでの時
間が(倍率)2に比例するために測定時間を短くするこ
とができる一方で低倍率顕微鏡では細胞からの光情報量
が少ないために正確に細胞の特徴が抽出できず細胞の分
類が行うことができないこと、一方高倍率顕微鏡を用い
ると、細胞から得られる光情報量は多くなるが測定時間
が長くなることに注目して、まず低倍率顕微鏡を用いて
分類精度上確実と考えられる細胞の範囲内で細胞の粗分
類を行い、低倍率顕微鏡で確実に分類できない細胞につ
いて高倍率顕微鏡で圧変よく精密分類を行うようにすれ
ば本発明の目的が達成できると考えて本発明に至ったも
のである。すなわち、本発明は少なくとも1′:)の細
胞が含まれる細胞標本に光を照射し、該細胞から発生す
る光情報を低倍率顕微鏡を通して検出する第1検出手段
と、前記第1検出手段で検出された光情報量を前記細胞
の特性を示す所定値と比較し、該所定値の範囲内に入る
前記細胞の制別分類を行う第1識別手段と、前記第1識
別手段における前記所定値の範囲内に入らない細胞の前
記細胞標本上の位置を記憶する記憶手段と、前記記憶手
段で記憶された位置に存在する前記細胞に光を照射し、
該細胞から発生する光情報を高倍率顕微鏡を通して検出
する第2検出手段と、前記第2検出手段で検出された光
情報量を、前記細胞の特性を示す所定値と比較し前記細
胞の職別分類を行う第2識別手段と、前記第1識別手段
と前記第2識別手段の前記細胞の識別分類結果を表示す
る表示手段を有し、統計精度上所望される数の細胞の識
別を迅速に行うことにできるようにしたことを特徴とす
るある。光の選択は分類測定を行おうとする細胞の種類
および特性に応じて選定すればよい。光の種類に応じて
顕微鏡およびこの顕微鏡から光情報を取り出す検出器が
特定される。例えば特にレーザー光線を用いた場合には
顕微鏡に蛍光顕微鏡、検用益に蛍光検出器、可視光線を
用いた場合には顕微鏡に通常の顕微鏡、検出器にTV左
カメラである。
As a result of various studies on cell image analysis, the present inventors found that when cells are identified and classified using a low-magnification microscope, the number of cells that fall within the field of view increases and the number of cells within the field of view increases. Since the time it takes to find one cell from another is proportional to the magnification of 2, the measurement time can be shortened. On the other hand, with a low-magnification microscope, the amount of light information from the cells is small, so it is possible to accurately detect the cells. Focusing on the fact that the characteristics of cells cannot be extracted and cell classification cannot be performed, and that using a high-magnification microscope increases the amount of optical information obtained from the cells but also increases the measurement time, we first use a low-magnification microscope. The present invention can be achieved by roughly classifying cells within the range of cells that are considered reliable in terms of classification accuracy, and by using a high-magnification microscope to perform precise classification with a high-magnification microscope for cells that cannot be reliably classified with a low-magnification microscope. The present invention was developed based on the belief that the object could be achieved. That is, the present invention includes a first detection means for irradiating light onto a cell specimen containing at least 1':) cells and detecting light information generated from the cells through a low magnification microscope; a first identifying means for comparing the amount of optical information obtained with a predetermined value indicating the characteristics of the cell and selectively classifying the cells that fall within the range of the predetermined value; storage means for storing positions on the cell specimen of cells that do not fall within the range; irradiating light to the cells existing at the positions stored in the storage means;
a second detection means for detecting light information generated from the cell through a high-magnification microscope, and comparing the amount of light information detected by the second detection means with a predetermined value indicating the characteristics of the cell, and determining the occupation of the cell. The present invention further comprises a second identification means for performing classification, and a display means for displaying the identification and classification results of the cells by the first identification means and the second identification means, so that a desired number of cells can be quickly identified in terms of statistical accuracy. It is characterized by being able to do things. The light may be selected depending on the type and characteristics of cells for which classification and measurement are to be performed. Depending on the type of light, a microscope and a detector for extracting optical information from this microscope are specified. For example, when a laser beam is used, the microscope is a fluorescence microscope, and when the inspection is performed, a fluorescence detector is used, and when visible light is used, the microscope is an ordinary microscope, and the detector is a TV left camera.

以上の本発明において、本発明の基礎となった原理につ
いて、血液を分類する細胞分類装置を例にして更に詳説
する。
In the above-mentioned present invention, the principle on which the present invention is based will be further explained in detail using a cell sorting device that sorts blood as an example.

血液標本上に分布する白血球の種類は正常白血球として
好中球、リンパ球、単球、好酸球、好塩基球の5種類が
あり、そのほか、病的検体のときには芽球、骨髄球、赤
芽球などの幼若な血球や異形、リンパ球が出現する。正
常検体の血液標本では、その白血球は200〜300μ
m四方に1個の割合いで散在し、その90%前後が、好
中球とリンパ球で占められ、単球、好酸球、好塩基球の
出現率は少ない。また、ライト染色やメイギムザ染色な
どの普通染色法で染色された白血球はその種類により、
細胞質や顆粒の色、核の形状、大きさ等に形態的特徴を
示している。標本上の白血球の平均直径は大体10μm
〜20μmで、従来は40倍〜100倍の原物レンズを
用いた光学顕微債により白血球像を0.25μm〜0,
5μm四方の微細な画素に分解して、画素の色濃度情報
を分析して血球の特徴を抽出し、白血球を正確に党別す
る方法をとっている。
There are five types of white blood cells distributed in blood specimens: neutrophils, lymphocytes, monocytes, eosinophils, and basophils as normal white blood cells, and in addition, blast cells, myelocytes, and red blood cells in pathological specimens. Immature blood cells such as blasts, atypical cells, and lymphocytes appear. In a normal blood sample, the white blood cells are 200-300μ
They are scattered at a ratio of one per m square, and about 90% of them are occupied by neutrophils and lymphocytes, with a low incidence of monocytes, eosinophils, and basophils. Also, depending on the type of white blood cells stained with ordinary staining methods such as Wright staining and May-Giemsa staining,
Morphological characteristics are shown in the color of the cytoplasm and granules, the shape and size of the nucleus, etc. The average diameter of white blood cells on a specimen is approximately 10 μm.
~20 μm, and conventionally, white blood cell images were obtained using an optical microscope using an original lens with magnification of 40x to 100x.
The method involves dividing white blood cells into minute pixels of 5 μm square, analyzing the color density information of each pixel, extracting the characteristics of blood cells, and accurately classifying white blood cells.

そこで、白血球の典凰的特徴である細胞質の色顆粒の色
、核の形状、核と細胞質の大きさなどを用いて、先ず典
型的な白血球のみを粗く正確にとらえ、正常血球でも変
性した抑速は不明球とすることにより、白血球の大部分
を占める典型的好中球とリンパ球の大半を粗識別段階で
正確に処理することができる。との粗識別処理は画素分
解能1μm程度以下でも充分と考えられるので、例えば
20倍程度の対物レンズを用いた低倍率顕微鏡と分解能
1μm以下の高分解能リニアアレイ半導体検出器を組合
せた高速度画像取込み装置により、従来の10〜20倍
の血球処理速度が期待できる。
Therefore, by using the typical characteristics of white blood cells, such as the color of cytoplasmic granules, the shape of the nucleus, and the size of the nucleus and cytoplasm, we first roughly and accurately capture only typical white blood cells, and even normal blood cells can be degenerated and inhibited. By selecting cells of unknown speed, most typical neutrophils and lymphocytes, which make up the majority of white blood cells, can be accurately processed at the rough identification stage. It is considered that a pixel resolution of about 1 μm or less is sufficient for rough identification processing, so for example, high-speed image capture using a combination of a low-magnification microscope using a 20x objective lens and a high-resolution linear array semiconductor detector with a resolution of 1 μm or less is recommended. The device can be expected to process blood cells 10 to 20 times faster than conventional methods.

次に粗除別処理で識別不能とした血球に対し、標本上の
位置を記憶させておき、標本を従来と同様の高分解能顕
微鏡に移して、マークされた不明球のみを精密に分析処
理する。この精密識別処理を必要とする血球は一般に少
なく、検体当りに処理する白血球数の115〜1/10
程度と考えられる。
Next, the positions on the specimen of the blood cells that were made unidentifiable during the rough separation process are memorized, and the specimen is transferred to a conventional high-resolution microscope to precisely analyze only the marked unknown cells. . The number of blood cells that require this precise identification process is generally small, and is 115 to 1/10 of the number of white blood cells processed per sample.
It is considered to be a degree.

以上のほかに、蛍光染色と普通染色の二重染色標本を用
いて、白血球を高速度に分類することもできる。蛍光染
色とは例えば、白血球の種類により異なる染色度をもち
、あるいは白血球の種類に特異的な染色をし、光例えば
青色のレーザー光を照射すると白血球に特有の蛍光を発
する染色法で、白血球から発光する蛍光の波長、強度を
分析することにより白血球の種類や病的情報を知ること
ができる。蛍光染色には、白血球の核物質を染め、その
種類によって染色度を異にするアクリジンオレンジなど
の蛍光試薬や、1977球、8977球、幼若細胞々ど
の免疫現象を表示するモノクロナール抗体等がある。こ
の二重染色法の重要な点は、血液を蛍光染色を行った上
更に普通染色を施しだ二重染色標本を作製し、先ず、低
倍率蛍光顕微鏡を用いて標本上の白血球から発する蛍光
を分析し、白血球の蛍光分析による分類と、幼若球、1
977球、8977球等の特異的血球を同定する。この
蛍光分析段階では正常白血球5分類の粗識別と異常血球
、特定の検査すべき血球等の識別が可能で、それぞれの
血球位置をマークすることができる。次に、高倍率顕微
鏡で蛍光顕微鏡では党別不能な血球および特異的な血球
を形態的に識別する。とのように蛍光分析法と形態学的
識別法の組合せにより、従来の分類には得られない同一
血球による複合情報を用いた確度の高い齢別が可能であ
り、更に、新しい病的診断情報を形態学と対比しながら
得られるという特長がある。
In addition to the above, white blood cells can also be classified at high speed using a double-stained specimen of fluorescent staining and normal staining. Fluorescent staining is, for example, a staining method that has different degrees of staining depending on the type of white blood cells, or is specific to the type of white blood cells, and when irradiated with light such as blue laser light, it emits fluorescence specific to white blood cells. By analyzing the wavelength and intensity of the emitted fluorescence, the type of white blood cells and pathological information can be determined. Fluorescent staining uses fluorescent reagents such as acridine orange, which stains the nuclear material of white blood cells and has different staining intensity depending on the type, and monoclonal antibodies that display immune phenomena such as 1977 cells, 8977 cells, and young cells. be. The important point of this double staining method is that the blood is fluorescently stained and then normal stained to prepare a double stained specimen. Analyze and classify leukocytes by fluorescence analysis and immature cells, 1
Identify specific blood cells such as 977 cells and 8977 cells. At this fluorescence analysis stage, it is possible to roughly identify five categories of normal white blood cells, abnormal blood cells, specific blood cells to be examined, etc., and mark the position of each blood cell. Next, blood cells that cannot be distinguished using a fluorescence microscope and specific blood cells are morphologically identified using a high-magnification microscope. The combination of fluorescence analysis and morphological identification methods enables highly accurate age classification using composite information from the same blood cells that cannot be obtained with conventional classification, and also provides new pathological diagnostic information. It has the advantage that it can be obtained by comparing it with morphology.

蛍光顕微鏡による血球分類は、従来の形態的分類とは異
なり、血球の形状を抽出する必要がないので顕微鏡の倍
率を更に低くすることが可能であり、検体の処理能力を
従来の数倍以上に高めうろことが期待できる。
Unlike conventional morphological classification, blood cell classification using a fluorescence microscope does not require extracting the shape of the blood cells, so the magnification of the microscope can be lowered even further, increasing sample processing capacity several times more than conventional methods. You can expect it to go up high.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の好ましい実施例を添付図に基づいて説明す
る。
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第3図は、血液細胞標本上の白血球を低倍率顕微鏡、あ
るいは低倍率蛍光顕微鏡を用いて、画像処理あるいは蛍
光分析の方法で粗識別分類する顕微鏡取込視野と、高倍
率顕微鏡による精識別分類での取込視野を示す。
Figure 3 shows the field of view captured by a microscope in which white blood cells on a blood cell specimen are roughly classified and classified using a low-magnification microscope or a low-magnification fluorescence microscope using image processing or fluorescence analysis, and the fine classification and classification performed using a high-magnification microscope. Shows the field of view taken in.

第3図で、31は血液標本、32は標本上に散在する白
血球とその位置座標xiyi、33は低倍率顕微鏡視野
を示す。−34は高倍率顕微鏡視野、35は低倍率蛍光
顕微鏡視野を示す。33の低倍率視野は例えば、顕微鏡
の対物レンズの倍率を×20とした場合、視野の広さは
、はぼ1000μm四方で、その視野内に平均8〜10
個の白血球が散在することになる。これらの白血球を画
像処理により識別するためには画像取込み最小単位即ち
画素36として1μm!程度が必要で、画像取込み用検
出器として例えば10241Jニアアレイ半導体デテク
ターを用いて視野画面を走査する方法がある。また他の
例として、1024X1024のエリアアレイ半導体カ
メラを用いて、視野を間けつ的に移動させながら、より
高速に白血球画像を取込むと同時にその位置を検出する
方法がある。
In FIG. 3, 31 shows a blood specimen, 32 shows white blood cells scattered on the specimen and their positional coordinates xiyi, and 33 shows a low-magnification microscopic field. -34 shows a high magnification microscope field, and 35 shows a low magnification fluorescence microscope field. For example, if the magnification of the objective lens of a microscope is x20, the field of view is approximately 1000 μm square, and an average of 8 to 10
white blood cells will be scattered. In order to identify these white blood cells by image processing, the minimum unit of image capture, that is, the pixel 36, is 1 μm! There is a method of scanning the viewing screen using, for example, a 10241J near-array semiconductor detector as a detector for image capture. Another example is a method in which a 1024×1024 area array semiconductor camera is used to capture images of white blood cells at a higher speed while at the same time detecting their positions while moving the field of view intermittently.

34の高倍率視野の場合は、画素37として(0,25
μm)2から(0,5μm)2が必要で、従来の画像取
込みと同様の×40〜×100倍対物レンズの顕微鏡が
用いられる。35の低倍率蛍光分析視野の縁台は白血球
を蛍光の発光源としてとらえ、その位置が判ればよいた
め、更に低倍率顕微鏡を使用することができる。例えば
×10倍の対物レンズの顕微鏡を用いたとすると視野の
広さは直径2,000  μmとなり、この視野内には
白血球は30〜40個散在する。この場合、白血球蛍光
検出器は前述の33の画像取込のときとは違い、白血球
の蛍光検出感度を出来るだけ高める必要があるため、画
素38は白血球の大きさに比べ小さくするより同程度の
方が望ましい。従って、白血球の核の太きさよりやや小
さい画素(4μm ) 2〜(8μm)2に対応するり
ニアアレイ検出器として512チヤンネルから256チ
ヤンネルの低分解能で安価な半導体検出器が使用できる
。更に処理速度を高めるために512X512又は25
6×256のエリアアレイ半導体検出器を用いたカメラ
を使用することもできる。一般にカメラを使用する場合
、−視野の走査時間は16m(8)であるので、×10
倍の対物レンズの蛍光顕微鏡を用いて蛍光分析法により
白血球を分類するとき、−視野の約30個の白血球を最
低15m式の時間内に分析できることになる。顕微鏡ス
テージの移動、自動焦点、基地情報取込処理に要する時
間を入れ、その2倍の時間32m5ecに一視野の分析
をするとしても1派に約900個の白血球を分析するこ
とになる。従って、本発明の分類システムの処理速度は
、後段の高倍率顕微鏡の分類速度に左右されると考えら
れる。今、後段で分類すべき白血球の数が全体の10チ
とすると、前段の蛍光分析で1.000  個の白血球
を処理したときは、100個の白血球を後段で画像処理
することになる。後段の画;象処理の速度は、従来のよ
うに標本上に散在する白血球を探す必要がなく、前段で
マークされた白血球位置に最短距離でステージ移動の制
御ができるので、従来方式より短時間で処理可能でおる
が、それでも1血球当り最低0.1(8)が必要でおる
。100個の血球処理には1(Hec’l要することに
なり、標本の交換時間を入れても、1時間当り200検
体以上の処理が可能となる。これは、従来方式では1検
体100個の白血球を処理して1時間100検体の処理
が高速処理とされていたのに対し、約20倍の処理能力
となる。しかし後段の画像処理を必要とする血球数によ
り全体の処理能力が決定される。
In the case of a high magnification field of view of 34, the pixel 37 is (0, 25
μm)2 to (0.5 μm)2 is required, and a microscope with a ×40 to ×100 objective lens similar to conventional image capture is used. The edge of the low magnification fluorescence analysis field of 35 captures white blood cells as a source of fluorescence, and since it is only necessary to know their position, a lower magnification microscope can be used. For example, if a microscope with a ×10 objective lens is used, the field of view will be 2,000 μm in diameter, and 30 to 40 white blood cells will be scattered within this field of view. In this case, the white blood cell fluorescence detector is different from the case of image capture in step 33 mentioned above, and because it is necessary to increase the sensitivity of white blood cell fluorescence detection as much as possible, the pixel 38 is smaller than the size of the white blood cells. It is preferable. Therefore, a low-resolution, inexpensive semiconductor detector with 512 channels to 256 channels can be used as a near array detector corresponding to pixels (4 μm) 2 to (8 μm) 2 that are slightly smaller than the diameter of a white blood cell nucleus. 512X512 or 25 to further increase processing speed
A camera with a 6x256 area array semiconductor detector can also be used. Generally, when using a camera, the scanning time of the field of view is 16 m (8), so × 10
When classifying leukocytes by fluorometry using a fluorescence microscope with a double objective, approximately 30 leukocytes in the field of view can be analyzed within a time of at least 15 m. Even if one field of view is analyzed in 32 m5ec, which is twice that time, including the time required for moving the microscope stage, automatic focusing, and base information acquisition processing, approximately 900 white blood cells per group will be analyzed. Therefore, the processing speed of the classification system of the present invention is considered to be influenced by the classification speed of the high-power microscope at the subsequent stage. Now, assuming that the total number of leukocytes to be classified in the second stage is 10, when 1,000 white blood cells are processed in the first stage fluorescence analysis, 100 white blood cells will be subjected to image processing in the second stage. The image processing speed of the second stage is shorter than that of the conventional method because there is no need to search for white blood cells scattered on the specimen as in the conventional method, and the stage movement can be controlled in the shortest distance to the white blood cell position marked in the first stage. However, a minimum of 0.1 (8) per blood cell is still required. It takes 1 (Hec'l) to process 100 blood cells, and even including the specimen exchange time, it is possible to process more than 200 specimens per hour. The processing capacity is approximately 20 times higher than the high-speed processing of 100 samples per hour when processing white blood cells. However, the overall processing capacity is determined by the number of blood cells that require subsequent image processing. Ru.

第4図は蛍光染色としてアクリジンオレンジで染色され
た白血球に励起光としてAr−レーザの488nmの青
色光を照射したとき発光する蛍光の強度と各種白血球の
頻度分布を示す。図において、(a)図は波長530n
m附近の緑色蛍光に対する白血球のスペキトルを、(b
)図は波長650nm附近の赤色蛍光に対する白血球の
スペクトルを示す。またLはリンパ球、Bは好塩基球、
Mは単球、Eは好酸球、Nは好中球、IMM=幼若球を
示す。
FIG. 4 shows the intensity of fluorescence emitted when leukocytes stained with acridine orange as fluorescent staining are irradiated with 488 nm blue light from an Ar laser as excitation light and the frequency distribution of various leukocytes. In the figure, (a) shows a wavelength of 530n.
The spectrum of leukocytes for green fluorescence near m is (b
) The figure shows the spectrum of white blood cells for red fluorescence around a wavelength of 650 nm. Also, L is lymphocyte, B is basophil,
M indicates monocyte, E indicates eosinophil, N indicates neutrophil, and IMM indicates immature cell.

この2つの蛍光の2次元強度スペクトルから典型的な白
血球5種類と幼若球の分類が可能となる。
From the two-dimensional intensity spectra of these two fluorescences, it is possible to classify five typical types of white blood cells and immature cells.

第1図は、本発明に係る細胞分類装置の−実施碗を示す
ものであって血液検体に普通染色を施し、低倍率と高倍
率の2つの顕微鏡と画像処理手法により高速処理を行う
白血球分類システムを示す構成図である。
FIG. 1 shows an implementation of the cell sorting device according to the present invention, in which a blood sample is normally stained and white blood cells are classified at high speed using two microscopes with low magnification and high magnification and an image processing method. FIG. 1 is a configuration diagram showing a system.

図において、標本オートローダ1がら各標本2が途中の
IDリーダ3を介して低倍率顕微鏡4のステージに移動
するようになっている。低倍率顕微鏡4には該顕微@4
に可視光線を照射す4る光源5とカメラ6が接続されて
いる。前記カメラ6はA/D変換器7に接続しており、
とのA/D変換器7には画像メモリ8に接続されている
。前記画像メモリ8は特徴抽出器9に接続されており、
この特徴抽出器9は血球識別コンピュータIOK接続す
レテイる。前記血球峻別コンピュータ1oはID分類結
果メモリに接続されており、このメモリはプリンタ12
に接続されている。
In the figure, each specimen 2 is moved from a specimen autoloader 1 to a stage of a low magnification microscope 4 via an ID reader 3 on the way. Low magnification microscope 4 has the same microscope @4.
A light source 5 that emits visible light and a camera 6 are connected. The camera 6 is connected to an A/D converter 7,
The A/D converter 7 is connected to an image memory 8. The image memory 8 is connected to a feature extractor 9;
This feature extractor 9 is connected to the blood cell identification computer IOK. The blood cell differentiation computer 1o is connected to an ID classification result memory, and this memory is connected to a printer 12.
It is connected to the.

前記低倍率顕微鏡4にはX−Yコントローラ13が接続
されて、このコントローラ13は標本ID不明血球位置
メモリ14が接続されている。
An X-Y controller 13 is connected to the low magnification microscope 4, and a sample ID unknown blood cell position memory 14 is connected to the controller 13.

前記IDリーダ3と血球識別コンピュータ1゜は標本I
D不明血球位置メモリ14に接続されており、このメモ
リ14はIDチェッカー15に接続されている。このチ
ェッカー15にはIDリーダ16が接続している。前記
IDチェッカー15にはX−Yコントローラ16が接続
されており、このコントローラ16には光源19が接続
した高倍率顕微鏡17が接続されている。高倍率顕微鏡
17にはカメラ18が接続されており、このカメラ18
はA/D変換基20に接続されている。
The ID reader 3 and the blood cell identification computer 1° are the specimen I.
D is connected to an unknown blood cell position memory 14, and this memory 14 is connected to an ID checker 15. An ID reader 16 is connected to this checker 15. An XY controller 16 is connected to the ID checker 15, and a high magnification microscope 17 to which a light source 19 is connected is connected to the controller 16. A camera 18 is connected to the high magnification microscope 17.
is connected to the A/D conversion group 20.

前記A/D変換基20は画像メモリ21に接続されてお
り、この画像メモリ21は前記特徴抽出器9に接続して
いる。
The A/D converter 20 is connected to an image memory 21, which in turn is connected to the feature extractor 9.

次に本実施例の動作について説明する。先ず、メイ、ギ
ムザ染色がなされた白液標本2は標本オートローダ1に
より移動されて、途中のIDリーダ3で標本IDが読取
られながら光源3がら可視光線が照射されている低倍率
顕微鏡4のX−Yステージにマウントされる。このX−
Yステージはコントローラ13の制御により作動し、自
動焦点動作後、カメラ6により顕微鏡4内に設けられた
白血球検出器によって各視野毎に視野内に散在する白血
球の位置と白血球の画像が検出される。前記カメラ6に
よって検出された白血球の画像信号は、各白血球の位置
ごとに赤(R)、緑(G)、t(B)の3色の濃度信号
にカメラ6内で分けられ、この濃度信号はディジタル量
で処理するためA/D変換器7で、夫々、ディジタル化
される。
Next, the operation of this embodiment will be explained. First, a white liquor specimen 2 stained with May and Giemsa is moved by a specimen autoloader 1, and while the specimen ID is read by an ID reader 3 along the way, it is transferred to the X of a low magnification microscope 4 which is irradiated with visible light from a light source 3. -Mounted on Y stage. This X-
The Y stage is operated under the control of the controller 13, and after automatic focusing, the camera 6 detects the positions of white blood cells scattered within the field of view and images of the white blood cells for each field of view by a white blood cell detector provided in the microscope 4. . The image signal of the white blood cells detected by the camera 6 is divided into three color density signals of red (R), green (G), and t(B) within the camera 6 for each position of each white blood cell. are respectively digitized by an A/D converter 7 in order to process them in digital quantities.

このディジタル化された信号は画像メモリ8に記憶され
る。顕!JP!l 4のステージが次の視野に移動し画
像取込み準備をしている間に、画像メモリ8の白血球画
像は特徴抽出装置9により、白血球の大きさ、形状、色
濃度等の特徴が抽出される。
This digitized signal is stored in the image memory 8. Reveal! JP! While the stage 4 moves to the next field of view and prepares to capture the image, features such as the size, shape, and color density of the white blood cells are extracted from the white blood cell image in the image memory 8 by the feature extraction device 9. .

次に特徴抽出器9で抽出されたデータは血球識別コンピ
ュータ10によって記憶され、白血球の面積計算、最大
、最小値検出、濃度ヒストグラム、周囲長、分節数など
の演算処理が行われ、識別関数により予め記憶された所
定値と比較して、各種白血球の分類が行われる。このよ
うなプロセスで血球の分類検査精度上必要とされる指定
数の白血球を識別し、その結果を標本のIDに対応させ
て分類結果メモリ11に記憶させる。キして、同時に血
球職別コンピュータ10で、異常球又は不明球とした血
球に対してその位置を位置メモリ14に記憶させる。次
に、標本2は標本オートローダ1により光源19から可
視光線が照射された高倍率顕微鏡18に運ばれ、標本I
DをI D IJ−ダ16とチェッカー15で確認され
る。次に前記低倍率顕微鏡4による分類で、不明球又は
異常球として検体標本上の位置が不明球位置メモリ14
において記憶されている血球をX−Yステージコントロ
ーラ16により呼び出し、その血球画像の詳細な情報を
カメラ18、A/D変換器20を通して画像メモリ21
に取込む。X=Yステージの移動はX−Yコントローラ
16内の制御装置によって行われるが、不明球、異常球
の検体上の位置が予めメモリ14でわかっているために
X−Yステージの移動は高速で行うことができる。X−
Yステージコントローラ16が次の不明球又は異常球を
呼び出しその画像を取込む準備をしている間に、画像メ
モリの白血球は特徴抽出9、血球職別コンピユータ10
によりタイムシェアで精密に識別分類され、その結果が
15の結果メモリに送られる。
Next, the data extracted by the feature extractor 9 is stored in the blood cell identification computer 10, where it is subjected to calculations such as white blood cell area calculation, maximum and minimum value detection, concentration histogram, perimeter, and number of segments, and is processed using a discrimination function. Classification of various white blood cells is performed by comparing with predetermined values stored in advance. Through such a process, a designated number of white blood cells required for the accuracy of blood cell classification test is identified, and the results are stored in the classification result memory 11 in correspondence with the ID of the specimen. At the same time, the blood cell classification computer 10 stores the position of the blood cell determined as an abnormal or unknown cell in the position memory 14. Next, the specimen 2 is transported by the specimen autoloader 1 to a high-magnification microscope 18 that is irradiated with visible light from a light source 19, and the specimen I
D is confirmed by ID IJ-da 16 and checker 15. Next, according to the classification by the low magnification microscope 4, the position on the specimen specimen is classified as an unknown ball or an abnormal ball by the unknown ball position memory 14.
The X-Y stage controller 16 calls out the blood cells stored in the X-Y stage controller 16, and the detailed information of the blood cell image is sent to the image memory 21 through the camera 18 and A/D converter 20.
Incorporate into. The movement of the X=Y stage is performed by the control device in the X-Y controller 16, but since the positions of the unknown spheres and abnormal spheres on the specimen are known in advance in the memory 14, the movement of the X-Y stage is fast. It can be carried out. X-
While the Y stage controller 16 calls the next unknown or abnormal ball and prepares to capture its image, the white blood cells in the image memory are processed by the feature extraction 9 and the blood cell job specific computer 10.
The timeshares are precisely identified and classified by the timeshare, and the results are sent to 15 result memories.

なお、カメラ18、A/D変換器20、および画像メモ
リ21の動作は、低倍率顕微鏡4による検査分類に用い
られるカメラ6、A/D変換器7、画像メモリ8と同じ
である。
The operations of the camera 18, A/D converter 20, and image memory 21 are the same as those of the camera 6, A/D converter 7, and image memory 8 used for inspection classification using the low magnification microscope 4.

以上のようにして、全ての不明球又は異常球がX−Y、
7ントローラ16で呼び出され、高倍率顕微鏡17で精
密識別されると、その結果がプリンタ16によってその
標本の最終結果として報告されるシ 以上のように本実施例によれば、血球の粗識別分類と精
密識別分類の2段階方式を多数検体に対し並列に用いる
ことにより、−検体当9300個以上の白血球を処理し
ても、従来の2倍〜数倍の処理能力を期待することがで
きる。従って、病院の臨床検査において多数の血液検体
の細胞分類を精度よく迅速に行うことができる。特に緊
急検査の時などにきわめて有効である。
In the above manner, all unknown balls or abnormal balls are X-Y,
7 is read by the controller 16 and finely identified by the high magnification microscope 17, and the result is reported as the final result of the specimen by the printer 16.As described above, according to this embodiment, rough identification classification of blood cells is performed. By using the two-stage method of precise identification and classification in parallel for a large number of samples, it is possible to expect a processing capacity that is twice to several times that of conventional methods, even when processing 9,300 or more white blood cells per sample. Therefore, cell classification of a large number of blood samples can be performed quickly and accurately in clinical tests at hospitals. This is extremely effective, especially during emergency inspections.

なお、本実施例では検体2を標本オートローダ1によっ
て高倍率顕微鏡1・7に移行しているが、必要に応じて
高倍率顕微鏡を検体部分にまで移行することもできる。
In this embodiment, the specimen 2 is transferred to the high magnification microscopes 1 and 7 by the specimen autoloader 1, but the high magnification microscope can also be transferred to the specimen portion if necessary.

第2図は、本発明に係る細胞分類装置の第1図に示した
実施例と異方る実施例を示す構成図である。
FIG. 2 is a configuration diagram showing an embodiment different from the embodiment shown in FIG. 1 of the cell sorting device according to the present invention.

本実施例と第1図に示された実施例との異なる点は、標
本2に蛍光染色と普通染色の二重染色を行い、レーザー
光を細胞標本に照射し、低倍率蛍光顕微鏡によって白血
球細胞の粗分類を行っている点である。
The difference between this example and the example shown in FIG. 1 is that specimen 2 was double-stained with fluorescent staining and ordinary staining, the cell specimen was irradiated with laser light, and white blood cells were detected using a low-magnification fluorescence microscope. The point is that it performs a rough classification.

本実施例と第1図の実施例の構成上具なるのは以下の点
である。
The components of this embodiment and the embodiment of FIG. 1 are as follows.

す々わち、第1図の実施例における可視光線の光源5の
代りにレーザー光の光源22が設けられており、この光
源22は低倍率蛍光顕微鏡23に接続されている。前記
顕微鏡23には第1図のカメラ6の代りに蛍光検出器2
4が接続されており、この検出器24にはA/D変換器
7が接続されている。前記A/D変換器7には、第1図
の画像メモリ8の代りに蛍光強度分析器25が接続され
ており、この分析器25は第1図の特徴抽出器9に接続
されずに直接血球識別コンピュータに接続されている。
That is, a laser light source 22 is provided in place of the visible light light source 5 in the embodiment of FIG. 1, and this light source 22 is connected to a low magnification fluorescence microscope 23. The microscope 23 is equipped with a fluorescence detector 2 instead of the camera 6 shown in FIG.
4 is connected to the detector 24, and an A/D converter 7 is connected to the detector 24. A fluorescence intensity analyzer 25 is connected to the A/D converter 7 instead of the image memory 8 in FIG. 1, and this analyzer 25 is not connected to the feature extractor 9 in FIG. Connected to blood cell identification computer.

次に本実施例の動作のうち第1図の実施例の動作と異な
る点について説明する。光源22からのレーザ光の励起
光により励起された白血球内の蛍光色素が蛍光を出し蛍
光検出器24で検出される。
Next, the points of operation of this embodiment that are different from the operation of the embodiment shown in FIG. 1 will be explained. Fluorescent pigments within the white blood cells excited by the excitation light of the laser beam from the light source 22 emit fluorescence, which is detected by the fluorescence detector 24 .

検出器24で検出された蛍光信号は検出器24内に設け
られた緑、赤等の蛍光フィルタによって各種蛍光の強度
信号に分析され、A/D変換器7でディジタル処理が行
われ、ディジタル量に変換される。このディジタル量に
変換された各種蛍光強度信号は、白血球の位置ごとに、
蛍光分析器25で強度分析され、各々の波長の蛍光強度
スペクトルに対し各白血球の種類が血球識別コンピュー
タ26により分類され、この結果がメモリ11に記憶さ
れる。血球職別コンピュータ26において、分類困難な
血球あるいは幼若球と判定した血球はその位置がメモリ
14に記憶され、第1図に示した実施例における場合と
同様に高倍率顕微鏡17によって白血球の画像の精密分
析が行われる。
The fluorescence signal detected by the detector 24 is analyzed into various fluorescence intensity signals by green, red, etc. fluorescence filters provided in the detector 24, and digitally processed by the A/D converter 7 to convert into digital quantities. is converted to The various fluorescence intensity signals converted into digital quantities are
The intensity is analyzed by the fluorescence analyzer 25, and the type of each white blood cell is classified by the blood cell identification computer 26 based on the fluorescence intensity spectrum of each wavelength, and the results are stored in the memory 11. The location of blood cells that are determined to be difficult to classify or immature cells by the blood cell type computer 26 is stored in the memory 14, and images of the white blood cells are obtained using the high magnification microscope 17 as in the embodiment shown in FIG. A detailed analysis will be carried out.

以上のように蛍光分析と画像処理の2つの組合せによっ
て血球の分類を行うことは、本実施例のように二段階顕
微鏡分析のみでなく、一つの顕微鏡上で同時に蛍光分析
と画像処理を行うことによっても可能である。このよう
な場合は、血球の分類の処理速度を上げることよりはむ
しろ血球の複合情報による臨床的診断情報を増し検体診
断の確度を高めることを図ることができる。
Classifying blood cells by a combination of fluorescence analysis and image processing as described above is not only a two-step microscopic analysis as in this example, but also a combination of fluorescence analysis and image processing performed simultaneously on one microscope. It is also possible by In such a case, rather than increasing the processing speed of blood cell classification, it is possible to increase the clinical diagnostic information based on the composite information of blood cells, thereby increasing the accuracy of sample diagnosis.

以上のように本実施例によれば、レーザー光線を用いて
血球細胞の分類を行うので細胞の粗分類段階で第1の実
施例よりも更に低倍率の顕微鏡を用いることができる。
As described above, according to this embodiment, since blood cells are classified using a laser beam, a microscope with lower magnification than that of the first embodiment can be used at the stage of rough cell classification.

従って第1の実施例よりも一層分類精度を保持しつつ分
類処理時間を短縮することができる。
Therefore, classification processing time can be shortened while maintaining classification accuracy even more than in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、細胞分類検査結果
の精度上必要とされる数の細胞の分類を迅速に行うこと
ができる。
As explained above, according to the present invention, it is possible to quickly classify the number of cells required for the accuracy of cell classification test results.

物面の簡単な説明 第1図第2図は本発明に係る細胞分類装置の実施例のシ
ステムを示す構成図、第3図は血液検体中の血液細胞の
位置、顕微鏡視野を示す図、第4図は血液中の白血球頻
度と蛍光強度の関係を示すグラフである。
Brief description of objects Figure 1 Figure 2 is a configuration diagram showing the system of an embodiment of the cell sorting device according to the present invention, Figure 3 is a diagram showing the position of blood cells in a blood sample and the field of view under a microscope. FIG. 4 is a graph showing the relationship between leukocyte frequency in blood and fluorescence intensity.

4・・・低倍率顕微鏡、6・・・カメラ、8.21・・
・画像メモリ、9・・・%微油用益、10・・・血球識
別コンピュータ、11・・・ID、分類結果メモリ、1
4・・・標本より、不明原位置メモリ、17・・・高倍
率顕微鏡、23・・・低倍率蛍光顕微鏡、24・・・蛍
光抽出器、25・・・蛍光強度分析器。
4...Low magnification microscope, 6...Camera, 8.21...
・Image memory, 9...% slight oil utility, 10...Blood cell identification computer, 11...ID, classification result memory, 1
4... Unknown original position memory from the specimen, 17... High magnification microscope, 23... Low magnification fluorescence microscope, 24... Fluorescence extractor, 25... Fluorescence intensity analyzer.

Claims (1)

【特許請求の範囲】 1、少なくとも1つの細胞が含まれる細胞標本に光を照
射し、該細胞から発生する光情報を低倍率顕微鏡を通し
て検出する第1検出手段と、前記第1検出手段で検出さ
れた光情報量を前記細胞の特性を示す所定値と比較し、
該所定値の範囲内に入る前記細胞の識別分類を行う第1
識別手段と、前記第1識別手段における前記所定値の範
囲内に入らない細胞の前記細胞標本上の位置を記憶する
記憶手段と、前記記憶手段で記憶された位置に存在する
前記細胞に光を照射し、該細胞から発生する光情報を高
倍率顕微鏡を通して検出する第2検出手段と、前記第2
検出手段で検出された光情報量を、前記細胞の特性を示
す所定値と比較し前記細胞の識別分類を行う第2識別手
段と、前記第1識別手段と前記第2識別手段の前記細胞
の識別分類結果を表示する表示手段とを有することを特
徴とする細胞分類装置。 2、特許請求の範囲第1項記載の発明において、上記第
1および第2の検出手段で上記細胞標本に照射される光
が可視光であり、光情報が細胞からの画像情報であるこ
とを特徴とする細胞分類装置。 3、特許請求の範囲第1項記載の発明において、上記第
1検出手段で上記細胞標本に照射される光がレーザー光
であり、光情報が該レーザー光線を吸収した細胞からの
蛍光情報であることを特徴とする細胞分類装置。 4、特許請求の範囲第1項ないし第3項記載の発明のい
ずれかにおいて、上記細胞が血液細胞であることを特徴
とする細胞分類装置。
[Claims] 1. A first detection means for irradiating light onto a cell specimen containing at least one cell and detecting light information generated from the cell through a low magnification microscope; and detection by the first detection means. comparing the amount of optical information obtained with a predetermined value indicating the characteristics of the cell,
A first step of identifying and classifying the cells that fall within the range of the predetermined value.
an identification means, a storage means for storing a position on the cell specimen of a cell that does not fall within the range of the predetermined value in the first identification means, and a method for applying light to the cell existing at the position stored in the storage means. a second detection means for irradiating the cell and detecting optical information generated from the cell through a high magnification microscope;
a second identification means for identifying and classifying the cells by comparing the amount of optical information detected by the detection means with a predetermined value indicating the characteristics of the cells; and a second identification means for identifying and classifying the cells; 1. A cell classification device comprising: display means for displaying identification classification results. 2. In the invention as set forth in claim 1, the light irradiated onto the cell specimen by the first and second detection means is visible light, and the optical information is image information from the cells. Characteristic cell sorting device. 3. In the invention as set forth in claim 1, the light irradiated onto the cell specimen by the first detection means is a laser beam, and the optical information is fluorescence information from cells that have absorbed the laser beam. A cell sorting device featuring: 4. A cell sorting device according to any one of claims 1 to 3, wherein the cells are blood cells.
JP15371084A 1984-07-24 1984-07-24 Device for classifying cell Pending JPS6132182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15371084A JPS6132182A (en) 1984-07-24 1984-07-24 Device for classifying cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15371084A JPS6132182A (en) 1984-07-24 1984-07-24 Device for classifying cell

Publications (1)

Publication Number Publication Date
JPS6132182A true JPS6132182A (en) 1986-02-14

Family

ID=15568401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15371084A Pending JPS6132182A (en) 1984-07-24 1984-07-24 Device for classifying cell

Country Status (1)

Country Link
JP (1) JPS6132182A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135767A (en) * 1985-12-10 1987-06-18 Hitachi Ltd Cell analyzing instrument
JPS62240837A (en) * 1986-04-14 1987-10-21 Hitachi Ltd Automatic cell sorter
JPS63115057A (en) * 1986-10-31 1988-05-19 Rikagaku Kenkyusho Automatic sighting method for laser fine irradiation
JPS6453157A (en) * 1987-08-24 1989-03-01 Shiseido Co Ltd Method and instrument for measuring characteristic of cutaneous cell
JPH01165958A (en) * 1987-11-17 1989-06-29 Cell Analysis Syst Inc Method and apparatus for analyzing ploidy of immune
EP0468705A2 (en) * 1990-07-25 1992-01-29 Hitachi, Ltd. Method and apparatus for investigating and controlling an object
EP0772840A4 (en) * 1994-07-26 1999-03-31 Neuromedical Systems Inc Inspection device and method
CN102305791A (en) * 2011-07-19 2012-01-04 南昌百特生物高新技术股份有限公司 Slide specimen image acquiring method
JP2014070943A (en) * 2012-09-28 2014-04-21 Sysmex Corp Specimen storage device, specimen storage method, and specimen inspection system
AT525533A1 (en) * 2021-11-02 2023-05-15 West Medica Produktions Und Handels Gmbh Method and system for analyzing a blood sample
WO2023105547A1 (en) * 2021-12-06 2023-06-15 日本電気株式会社 Classification device, classification method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841992A (en) * 1971-10-06 1973-06-19
JPS49130293A (en) * 1973-04-13 1974-12-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841992A (en) * 1971-10-06 1973-06-19
JPS49130293A (en) * 1973-04-13 1974-12-13

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135767A (en) * 1985-12-10 1987-06-18 Hitachi Ltd Cell analyzing instrument
JPH0426711B2 (en) * 1986-04-14 1992-05-08 Hitachi Ltd
JPS62240837A (en) * 1986-04-14 1987-10-21 Hitachi Ltd Automatic cell sorter
JPS63115057A (en) * 1986-10-31 1988-05-19 Rikagaku Kenkyusho Automatic sighting method for laser fine irradiation
JPS6453157A (en) * 1987-08-24 1989-03-01 Shiseido Co Ltd Method and instrument for measuring characteristic of cutaneous cell
JPH01165958A (en) * 1987-11-17 1989-06-29 Cell Analysis Syst Inc Method and apparatus for analyzing ploidy of immune
EP0468705A2 (en) * 1990-07-25 1992-01-29 Hitachi, Ltd. Method and apparatus for investigating and controlling an object
US5403735A (en) * 1990-07-25 1995-04-04 Hitachi, Ltd. Method and apparatus for investigating and controlling an object
EP0772840A4 (en) * 1994-07-26 1999-03-31 Neuromedical Systems Inc Inspection device and method
CN102305791A (en) * 2011-07-19 2012-01-04 南昌百特生物高新技术股份有限公司 Slide specimen image acquiring method
JP2014070943A (en) * 2012-09-28 2014-04-21 Sysmex Corp Specimen storage device, specimen storage method, and specimen inspection system
AT525533A1 (en) * 2021-11-02 2023-05-15 West Medica Produktions Und Handels Gmbh Method and system for analyzing a blood sample
AT525533B1 (en) * 2021-11-02 2023-06-15 West Medica Produktions Und Handels Gmbh Method and system for analyzing a blood sample
WO2023105547A1 (en) * 2021-12-06 2023-06-15 日本電気株式会社 Classification device, classification method, and program

Similar Documents

Publication Publication Date Title
US11499908B2 (en) Urine analysis system, image capturing apparatus, urine analysis method
EP0515099B1 (en) Apparatus for analyzing cells in urine
US5541064A (en) Methods and apparatus for immunoploidy analysis
US5016283A (en) Methods and apparatus for immunoploidy analysis
EP0681177B1 (en) Method and apparatus for cell counting and cell classification
US10408735B2 (en) In vitro method for the label-free determination of a cell type of a cell
US6350613B1 (en) Determination of white blood cell differential and reticulocyte counts
JP2941041B2 (en) Classification of leukocytes by flow cytometry
EP2290350B1 (en) Particle image analysis method and device
EP1865303A1 (en) Method of discriminating cancer and atypical cells and cell analyzer
US3740143A (en) Automatic apparatus for determining the percentage population of particulates in a medium
JPH0652263B2 (en) Cell analyzer
AU2009251162B2 (en) Method for classifying slides using scatter plot distributions
JPS6370166A (en) Classification of white corpuscle by flow sight metry
JPS6132182A (en) Device for classifying cell
US8349256B2 (en) Blood cell analyzer, blood cell analyzing method, and computer program product
CA2525601A1 (en) System for determining the stain quality of slides using scatter plot distributions
JP2826448B2 (en) Flow type particle image analysis method and flow type particle image analysis device
JP2010151523A (en) Method and device for analyzing particle image
JP3165309B2 (en) Particle image analyzer
US20240029458A1 (en) A method for automated determination of platelet count based on microscopic images of peripheral blood smears
JPH0989752A (en) Inspection apparatus for urine precipitate
JP2908245B2 (en) Object identification device
Lerner et al. Automatic signal classification in fluorescence in-situ hybridization images
Lewis Automated differential leucocyte counting: Present status and future trends